MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  refbas Structured version   Visualization version   GIF version

Theorem refbas 23539
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
refbas.1 𝑋 = 𝐴
refbas.2 𝑌 = 𝐵
Assertion
Ref Expression
refbas (𝐴Ref𝐵𝑌 = 𝑋)

Proof of Theorem refbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 23537 . . 3 Rel Ref
21brrelex1i 5756 . 2 (𝐴Ref𝐵𝐴 ∈ V)
3 refbas.1 . . . 4 𝑋 = 𝐴
4 refbas.2 . . . 4 𝑌 = 𝐵
53, 4isref 23538 . . 3 (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑦)))
65simprbda 498 . 2 ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋)
72, 6mpancom 687 1 (𝐴Ref𝐵𝑌 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   cuni 4931   class class class wbr 5166  Refcref 23531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-ref 23534
This theorem is referenced by:  reftr  23543  refun0  23544  locfinreflem  33786  cmpcref  33796  cmppcmp  33804  refssfne  36324
  Copyright terms: Public domain W3C validator