MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refssex Structured version   Visualization version   GIF version

Theorem refssex 22570
Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
refssex ((𝐴Ref𝐵𝑆𝐴) → ∃𝑥𝐵 𝑆𝑥)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem refssex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 refrel 22567 . . . . 5 Rel Ref
21brrelex1i 5634 . . . 4 (𝐴Ref𝐵𝐴 ∈ V)
3 eqid 2738 . . . . . 6 𝐴 = 𝐴
4 eqid 2738 . . . . . 6 𝐵 = 𝐵
53, 4isref 22568 . . . . 5 (𝐴 ∈ V → (𝐴Ref𝐵 ↔ ( 𝐵 = 𝐴 ∧ ∀𝑦𝐴𝑥𝐵 𝑦𝑥)))
65simplbda 499 . . . 4 ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
72, 6mpancom 684 . . 3 (𝐴Ref𝐵 → ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
8 sseq1 3942 . . . . 5 (𝑦 = 𝑆 → (𝑦𝑥𝑆𝑥))
98rexbidv 3225 . . . 4 (𝑦 = 𝑆 → (∃𝑥𝐵 𝑦𝑥 ↔ ∃𝑥𝐵 𝑆𝑥))
109rspccv 3549 . . 3 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 → (𝑆𝐴 → ∃𝑥𝐵 𝑆𝑥))
117, 10syl 17 . 2 (𝐴Ref𝐵 → (𝑆𝐴 → ∃𝑥𝐵 𝑆𝑥))
1211imp 406 1 ((𝐴Ref𝐵𝑆𝐴) → ∃𝑥𝐵 𝑆𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   cuni 4836   class class class wbr 5070  Refcref 22561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-ref 22564
This theorem is referenced by:  reftr  22573  refun0  22574  refssfne  34474
  Copyright terms: Public domain W3C validator