| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > refssex | Structured version Visualization version GIF version | ||
| Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| refssex | ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrel 23402 | . . . . 5 ⊢ Rel Ref | |
| 2 | 1 | brrelex1i 5697 | . . . 4 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
| 3 | eqid 2730 | . . . . . 6 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 4 | eqid 2730 | . . . . . 6 ⊢ ∪ 𝐵 = ∪ 𝐵 | |
| 5 | 3, 4 | isref 23403 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (∪ 𝐵 = ∪ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
| 6 | 5 | simplbda 499 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
| 7 | 2, 6 | mpancom 688 | . . 3 ⊢ (𝐴Ref𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
| 8 | sseq1 3975 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
| 9 | 8 | rexbidv 3158 | . . . 4 ⊢ (𝑦 = 𝑆 → (∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
| 10 | 9 | rspccv 3588 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ (𝐴Ref𝐵 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
| 12 | 11 | imp 406 | 1 ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 ∪ cuni 4874 class class class wbr 5110 Refcref 23396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-ref 23399 |
| This theorem is referenced by: reftr 23408 refun0 23409 refssfne 36353 |
| Copyright terms: Public domain | W3C validator |