![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > refbas | Structured version Visualization version GIF version |
Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
Ref | Expression |
---|---|
refbas.1 | ⊢ 𝑋 = ∪ 𝐴 |
refbas.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
refbas | ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrel 23336 | . . 3 ⊢ Rel Ref | |
2 | 1 | brrelex1i 5723 | . 2 ⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
3 | refbas.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
4 | refbas.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
5 | 3, 4 | isref 23337 | . . 3 ⊢ (𝐴 ∈ V → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) |
6 | 5 | simprbda 498 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴Ref𝐵) → 𝑌 = 𝑋) |
7 | 2, 6 | mpancom 685 | 1 ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 Vcvv 3466 ⊆ wss 3941 ∪ cuni 4900 class class class wbr 5139 Refcref 23330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-ref 23333 |
This theorem is referenced by: reftr 23342 refun0 23343 locfinreflem 33312 cmpcref 33322 cmppcmp 33330 refssfne 35734 |
Copyright terms: Public domain | W3C validator |