![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > refssex | Structured version Visualization version GIF version |
Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refssex | ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrel 23537 | . . . . 5 ⊢ Rel Ref | |
2 | 1 | brrelex1i 5756 | . . . 4 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
3 | eqid 2740 | . . . . . 6 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
4 | eqid 2740 | . . . . . 6 ⊢ ∪ 𝐵 = ∪ 𝐵 | |
5 | 3, 4 | isref 23538 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (∪ 𝐵 = ∪ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
6 | 5 | simplbda 499 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
7 | 2, 6 | mpancom 687 | . . 3 ⊢ (𝐴Ref𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
8 | sseq1 4034 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
9 | 8 | rexbidv 3185 | . . . 4 ⊢ (𝑦 = 𝑆 → (∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
10 | 9 | rspccv 3632 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝐴Ref𝐵 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
12 | 11 | imp 406 | 1 ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 class class class wbr 5166 Refcref 23531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-ref 23534 |
This theorem is referenced by: reftr 23543 refun0 23544 refssfne 36324 |
Copyright terms: Public domain | W3C validator |