Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > refssex | Structured version Visualization version GIF version |
Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refssex | ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrel 22659 | . . . . 5 ⊢ Rel Ref | |
2 | 1 | brrelex1i 5643 | . . . 4 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
3 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
4 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐵 = ∪ 𝐵 | |
5 | 3, 4 | isref 22660 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (∪ 𝐵 = ∪ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
6 | 5 | simplbda 500 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
7 | 2, 6 | mpancom 685 | . . 3 ⊢ (𝐴Ref𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
8 | sseq1 3946 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
9 | 8 | rexbidv 3226 | . . . 4 ⊢ (𝑦 = 𝑆 → (∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
10 | 9 | rspccv 3558 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝐴Ref𝐵 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
12 | 11 | imp 407 | 1 ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 Refcref 22653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-ref 22656 |
This theorem is referenced by: reftr 22665 refun0 22666 refssfne 34547 |
Copyright terms: Public domain | W3C validator |