![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > refssex | Structured version Visualization version GIF version |
Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refssex | ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrel 23003 | . . . . 5 ⊢ Rel Ref | |
2 | 1 | brrelex1i 5730 | . . . 4 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
3 | eqid 2732 | . . . . . 6 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
4 | eqid 2732 | . . . . . 6 ⊢ ∪ 𝐵 = ∪ 𝐵 | |
5 | 3, 4 | isref 23004 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (∪ 𝐵 = ∪ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
6 | 5 | simplbda 500 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
7 | 2, 6 | mpancom 686 | . . 3 ⊢ (𝐴Ref𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
8 | sseq1 4006 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
9 | 8 | rexbidv 3178 | . . . 4 ⊢ (𝑦 = 𝑆 → (∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
10 | 9 | rspccv 3609 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝐴Ref𝐵 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
12 | 11 | imp 407 | 1 ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ⊆ wss 3947 ∪ cuni 4907 class class class wbr 5147 Refcref 22997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-ref 23000 |
This theorem is referenced by: reftr 23009 refun0 23010 refssfne 35231 |
Copyright terms: Public domain | W3C validator |