Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > refbas | Structured version Visualization version GIF version |
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refbas.1 | ⊢ 𝑋 = ∪ 𝐴 |
refbas.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
refbas | ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrel 22213 | . . 3 ⊢ Rel Ref | |
2 | 1 | brrelex1i 5581 | . 2 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
3 | refbas.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
4 | refbas.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
5 | 3, 4 | isref 22214 | . . 3 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
6 | 5 | simprbda 502 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋) |
7 | 2, 6 | mpancom 687 | 1 ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 Vcvv 3409 ⊆ wss 3860 ∪ cuni 4801 class class class wbr 5035 Refcref 22207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-xp 5533 df-rel 5534 df-ref 22210 |
This theorem is referenced by: reftr 22219 refun0 22220 locfinreflem 31315 cmpcref 31325 cmppcmp 31333 refssfne 34122 |
Copyright terms: Public domain | W3C validator |