MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpmap Structured version   Visualization version   GIF version

Theorem ralxpmap 8309
Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
ralxpmap.j (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝜑𝜓))
Assertion
Ref Expression
ralxpmap (𝐽𝑇 → (∀𝑓 ∈ (𝑆𝑚 𝑇)𝜑 ↔ ∀𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽}))𝜓))
Distinct variable groups:   𝜑,𝑔,𝑦   𝜓,𝑓   𝑓,𝐽,𝑔,𝑦   𝑆,𝑓,𝑔,𝑦   𝑇,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑦,𝑔)

Proof of Theorem ralxpmap
StepHypRef Expression
1 vex 3440 . . 3 𝑔 ∈ V
2 snex 5223 . . 3 {⟨𝐽, 𝑦⟩} ∈ V
31, 2unex 7326 . 2 (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ V
4 simpr 485 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → 𝑓 ∈ (𝑆𝑚 𝑇))
5 elmapex 8277 . . . . . . . . 9 (𝑓 ∈ (𝑆𝑚 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
65adantl 482 . . . . . . . 8 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7 elmapg 8269 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑓 ∈ (𝑆𝑚 𝑇) ↔ 𝑓:𝑇𝑆))
86, 7syl 17 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → (𝑓 ∈ (𝑆𝑚 𝑇) ↔ 𝑓:𝑇𝑆))
94, 8mpbid 233 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → 𝑓:𝑇𝑆)
10 simpl 483 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → 𝐽𝑇)
119, 10ffvelrnd 6717 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → (𝑓𝐽) ∈ 𝑆)
12 difss 4029 . . . . . . 7 (𝑇 ∖ {𝐽}) ⊆ 𝑇
13 fssres 6412 . . . . . . 7 ((𝑓:𝑇𝑆 ∧ (𝑇 ∖ {𝐽}) ⊆ 𝑇) → (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆)
149, 12, 13sylancl 586 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆)
155simpld 495 . . . . . . . 8 (𝑓 ∈ (𝑆𝑚 𝑇) → 𝑆 ∈ V)
1615adantl 482 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → 𝑆 ∈ V)
176simprd 496 . . . . . . . 8 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → 𝑇 ∈ V)
18 difexg 5122 . . . . . . . 8 (𝑇 ∈ V → (𝑇 ∖ {𝐽}) ∈ V)
1917, 18syl 17 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → (𝑇 ∖ {𝐽}) ∈ V)
2016, 19elmapd 8270 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})) ↔ (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆))
2114, 20mpbird 258 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → (𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))
229ffnd 6383 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → 𝑓 Fn 𝑇)
23 fnsnsplit 6813 . . . . . 6 ((𝑓 Fn 𝑇𝐽𝑇) → 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
2422, 10, 23syl2anc 584 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
25 opeq2 4711 . . . . . . . . 9 (𝑦 = (𝑓𝐽) → ⟨𝐽, 𝑦⟩ = ⟨𝐽, (𝑓𝐽)⟩)
2625sneqd 4484 . . . . . . . 8 (𝑦 = (𝑓𝐽) → {⟨𝐽, 𝑦⟩} = {⟨𝐽, (𝑓𝐽)⟩})
2726uneq2d 4060 . . . . . . 7 (𝑦 = (𝑓𝐽) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}) = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}))
2827eqeq2d 2805 . . . . . 6 (𝑦 = (𝑓𝐽) → (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ↔ 𝑓 = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩})))
29 uneq1 4053 . . . . . . 7 (𝑔 = (𝑓 ↾ (𝑇 ∖ {𝐽})) → (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}) = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
3029eqeq2d 2805 . . . . . 6 (𝑔 = (𝑓 ↾ (𝑇 ∖ {𝐽})) → (𝑓 = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}) ↔ 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩})))
3128, 30rspc2ev 3574 . . . . 5 (((𝑓𝐽) ∈ 𝑆 ∧ (𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})) ∧ 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩})) → ∃𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}))
3211, 21, 24, 31syl3anc 1364 . . . 4 ((𝐽𝑇𝑓 ∈ (𝑆𝑚 𝑇)) → ∃𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}))
3332ex 413 . . 3 (𝐽𝑇 → (𝑓 ∈ (𝑆𝑚 𝑇) → ∃𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})))
34 elmapi 8278 . . . . . . . . . 10 (𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})) → 𝑔:(𝑇 ∖ {𝐽})⟶𝑆)
3534ad2antll 725 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → 𝑔:(𝑇 ∖ {𝐽})⟶𝑆)
36 f1osng 6523 . . . . . . . . . . . 12 ((𝐽𝑇𝑦 ∈ V) → {⟨𝐽, 𝑦⟩}:{𝐽}–1-1-onto→{𝑦})
37 f1of 6483 . . . . . . . . . . . 12 ({⟨𝐽, 𝑦⟩}:{𝐽}–1-1-onto→{𝑦} → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
3836, 37syl 17 . . . . . . . . . . 11 ((𝐽𝑇𝑦 ∈ V) → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
3938elvd 3443 . . . . . . . . . 10 (𝐽𝑇 → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
4039adantr 481 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
41 incom 4099 . . . . . . . . . . 11 ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ({𝐽} ∩ (𝑇 ∖ {𝐽}))
42 disjdif 4335 . . . . . . . . . . 11 ({𝐽} ∩ (𝑇 ∖ {𝐽})) = ∅
4341, 42eqtri 2819 . . . . . . . . . 10 ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅
4443a1i 11 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅)
45 fun 6408 . . . . . . . . 9 (((𝑔:(𝑇 ∖ {𝐽})⟶𝑆 ∧ {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦}) ∧ ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}))
4635, 40, 44, 45syl21anc 834 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}))
47 uncom 4050 . . . . . . . . . 10 ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = ({𝐽} ∪ (𝑇 ∖ {𝐽}))
48 simpl 483 . . . . . . . . . . . 12 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → 𝐽𝑇)
4948snssd 4649 . . . . . . . . . . 11 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → {𝐽} ⊆ 𝑇)
50 undif 4344 . . . . . . . . . . 11 ({𝐽} ⊆ 𝑇 ↔ ({𝐽} ∪ (𝑇 ∖ {𝐽})) = 𝑇)
5149, 50sylib 219 . . . . . . . . . 10 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → ({𝐽} ∪ (𝑇 ∖ {𝐽})) = 𝑇)
5247, 51syl5eq 2843 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = 𝑇)
5352feq2d 6368 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → ((𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇⟶(𝑆 ∪ {𝑦})))
5446, 53mpbid 233 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇⟶(𝑆 ∪ {𝑦}))
55 ssidd 3911 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → 𝑆𝑆)
56 snssi 4648 . . . . . . . . 9 (𝑦𝑆 → {𝑦} ⊆ 𝑆)
5756ad2antrl 724 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → {𝑦} ⊆ 𝑆)
5855, 57unssd 4083 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑆 ∪ {𝑦}) ⊆ 𝑆)
5954, 58fssd 6396 . . . . . 6 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇𝑆)
60 elmapex 8277 . . . . . . . . 9 (𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})) → (𝑆 ∈ V ∧ (𝑇 ∖ {𝐽}) ∈ V))
6160ad2antll 725 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑆 ∈ V ∧ (𝑇 ∖ {𝐽}) ∈ V))
6261simpld 495 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → 𝑆 ∈ V)
63 ssun1 4069 . . . . . . . 8 𝑇 ⊆ (𝑇 ∪ {𝐽})
64 undif1 4338 . . . . . . . . 9 ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = (𝑇 ∪ {𝐽})
6561simprd 496 . . . . . . . . . 10 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑇 ∖ {𝐽}) ∈ V)
66 snex 5223 . . . . . . . . . 10 {𝐽} ∈ V
67 unexg 7329 . . . . . . . . . 10 (((𝑇 ∖ {𝐽}) ∈ V ∧ {𝐽} ∈ V) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) ∈ V)
6865, 66, 67sylancl 586 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) ∈ V)
6964, 68syl5eqelr 2888 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑇 ∪ {𝐽}) ∈ V)
70 ssexg 5118 . . . . . . . 8 ((𝑇 ⊆ (𝑇 ∪ {𝐽}) ∧ (𝑇 ∪ {𝐽}) ∈ V) → 𝑇 ∈ V)
7163, 69, 70sylancr 587 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → 𝑇 ∈ V)
7262, 71elmapd 8270 . . . . . 6 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → ((𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆𝑚 𝑇) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇𝑆))
7359, 72mpbird 258 . . . . 5 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆𝑚 𝑇))
74 eleq1 2870 . . . . 5 (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝑓 ∈ (𝑆𝑚 𝑇) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆𝑚 𝑇)))
7573, 74syl5ibrcom 248 . . . 4 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽})))) → (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → 𝑓 ∈ (𝑆𝑚 𝑇)))
7675rexlimdvva 3257 . . 3 (𝐽𝑇 → (∃𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → 𝑓 ∈ (𝑆𝑚 𝑇)))
7733, 76impbid 213 . 2 (𝐽𝑇 → (𝑓 ∈ (𝑆𝑚 𝑇) ↔ ∃𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})))
78 ralxpmap.j . . 3 (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝜑𝜓))
7978adantl 482 . 2 ((𝐽𝑇𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})) → (𝜑𝜓))
803, 77, 79ralxpxfr2d 3578 1 (𝐽𝑇 → (∀𝑓 ∈ (𝑆𝑚 𝑇)𝜑 ↔ ∀𝑦𝑆𝑔 ∈ (𝑆𝑚 (𝑇 ∖ {𝐽}))𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106  Vcvv 3437  cdif 3856  cun 3857  cin 3858  wss 3859  c0 4211  {csn 4472  cop 4478  cres 5445   Fn wfn 6220  wf 6221  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  𝑚 cmap 8256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-map 8258
This theorem is referenced by:  islindf4  20664
  Copyright terms: Public domain W3C validator