| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > refssex | Structured version Visualization version GIF version | ||
| Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| refssex | ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrel 23416 | . . . . 5 ⊢ Rel Ref | |
| 2 | 1 | brrelex1i 5670 | . . . 4 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
| 3 | eqid 2730 | . . . . . 6 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 4 | eqid 2730 | . . . . . 6 ⊢ ∪ 𝐵 = ∪ 𝐵 | |
| 5 | 3, 4 | isref 23417 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (∪ 𝐵 = ∪ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥))) |
| 6 | 5 | simplbda 499 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
| 7 | 2, 6 | mpancom 688 | . . 3 ⊢ (𝐴Ref𝐵 → ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥) |
| 8 | sseq1 3958 | . . . . 5 ⊢ (𝑦 = 𝑆 → (𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥)) | |
| 9 | 8 | rexbidv 3154 | . . . 4 ⊢ (𝑦 = 𝑆 → (∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
| 10 | 9 | rspccv 3572 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 𝑦 ⊆ 𝑥 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
| 11 | 7, 10 | syl 17 | . 2 ⊢ (𝐴Ref𝐵 → (𝑆 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥)) |
| 12 | 11 | imp 406 | 1 ⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 Vcvv 3434 ⊆ wss 3900 ∪ cuni 4857 class class class wbr 5089 Refcref 23410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-ref 23413 |
| This theorem is referenced by: reftr 23422 refun0 23423 refssfne 36371 |
| Copyright terms: Public domain | W3C validator |