MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refbas Structured version   Visualization version   GIF version

Theorem refbas 22884
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
refbas.1 𝑋 = 𝐴
refbas.2 𝑌 = 𝐵
Assertion
Ref Expression
refbas (𝐴Ref𝐵𝑌 = 𝑋)

Proof of Theorem refbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 22882 . . 3 Rel Ref
21brrelex1i 5692 . 2 (𝐴Ref𝐵𝐴 ∈ V)
3 refbas.1 . . . 4 𝑋 = 𝐴
4 refbas.2 . . . 4 𝑌 = 𝐵
53, 4isref 22883 . . 3 (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
65simprbda 500 . 2 ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋)
72, 6mpancom 687 1 (𝐴Ref𝐵𝑌 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wral 3061  wrex 3070  Vcvv 3447  wss 3914   cuni 4869   class class class wbr 5109  Refcref 22876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-xp 5643  df-rel 5644  df-ref 22879
This theorem is referenced by:  reftr  22888  refun0  22889  locfinreflem  32485  cmpcref  32495  cmppcmp  32503  refssfne  34883
  Copyright terms: Public domain W3C validator