MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refbas Structured version   Visualization version   GIF version

Theorem refbas 22661
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
refbas.1 𝑋 = 𝐴
refbas.2 𝑌 = 𝐵
Assertion
Ref Expression
refbas (𝐴Ref𝐵𝑌 = 𝑋)

Proof of Theorem refbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 22659 . . 3 Rel Ref
21brrelex1i 5643 . 2 (𝐴Ref𝐵𝐴 ∈ V)
3 refbas.1 . . . 4 𝑋 = 𝐴
4 refbas.2 . . . 4 𝑌 = 𝐵
53, 4isref 22660 . . 3 (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
65simprbda 499 . 2 ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋)
72, 6mpancom 685 1 (𝐴Ref𝐵𝑌 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   cuni 4839   class class class wbr 5074  Refcref 22653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-ref 22656
This theorem is referenced by:  reftr  22665  refun0  22666  locfinreflem  31790  cmpcref  31800  cmppcmp  31808  refssfne  34547
  Copyright terms: Public domain W3C validator