MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refssex Structured version   Visualization version   GIF version

Theorem refssex 23398
Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
refssex ((𝐴Ref𝐵𝑆𝐴) → ∃𝑥𝐵 𝑆𝑥)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem refssex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 refrel 23395 . . . . 5 Rel Ref
21brrelex1i 5694 . . . 4 (𝐴Ref𝐵𝐴 ∈ V)
3 eqid 2729 . . . . . 6 𝐴 = 𝐴
4 eqid 2729 . . . . . 6 𝐵 = 𝐵
53, 4isref 23396 . . . . 5 (𝐴 ∈ V → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑦𝐴𝑥𝐵 𝑦𝑥)))
65simplbda 499 . . . 4 ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
72, 6mpancom 688 . . 3 (𝐴Ref𝐵 → ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
8 sseq1 3972 . . . . 5 (𝑦 = 𝑆 → (𝑦𝑥𝑆𝑥))
98rexbidv 3157 . . . 4 (𝑦 = 𝑆 → (∃𝑥𝐵 𝑦𝑥 ↔ ∃𝑥𝐵 𝑆𝑥))
109rspccv 3585 . . 3 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 → (𝑆𝐴 → ∃𝑥𝐵 𝑆𝑥))
117, 10syl 17 . 2 (𝐴Ref𝐵 → (𝑆𝐴 → ∃𝑥𝐵 𝑆𝑥))
1211imp 406 1 ((𝐴Ref𝐵𝑆𝐴) → ∃𝑥𝐵 𝑆𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914   cuni 4871   class class class wbr 5107  Refcref 23389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-ref 23392
This theorem is referenced by:  reftr  23401  refun0  23402  refssfne  36346
  Copyright terms: Public domain W3C validator