| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > refbas | Structured version Visualization version GIF version | ||
| Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| refbas.1 | ⊢ 𝑋 = ∪ 𝐴 |
| refbas.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| refbas | ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrel 23395 | . . 3 ⊢ Rel Ref | |
| 2 | 1 | brrelex1i 5694 | . 2 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
| 3 | refbas.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
| 4 | refbas.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
| 5 | 3, 4 | isref 23396 | . . 3 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
| 6 | 5 | simprbda 498 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋) |
| 7 | 2, 6 | mpancom 688 | 1 ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 Refcref 23389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-ref 23392 |
| This theorem is referenced by: reftr 23401 refun0 23402 locfinreflem 33830 cmpcref 33840 cmppcmp 33848 refssfne 36346 |
| Copyright terms: Public domain | W3C validator |