MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpmap Structured version   Visualization version   GIF version

Theorem ralxpmap 8841
Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
ralxpmap.j (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝜑𝜓))
Assertion
Ref Expression
ralxpmap (𝐽𝑇 → (∀𝑓 ∈ (𝑆m 𝑇)𝜑 ↔ ∀𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝜓))
Distinct variable groups:   𝜑,𝑔,𝑦   𝜓,𝑓   𝑓,𝐽,𝑔,𝑦   𝑆,𝑓,𝑔,𝑦   𝑇,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑦,𝑔)

Proof of Theorem ralxpmap
StepHypRef Expression
1 vex 3450 . . 3 𝑔 ∈ V
2 snex 5393 . . 3 {⟨𝐽, 𝑦⟩} ∈ V
31, 2unex 7685 . 2 (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ V
4 simpr 485 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑓 ∈ (𝑆m 𝑇))
5 elmapex 8793 . . . . . . . . 9 (𝑓 ∈ (𝑆m 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
65adantl 482 . . . . . . . 8 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7 elmapg 8785 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑓 ∈ (𝑆m 𝑇) ↔ 𝑓:𝑇𝑆))
86, 7syl 17 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑓 ∈ (𝑆m 𝑇) ↔ 𝑓:𝑇𝑆))
94, 8mpbid 231 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑓:𝑇𝑆)
10 simpl 483 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝐽𝑇)
119, 10ffvelcdmd 7041 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑓𝐽) ∈ 𝑆)
12 difss 4096 . . . . . . 7 (𝑇 ∖ {𝐽}) ⊆ 𝑇
13 fssres 6713 . . . . . . 7 ((𝑓:𝑇𝑆 ∧ (𝑇 ∖ {𝐽}) ⊆ 𝑇) → (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆)
149, 12, 13sylancl 586 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆)
155simpld 495 . . . . . . . 8 (𝑓 ∈ (𝑆m 𝑇) → 𝑆 ∈ V)
1615adantl 482 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑆 ∈ V)
176simprd 496 . . . . . . . 8 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑇 ∈ V)
1817difexd 5291 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑇 ∖ {𝐽}) ∈ V)
1916, 18elmapd 8786 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆m (𝑇 ∖ {𝐽})) ↔ (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆))
2014, 19mpbird 256 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆m (𝑇 ∖ {𝐽})))
219ffnd 6674 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑓 Fn 𝑇)
22 fnsnsplit 7135 . . . . . 6 ((𝑓 Fn 𝑇𝐽𝑇) → 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
2321, 10, 22syl2anc 584 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
24 opeq2 4836 . . . . . . . . 9 (𝑦 = (𝑓𝐽) → ⟨𝐽, 𝑦⟩ = ⟨𝐽, (𝑓𝐽)⟩)
2524sneqd 4603 . . . . . . . 8 (𝑦 = (𝑓𝐽) → {⟨𝐽, 𝑦⟩} = {⟨𝐽, (𝑓𝐽)⟩})
2625uneq2d 4128 . . . . . . 7 (𝑦 = (𝑓𝐽) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}) = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}))
2726eqeq2d 2742 . . . . . 6 (𝑦 = (𝑓𝐽) → (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ↔ 𝑓 = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩})))
28 uneq1 4121 . . . . . . 7 (𝑔 = (𝑓 ↾ (𝑇 ∖ {𝐽})) → (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}) = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
2928eqeq2d 2742 . . . . . 6 (𝑔 = (𝑓 ↾ (𝑇 ∖ {𝐽})) → (𝑓 = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}) ↔ 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩})))
3027, 29rspc2ev 3593 . . . . 5 (((𝑓𝐽) ∈ 𝑆 ∧ (𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆m (𝑇 ∖ {𝐽})) ∧ 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩})) → ∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}))
3111, 20, 23, 30syl3anc 1371 . . . 4 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → ∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}))
3231ex 413 . . 3 (𝐽𝑇 → (𝑓 ∈ (𝑆m 𝑇) → ∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})))
33 elmapi 8794 . . . . . . . . . 10 (𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})) → 𝑔:(𝑇 ∖ {𝐽})⟶𝑆)
3433ad2antll 727 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝑔:(𝑇 ∖ {𝐽})⟶𝑆)
35 f1osng 6830 . . . . . . . . . . . 12 ((𝐽𝑇𝑦 ∈ V) → {⟨𝐽, 𝑦⟩}:{𝐽}–1-1-onto→{𝑦})
36 f1of 6789 . . . . . . . . . . . 12 ({⟨𝐽, 𝑦⟩}:{𝐽}–1-1-onto→{𝑦} → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
3735, 36syl 17 . . . . . . . . . . 11 ((𝐽𝑇𝑦 ∈ V) → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
3837elvd 3453 . . . . . . . . . 10 (𝐽𝑇 → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
3938adantr 481 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
40 disjdifr 4437 . . . . . . . . . 10 ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅
4140a1i 11 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅)
42 fun 6709 . . . . . . . . 9 (((𝑔:(𝑇 ∖ {𝐽})⟶𝑆 ∧ {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦}) ∧ ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}))
4334, 39, 41, 42syl21anc 836 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}))
44 uncom 4118 . . . . . . . . . 10 ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = ({𝐽} ∪ (𝑇 ∖ {𝐽}))
45 simpl 483 . . . . . . . . . . . 12 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝐽𝑇)
4645snssd 4774 . . . . . . . . . . 11 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → {𝐽} ⊆ 𝑇)
47 undif 4446 . . . . . . . . . . 11 ({𝐽} ⊆ 𝑇 ↔ ({𝐽} ∪ (𝑇 ∖ {𝐽})) = 𝑇)
4846, 47sylib 217 . . . . . . . . . 10 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ({𝐽} ∪ (𝑇 ∖ {𝐽})) = 𝑇)
4944, 48eqtrid 2783 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = 𝑇)
5049feq2d 6659 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇⟶(𝑆 ∪ {𝑦})))
5143, 50mpbid 231 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇⟶(𝑆 ∪ {𝑦}))
52 ssidd 3970 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝑆𝑆)
53 snssi 4773 . . . . . . . . 9 (𝑦𝑆 → {𝑦} ⊆ 𝑆)
5453ad2antrl 726 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → {𝑦} ⊆ 𝑆)
5552, 54unssd 4151 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑆 ∪ {𝑦}) ⊆ 𝑆)
5651, 55fssd 6691 . . . . . 6 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇𝑆)
57 elmapex 8793 . . . . . . . . 9 (𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})) → (𝑆 ∈ V ∧ (𝑇 ∖ {𝐽}) ∈ V))
5857ad2antll 727 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑆 ∈ V ∧ (𝑇 ∖ {𝐽}) ∈ V))
5958simpld 495 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝑆 ∈ V)
60 ssun1 4137 . . . . . . . 8 𝑇 ⊆ (𝑇 ∪ {𝐽})
61 undif1 4440 . . . . . . . . 9 ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = (𝑇 ∪ {𝐽})
6258simprd 496 . . . . . . . . . 10 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑇 ∖ {𝐽}) ∈ V)
63 snex 5393 . . . . . . . . . 10 {𝐽} ∈ V
64 unexg 7688 . . . . . . . . . 10 (((𝑇 ∖ {𝐽}) ∈ V ∧ {𝐽} ∈ V) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) ∈ V)
6562, 63, 64sylancl 586 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) ∈ V)
6661, 65eqeltrrid 2837 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑇 ∪ {𝐽}) ∈ V)
67 ssexg 5285 . . . . . . . 8 ((𝑇 ⊆ (𝑇 ∪ {𝐽}) ∧ (𝑇 ∪ {𝐽}) ∈ V) → 𝑇 ∈ V)
6860, 66, 67sylancr 587 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝑇 ∈ V)
6959, 68elmapd 8786 . . . . . 6 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆m 𝑇) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇𝑆))
7056, 69mpbird 256 . . . . 5 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆m 𝑇))
71 eleq1 2820 . . . . 5 (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝑓 ∈ (𝑆m 𝑇) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆m 𝑇)))
7270, 71syl5ibrcom 246 . . . 4 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → 𝑓 ∈ (𝑆m 𝑇)))
7372rexlimdvva 3201 . . 3 (𝐽𝑇 → (∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → 𝑓 ∈ (𝑆m 𝑇)))
7432, 73impbid 211 . 2 (𝐽𝑇 → (𝑓 ∈ (𝑆m 𝑇) ↔ ∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})))
75 ralxpmap.j . . 3 (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝜑𝜓))
7675adantl 482 . 2 ((𝐽𝑇𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})) → (𝜑𝜓))
773, 74, 76ralxpxfr2d 3599 1 (𝐽𝑇 → (∀𝑓 ∈ (𝑆m 𝑇)𝜑 ↔ ∀𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  Vcvv 3446  cdif 3910  cun 3911  cin 3912  wss 3913  c0 4287  {csn 4591  cop 4597  cres 5640   Fn wfn 6496  wf 6497  1-1-ontowf1o 6500  cfv 6501  (class class class)co 7362  m cmap 8772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-map 8774
This theorem is referenced by:  islindf4  21281
  Copyright terms: Public domain W3C validator