| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspceeqv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
| 2 | 1 | eqeq2d 2746 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
| 3 | 2 | rspcev 3601 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Copyright terms: Public domain | W3C validator |