![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > refbas | Structured version Visualization version GIF version |
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refbas.1 | ⊢ 𝑋 = ∪ 𝐴 |
refbas.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
refbas | ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrel 23532 | . . 3 ⊢ Rel Ref | |
2 | 1 | brrelex1i 5745 | . 2 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
3 | refbas.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
4 | refbas.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
5 | 3, 4 | isref 23533 | . . 3 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
6 | 5 | simprbda 498 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋) |
7 | 2, 6 | mpancom 688 | 1 ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ⊆ wss 3963 ∪ cuni 4912 class class class wbr 5148 Refcref 23526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-ref 23529 |
This theorem is referenced by: reftr 23538 refun0 23539 locfinreflem 33801 cmpcref 33811 cmppcmp 33819 refssfne 36341 |
Copyright terms: Public domain | W3C validator |