| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > refbas | Structured version Visualization version GIF version | ||
| Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| refbas.1 | ⊢ 𝑋 = ∪ 𝐴 |
| refbas.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| refbas | ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrel 23424 | . . 3 ⊢ Rel Ref | |
| 2 | 1 | brrelex1i 5675 | . 2 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
| 3 | refbas.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
| 4 | refbas.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
| 5 | 3, 4 | isref 23425 | . . 3 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
| 6 | 5 | simprbda 498 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋) |
| 7 | 2, 6 | mpancom 688 | 1 ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ⊆ wss 3898 ∪ cuni 4858 class class class wbr 5093 Refcref 23418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-ref 23421 |
| This theorem is referenced by: reftr 23430 refun0 23431 locfinreflem 33874 cmpcref 33884 cmppcmp 33892 refssfne 36423 |
| Copyright terms: Public domain | W3C validator |