MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refssex Structured version   Visualization version   GIF version

Theorem refssex 23419
Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
refssex ((𝐴Ref𝐵𝑆𝐴) → ∃𝑥𝐵 𝑆𝑥)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem refssex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 refrel 23416 . . . . 5 Rel Ref
21brrelex1i 5670 . . . 4 (𝐴Ref𝐵𝐴 ∈ V)
3 eqid 2730 . . . . . 6 𝐴 = 𝐴
4 eqid 2730 . . . . . 6 𝐵 = 𝐵
53, 4isref 23417 . . . . 5 (𝐴 ∈ V → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑦𝐴𝑥𝐵 𝑦𝑥)))
65simplbda 499 . . . 4 ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
72, 6mpancom 688 . . 3 (𝐴Ref𝐵 → ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
8 sseq1 3958 . . . . 5 (𝑦 = 𝑆 → (𝑦𝑥𝑆𝑥))
98rexbidv 3154 . . . 4 (𝑦 = 𝑆 → (∃𝑥𝐵 𝑦𝑥 ↔ ∃𝑥𝐵 𝑆𝑥))
109rspccv 3572 . . 3 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 → (𝑆𝐴 → ∃𝑥𝐵 𝑆𝑥))
117, 10syl 17 . 2 (𝐴Ref𝐵 → (𝑆𝐴 → ∃𝑥𝐵 𝑆𝑥))
1211imp 406 1 ((𝐴Ref𝐵𝑆𝐴) → ∃𝑥𝐵 𝑆𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  Vcvv 3434  wss 3900   cuni 4857   class class class wbr 5089  Refcref 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-ref 23413
This theorem is referenced by:  reftr  23422  refun0  23423  refssfne  36371
  Copyright terms: Public domain W3C validator