MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpmap Structured version   Visualization version   GIF version

Theorem ralxpmap 8684
Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
ralxpmap.j (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝜑𝜓))
Assertion
Ref Expression
ralxpmap (𝐽𝑇 → (∀𝑓 ∈ (𝑆m 𝑇)𝜑 ↔ ∀𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝜓))
Distinct variable groups:   𝜑,𝑔,𝑦   𝜓,𝑓   𝑓,𝐽,𝑔,𝑦   𝑆,𝑓,𝑔,𝑦   𝑇,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑦,𝑔)

Proof of Theorem ralxpmap
StepHypRef Expression
1 vex 3436 . . 3 𝑔 ∈ V
2 snex 5354 . . 3 {⟨𝐽, 𝑦⟩} ∈ V
31, 2unex 7596 . 2 (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ V
4 simpr 485 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑓 ∈ (𝑆m 𝑇))
5 elmapex 8636 . . . . . . . . 9 (𝑓 ∈ (𝑆m 𝑇) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
65adantl 482 . . . . . . . 8 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
7 elmapg 8628 . . . . . . . 8 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑓 ∈ (𝑆m 𝑇) ↔ 𝑓:𝑇𝑆))
86, 7syl 17 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑓 ∈ (𝑆m 𝑇) ↔ 𝑓:𝑇𝑆))
94, 8mpbid 231 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑓:𝑇𝑆)
10 simpl 483 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝐽𝑇)
119, 10ffvelrnd 6962 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑓𝐽) ∈ 𝑆)
12 difss 4066 . . . . . . 7 (𝑇 ∖ {𝐽}) ⊆ 𝑇
13 fssres 6640 . . . . . . 7 ((𝑓:𝑇𝑆 ∧ (𝑇 ∖ {𝐽}) ⊆ 𝑇) → (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆)
149, 12, 13sylancl 586 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆)
155simpld 495 . . . . . . . 8 (𝑓 ∈ (𝑆m 𝑇) → 𝑆 ∈ V)
1615adantl 482 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑆 ∈ V)
176simprd 496 . . . . . . . 8 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑇 ∈ V)
1817difexd 5253 . . . . . . 7 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑇 ∖ {𝐽}) ∈ V)
1916, 18elmapd 8629 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆m (𝑇 ∖ {𝐽})) ↔ (𝑓 ↾ (𝑇 ∖ {𝐽})):(𝑇 ∖ {𝐽})⟶𝑆))
2014, 19mpbird 256 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → (𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆m (𝑇 ∖ {𝐽})))
219ffnd 6601 . . . . . 6 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑓 Fn 𝑇)
22 fnsnsplit 7056 . . . . . 6 ((𝑓 Fn 𝑇𝐽𝑇) → 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
2321, 10, 22syl2anc 584 . . . . 5 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
24 opeq2 4805 . . . . . . . . 9 (𝑦 = (𝑓𝐽) → ⟨𝐽, 𝑦⟩ = ⟨𝐽, (𝑓𝐽)⟩)
2524sneqd 4573 . . . . . . . 8 (𝑦 = (𝑓𝐽) → {⟨𝐽, 𝑦⟩} = {⟨𝐽, (𝑓𝐽)⟩})
2625uneq2d 4097 . . . . . . 7 (𝑦 = (𝑓𝐽) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}) = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}))
2726eqeq2d 2749 . . . . . 6 (𝑦 = (𝑓𝐽) → (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ↔ 𝑓 = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩})))
28 uneq1 4090 . . . . . . 7 (𝑔 = (𝑓 ↾ (𝑇 ∖ {𝐽})) → (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}) = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩}))
2928eqeq2d 2749 . . . . . 6 (𝑔 = (𝑓 ↾ (𝑇 ∖ {𝐽})) → (𝑓 = (𝑔 ∪ {⟨𝐽, (𝑓𝐽)⟩}) ↔ 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩})))
3027, 29rspc2ev 3572 . . . . 5 (((𝑓𝐽) ∈ 𝑆 ∧ (𝑓 ↾ (𝑇 ∖ {𝐽})) ∈ (𝑆m (𝑇 ∖ {𝐽})) ∧ 𝑓 = ((𝑓 ↾ (𝑇 ∖ {𝐽})) ∪ {⟨𝐽, (𝑓𝐽)⟩})) → ∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}))
3111, 20, 23, 30syl3anc 1370 . . . 4 ((𝐽𝑇𝑓 ∈ (𝑆m 𝑇)) → ∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}))
3231ex 413 . . 3 (𝐽𝑇 → (𝑓 ∈ (𝑆m 𝑇) → ∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})))
33 elmapi 8637 . . . . . . . . . 10 (𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})) → 𝑔:(𝑇 ∖ {𝐽})⟶𝑆)
3433ad2antll 726 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝑔:(𝑇 ∖ {𝐽})⟶𝑆)
35 f1osng 6757 . . . . . . . . . . . 12 ((𝐽𝑇𝑦 ∈ V) → {⟨𝐽, 𝑦⟩}:{𝐽}–1-1-onto→{𝑦})
36 f1of 6716 . . . . . . . . . . . 12 ({⟨𝐽, 𝑦⟩}:{𝐽}–1-1-onto→{𝑦} → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
3735, 36syl 17 . . . . . . . . . . 11 ((𝐽𝑇𝑦 ∈ V) → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
3837elvd 3439 . . . . . . . . . 10 (𝐽𝑇 → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
3938adantr 481 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦})
40 disjdifr 4406 . . . . . . . . . 10 ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅
4140a1i 11 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅)
42 fun 6636 . . . . . . . . 9 (((𝑔:(𝑇 ∖ {𝐽})⟶𝑆 ∧ {⟨𝐽, 𝑦⟩}:{𝐽}⟶{𝑦}) ∧ ((𝑇 ∖ {𝐽}) ∩ {𝐽}) = ∅) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}))
4334, 39, 41, 42syl21anc 835 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}))
44 uncom 4087 . . . . . . . . . 10 ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = ({𝐽} ∪ (𝑇 ∖ {𝐽}))
45 simpl 483 . . . . . . . . . . . 12 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝐽𝑇)
4645snssd 4742 . . . . . . . . . . 11 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → {𝐽} ⊆ 𝑇)
47 undif 4415 . . . . . . . . . . 11 ({𝐽} ⊆ 𝑇 ↔ ({𝐽} ∪ (𝑇 ∖ {𝐽})) = 𝑇)
4846, 47sylib 217 . . . . . . . . . 10 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ({𝐽} ∪ (𝑇 ∖ {𝐽})) = 𝑇)
4944, 48eqtrid 2790 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = 𝑇)
5049feq2d 6586 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑔 ∪ {⟨𝐽, 𝑦⟩}):((𝑇 ∖ {𝐽}) ∪ {𝐽})⟶(𝑆 ∪ {𝑦}) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇⟶(𝑆 ∪ {𝑦})))
5143, 50mpbid 231 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇⟶(𝑆 ∪ {𝑦}))
52 ssidd 3944 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝑆𝑆)
53 snssi 4741 . . . . . . . . 9 (𝑦𝑆 → {𝑦} ⊆ 𝑆)
5453ad2antrl 725 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → {𝑦} ⊆ 𝑆)
5552, 54unssd 4120 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑆 ∪ {𝑦}) ⊆ 𝑆)
5651, 55fssd 6618 . . . . . 6 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇𝑆)
57 elmapex 8636 . . . . . . . . 9 (𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})) → (𝑆 ∈ V ∧ (𝑇 ∖ {𝐽}) ∈ V))
5857ad2antll 726 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑆 ∈ V ∧ (𝑇 ∖ {𝐽}) ∈ V))
5958simpld 495 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝑆 ∈ V)
60 ssun1 4106 . . . . . . . 8 𝑇 ⊆ (𝑇 ∪ {𝐽})
61 undif1 4409 . . . . . . . . 9 ((𝑇 ∖ {𝐽}) ∪ {𝐽}) = (𝑇 ∪ {𝐽})
6258simprd 496 . . . . . . . . . 10 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑇 ∖ {𝐽}) ∈ V)
63 snex 5354 . . . . . . . . . 10 {𝐽} ∈ V
64 unexg 7599 . . . . . . . . . 10 (((𝑇 ∖ {𝐽}) ∈ V ∧ {𝐽} ∈ V) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) ∈ V)
6562, 63, 64sylancl 586 . . . . . . . . 9 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑇 ∖ {𝐽}) ∪ {𝐽}) ∈ V)
6661, 65eqeltrrid 2844 . . . . . . . 8 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑇 ∪ {𝐽}) ∈ V)
67 ssexg 5247 . . . . . . . 8 ((𝑇 ⊆ (𝑇 ∪ {𝐽}) ∧ (𝑇 ∪ {𝐽}) ∈ V) → 𝑇 ∈ V)
6860, 66, 67sylancr 587 . . . . . . 7 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → 𝑇 ∈ V)
6959, 68elmapd 8629 . . . . . 6 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → ((𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆m 𝑇) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}):𝑇𝑆))
7056, 69mpbird 256 . . . . 5 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆m 𝑇))
71 eleq1 2826 . . . . 5 (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝑓 ∈ (𝑆m 𝑇) ↔ (𝑔 ∪ {⟨𝐽, 𝑦⟩}) ∈ (𝑆m 𝑇)))
7270, 71syl5ibrcom 246 . . . 4 ((𝐽𝑇 ∧ (𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽})))) → (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → 𝑓 ∈ (𝑆m 𝑇)))
7372rexlimdvva 3223 . . 3 (𝐽𝑇 → (∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → 𝑓 ∈ (𝑆m 𝑇)))
7432, 73impbid 211 . 2 (𝐽𝑇 → (𝑓 ∈ (𝑆m 𝑇) ↔ ∃𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})))
75 ralxpmap.j . . 3 (𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝜑𝜓))
7675adantl 482 . 2 ((𝐽𝑇𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩})) → (𝜑𝜓))
773, 74, 76ralxpxfr2d 3576 1 (𝐽𝑇 → (∀𝑓 ∈ (𝑆m 𝑇)𝜑 ↔ ∀𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567  cres 5591   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by:  islindf4  21045
  Copyright terms: Public domain W3C validator