Proof of Theorem ralxpmap
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vex 3484 | . . 3
⊢ 𝑔 ∈ V | 
| 2 |  | snex 5436 | . . 3
⊢
{〈𝐽, 𝑦〉} ∈
V | 
| 3 | 1, 2 | unex 7764 | . 2
⊢ (𝑔 ∪ {〈𝐽, 𝑦〉}) ∈ V | 
| 4 |  | simpr 484 | . . . . . . 7
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → 𝑓 ∈ (𝑆 ↑m 𝑇)) | 
| 5 |  | elmapex 8888 | . . . . . . . . 9
⊢ (𝑓 ∈ (𝑆 ↑m 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) | 
| 6 | 5 | adantl 481 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → (𝑆 ∈ V ∧ 𝑇 ∈ V)) | 
| 7 |  | elmapg 8879 | . . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑓 ∈ (𝑆 ↑m 𝑇) ↔ 𝑓:𝑇⟶𝑆)) | 
| 8 | 6, 7 | syl 17 | . . . . . . 7
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → (𝑓 ∈ (𝑆 ↑m 𝑇) ↔ 𝑓:𝑇⟶𝑆)) | 
| 9 | 4, 8 | mpbid 232 | . . . . . 6
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → 𝑓:𝑇⟶𝑆) | 
| 10 |  | simpl 482 | . . . . . 6
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → 𝐽 ∈ 𝑇) | 
| 11 | 9, 10 | ffvelcdmd 7105 | . . . . 5
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → (𝑓‘𝐽) ∈ 𝑆) | 
| 12 |  | difss 4136 | . . . . . . 7
⊢ (𝑇 ∖ {𝐽}) ⊆ 𝑇 | 
| 13 |  | fssres 6774 | . . . . . . 7
⊢ ((𝑓:𝑇⟶𝑆 ∧ (𝑇 ∖ {𝐽}) ⊆ 𝑇) → (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆) | 
| 14 | 9, 12, 13 | sylancl 586 | . . . . . 6
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆) | 
| 15 | 5 | simpld 494 | . . . . . . . 8
⊢ (𝑓 ∈ (𝑆 ↑m 𝑇) → 𝑆 ∈ V) | 
| 16 | 15 | adantl 481 | . . . . . . 7
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → 𝑆 ∈ V) | 
| 17 | 6 | simprd 495 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → 𝑇 ∈ V) | 
| 18 | 17 | difexd 5331 | . . . . . . 7
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → (𝑇 ∖ {𝐽}) ∈ V) | 
| 19 | 16, 18 | elmapd 8880 | . . . . . 6
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})) ↔ (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆)) | 
| 20 | 14, 19 | mpbird 257 | . . . . 5
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → (𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))) | 
| 21 | 9 | ffnd 6737 | . . . . . 6
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → 𝑓 Fn 𝑇) | 
| 22 |  | fnsnsplit 7204 | . . . . . 6
⊢ ((𝑓 Fn 𝑇 ∧ 𝐽 ∈ 𝑇) → 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {〈𝐽, (𝑓‘𝐽)〉})) | 
| 23 | 21, 10, 22 | syl2anc 584 | . . . . 5
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {〈𝐽, (𝑓‘𝐽)〉})) | 
| 24 |  | opeq2 4874 | . . . . . . . . 9
⊢ (𝑦 = (𝑓‘𝐽) → 〈𝐽, 𝑦〉 = 〈𝐽, (𝑓‘𝐽)〉) | 
| 25 | 24 | sneqd 4638 | . . . . . . . 8
⊢ (𝑦 = (𝑓‘𝐽) → {〈𝐽, 𝑦〉} = {〈𝐽, (𝑓‘𝐽)〉}) | 
| 26 | 25 | uneq2d 4168 | . . . . . . 7
⊢ (𝑦 = (𝑓‘𝐽) → (𝑔 ∪ {〈𝐽, 𝑦〉}) = (𝑔 ∪ {〈𝐽, (𝑓‘𝐽)〉})) | 
| 27 | 26 | eqeq2d 2748 | . . . . . 6
⊢ (𝑦 = (𝑓‘𝐽) → (𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}) ↔ 𝑓 = (𝑔 ∪ {〈𝐽, (𝑓‘𝐽)〉}))) | 
| 28 |  | uneq1 4161 | . . . . . . 7
⊢ (𝑔 = (𝑓 ↾ (𝑇 ∖ {𝐽})) → (𝑔 ∪ {〈𝐽, (𝑓‘𝐽)〉}) = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {〈𝐽, (𝑓‘𝐽)〉})) | 
| 29 | 28 | eqeq2d 2748 | . . . . . 6
⊢ (𝑔 = (𝑓 ↾ (𝑇 ∖ {𝐽})) → (𝑓 = (𝑔 ∪ {〈𝐽, (𝑓‘𝐽)〉}) ↔ 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {〈𝐽, (𝑓‘𝐽)〉}))) | 
| 30 | 27, 29 | rspc2ev 3635 | . . . . 5
⊢ (((𝑓‘𝐽) ∈ 𝑆 ∧ (𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})) ∧ 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {〈𝐽, (𝑓‘𝐽)〉})) → ∃𝑦 ∈ 𝑆 ∃𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉})) | 
| 31 | 11, 20, 23, 30 | syl3anc 1373 | . . . 4
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 ∈ (𝑆 ↑m 𝑇)) → ∃𝑦 ∈ 𝑆 ∃𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉})) | 
| 32 | 31 | ex 412 | . . 3
⊢ (𝐽 ∈ 𝑇 → (𝑓 ∈ (𝑆 ↑m 𝑇) → ∃𝑦 ∈ 𝑆 ∃𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}))) | 
| 33 |  | elmapi 8889 | . . . . . . . . . 10
⊢ (𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})) → 𝑔:(𝑇 ∖ {𝐽})⟶𝑆) | 
| 34 | 33 | ad2antll 729 | . . . . . . . . 9
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → 𝑔:(𝑇 ∖ {𝐽})⟶𝑆) | 
| 35 |  | f1osng 6889 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑦 ∈ V) → {〈𝐽, 𝑦〉}:{𝐽}–1-1-onto→{𝑦}) | 
| 36 |  | f1of 6848 | . . . . . . . . . . . 12
⊢
({〈𝐽, 𝑦〉}:{𝐽}–1-1-onto→{𝑦} → {〈𝐽, 𝑦〉}:{𝐽}⟶{𝑦}) | 
| 37 | 35, 36 | syl 17 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑦 ∈ V) → {〈𝐽, 𝑦〉}:{𝐽}⟶{𝑦}) | 
| 38 | 37 | elvd 3486 | . . . . . . . . . 10
⊢ (𝐽 ∈ 𝑇 → {〈𝐽, 𝑦〉}:{𝐽}⟶{𝑦}) | 
| 39 | 38 | adantr 480 | . . . . . . . . 9
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → {〈𝐽, 𝑦〉}:{𝐽}⟶{𝑦}) | 
| 40 |  | disjdifr 4473 | . . . . . . . . . 10
⊢ ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅ | 
| 41 | 40 | a1i 11 | . . . . . . . . 9
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅) | 
| 42 |  | fun 6770 | . . . . . . . . 9
⊢ (((𝑔:(𝑇 ∖ {𝐽})⟶𝑆 ∧ {〈𝐽, 𝑦〉}:{𝐽}⟶{𝑦}) ∧ ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅) → (𝑔 ∪ {〈𝐽, 𝑦〉}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦})) | 
| 43 | 34, 39, 41, 42 | syl21anc 838 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {〈𝐽, 𝑦〉}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦})) | 
| 44 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → 𝐽 ∈ 𝑇) | 
| 45 | 44 | snssd 4809 | . . . . . . . . . 10
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → {𝐽} ⊆ 𝑇) | 
| 46 |  | undifr 4483 | . . . . . . . . . 10
⊢ ({𝐽} ⊆ 𝑇 ↔ ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = 𝑇) | 
| 47 | 45, 46 | sylib 218 | . . . . . . . . 9
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = 𝑇) | 
| 48 | 47 | feq2d 6722 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → ((𝑔 ∪ {〈𝐽, 𝑦〉}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}) ↔ (𝑔 ∪ {〈𝐽, 𝑦〉}):𝑇⟶(𝑆 ∪ {𝑦}))) | 
| 49 | 43, 48 | mpbid 232 | . . . . . . 7
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {〈𝐽, 𝑦〉}):𝑇⟶(𝑆 ∪ {𝑦})) | 
| 50 |  | ssidd 4007 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → 𝑆 ⊆ 𝑆) | 
| 51 |  | snssi 4808 | . . . . . . . . 9
⊢ (𝑦 ∈ 𝑆 → {𝑦} ⊆ 𝑆) | 
| 52 | 51 | ad2antrl 728 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → {𝑦} ⊆ 𝑆) | 
| 53 | 50, 52 | unssd 4192 | . . . . . . 7
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑆 ∪ {𝑦}) ⊆ 𝑆) | 
| 54 | 49, 53 | fssd 6753 | . . . . . 6
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {〈𝐽, 𝑦〉}):𝑇⟶𝑆) | 
| 55 |  | elmapex 8888 | . . . . . . . . 9
⊢ (𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})) → (𝑆 ∈ V ∧ (𝑇 ∖ {𝐽}) ∈ V)) | 
| 56 | 55 | ad2antll 729 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑆 ∈ V ∧ (𝑇 ∖ {𝐽}) ∈ V)) | 
| 57 | 56 | simpld 494 | . . . . . . 7
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → 𝑆 ∈ V) | 
| 58 |  | ssun1 4178 | . . . . . . . 8
⊢ 𝑇 ⊆ (𝑇 ∪ {𝐽}) | 
| 59 |  | undif1 4476 | . . . . . . . . 9
⊢ ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = (𝑇 ∪ {𝐽}) | 
| 60 | 56 | simprd 495 | . . . . . . . . . 10
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑇 ∖ {𝐽}) ∈ V) | 
| 61 |  | snex 5436 | . . . . . . . . . 10
⊢ {𝐽} ∈ V | 
| 62 |  | unexg 7763 | . . . . . . . . . 10
⊢ (((𝑇 ∖ {𝐽}) ∈ V ∧ {𝐽} ∈ V) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) ∈ V) | 
| 63 | 60, 61, 62 | sylancl 586 | . . . . . . . . 9
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) ∈ V) | 
| 64 | 59, 63 | eqeltrrid 2846 | . . . . . . . 8
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑇 ∪ {𝐽}) ∈ V) | 
| 65 |  | ssexg 5323 | . . . . . . . 8
⊢ ((𝑇 ⊆ (𝑇 ∪ {𝐽}) ∧ (𝑇 ∪ {𝐽}) ∈ V) → 𝑇 ∈ V) | 
| 66 | 58, 64, 65 | sylancr 587 | . . . . . . 7
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → 𝑇 ∈ V) | 
| 67 | 57, 66 | elmapd 8880 | . . . . . 6
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → ((𝑔 ∪ {〈𝐽, 𝑦〉}) ∈ (𝑆 ↑m 𝑇) ↔ (𝑔 ∪ {〈𝐽, 𝑦〉}):𝑇⟶𝑆)) | 
| 68 | 54, 67 | mpbird 257 | . . . . 5
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {〈𝐽, 𝑦〉}) ∈ (𝑆 ↑m 𝑇)) | 
| 69 |  | eleq1 2829 | . . . . 5
⊢ (𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}) → (𝑓 ∈ (𝑆 ↑m 𝑇) ↔ (𝑔 ∪ {〈𝐽, 𝑦〉}) ∈ (𝑆 ↑m 𝑇))) | 
| 70 | 68, 69 | syl5ibrcom 247 | . . . 4
⊢ ((𝐽 ∈ 𝑇 ∧ (𝑦 ∈ 𝑆 ∧ 𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽})))) → (𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}) → 𝑓 ∈ (𝑆 ↑m 𝑇))) | 
| 71 | 70 | rexlimdvva 3213 | . . 3
⊢ (𝐽 ∈ 𝑇 → (∃𝑦 ∈ 𝑆 ∃𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}) → 𝑓 ∈ (𝑆 ↑m 𝑇))) | 
| 72 | 32, 71 | impbid 212 | . 2
⊢ (𝐽 ∈ 𝑇 → (𝑓 ∈ (𝑆 ↑m 𝑇) ↔ ∃𝑦 ∈ 𝑆 ∃𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}))) | 
| 73 |  | ralxpmap.j | . . 3
⊢ (𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉}) → (𝜑 ↔ 𝜓)) | 
| 74 | 73 | adantl 481 | . 2
⊢ ((𝐽 ∈ 𝑇 ∧ 𝑓 = (𝑔 ∪ {〈𝐽, 𝑦〉})) → (𝜑 ↔ 𝜓)) | 
| 75 | 3, 72, 74 | ralxpxfr2d 3646 | 1
⊢ (𝐽 ∈ 𝑇 → (∀𝑓 ∈ (𝑆 ↑m 𝑇)𝜑 ↔ ∀𝑦 ∈ 𝑆 ∀𝑔 ∈ (𝑆 ↑m (𝑇 ∖ {𝐽}))𝜓)) |