Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > refbas | Structured version Visualization version GIF version |
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refbas.1 | ⊢ 𝑋 = ∪ 𝐴 |
refbas.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
refbas | ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrel 22567 | . . 3 ⊢ Rel Ref | |
2 | 1 | brrelex1i 5634 | . 2 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
3 | refbas.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
4 | refbas.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
5 | 3, 4 | isref 22568 | . . 3 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
6 | 5 | simprbda 498 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋) |
7 | 2, 6 | mpancom 684 | 1 ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 Refcref 22561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-ref 22564 |
This theorem is referenced by: reftr 22573 refun0 22574 locfinreflem 31692 cmpcref 31702 cmppcmp 31710 refssfne 34474 |
Copyright terms: Public domain | W3C validator |