Step | Hyp | Ref
| Expression |
1 | | f0 6685 |
. . . 4
⊢
∅:∅⟶𝐽 |
2 | | simpr 486 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = ∅) → 𝑈 = ∅) |
3 | 2 | feq2d 6616 |
. . . 4
⊢ ((𝜑 ∧ 𝑈 = ∅) → (∅:𝑈⟶𝐽 ↔ ∅:∅⟶𝐽)) |
4 | 1, 3 | mpbiri 258 |
. . 3
⊢ ((𝜑 ∧ 𝑈 = ∅) → ∅:𝑈⟶𝐽) |
5 | | rn0 5847 |
. . . . 5
⊢ ran
∅ = ∅ |
6 | | 0ex 5240 |
. . . . . 6
⊢ ∅
∈ V |
7 | | refref 22709 |
. . . . . 6
⊢ (∅
∈ V → ∅Ref∅) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢
∅Ref∅ |
9 | 5, 8 | eqbrtri 5102 |
. . . 4
⊢ ran
∅Ref∅ |
10 | 9, 2 | breqtrrid 5119 |
. . 3
⊢ ((𝜑 ∧ 𝑈 = ∅) → ran ∅Ref𝑈) |
11 | | sn0top 22194 |
. . . . . 6
⊢ {∅}
∈ Top |
12 | 11 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = ∅) → {∅} ∈
Top) |
13 | | eqidd 2737 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = ∅) → ∅ =
∅) |
14 | | ral0 4449 |
. . . . . 6
⊢
∀𝑥 ∈
∅ ∃𝑛 ∈
{∅} (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) |
15 | 14 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = ∅) → ∀𝑥 ∈ ∅ ∃𝑛 ∈ {∅} (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
16 | 6 | unisn 4866 |
. . . . . . 7
⊢ ∪ {∅} = ∅ |
17 | 16 | eqcomi 2745 |
. . . . . 6
⊢ ∅ =
∪ {∅} |
18 | 5 | unieqi 4857 |
. . . . . . 7
⊢ ∪ ran ∅ = ∪
∅ |
19 | | uni0 4875 |
. . . . . . 7
⊢ ∪ ∅ = ∅ |
20 | 18, 19 | eqtr2i 2765 |
. . . . . 6
⊢ ∅ =
∪ ran ∅ |
21 | 17, 20 | islocfin 22713 |
. . . . 5
⊢ (ran
∅ ∈ (LocFin‘{∅}) ↔ ({∅} ∈ Top ∧
∅ = ∅ ∧ ∀𝑥 ∈ ∅ ∃𝑛 ∈ {∅} (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))) |
22 | 12, 13, 15, 21 | syl3anbrc 1343 |
. . . 4
⊢ ((𝜑 ∧ 𝑈 = ∅) → ran ∅ ∈
(LocFin‘{∅})) |
23 | | locfinref.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
24 | 23 | adantr 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 = ∅) → 𝑋 = ∪ 𝑈) |
25 | 2 | unieqd 4858 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑈 = ∅) → ∪ 𝑈 =
∪ ∅) |
26 | 24, 25 | eqtrd 2776 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑈 = ∅) → 𝑋 = ∪
∅) |
27 | | locfinref.x |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
28 | 26, 27, 19 | 3eqtr3g 2799 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 = ∅) → ∪ 𝐽 =
∅) |
29 | | locfinref.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) |
30 | | locfintop 22717 |
. . . . . . . 8
⊢ (𝑉 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
31 | | 0top 22178 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → (∪ 𝐽 =
∅ ↔ 𝐽 =
{∅})) |
32 | 29, 30, 31 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (∪ 𝐽 =
∅ ↔ 𝐽 =
{∅})) |
33 | 32 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 = ∅) → (∪ 𝐽 =
∅ ↔ 𝐽 =
{∅})) |
34 | 28, 33 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 = ∅) → 𝐽 = {∅}) |
35 | 34 | fveq2d 6808 |
. . . 4
⊢ ((𝜑 ∧ 𝑈 = ∅) → (LocFin‘𝐽) =
(LocFin‘{∅})) |
36 | 22, 35 | eleqtrrd 2840 |
. . 3
⊢ ((𝜑 ∧ 𝑈 = ∅) → ran ∅ ∈
(LocFin‘𝐽)) |
37 | | feq1 6611 |
. . . . 5
⊢ (𝑓 = ∅ → (𝑓:𝑈⟶𝐽 ↔ ∅:𝑈⟶𝐽)) |
38 | | rneq 5857 |
. . . . . 6
⊢ (𝑓 = ∅ → ran 𝑓 = ran ∅) |
39 | 38 | breq1d 5091 |
. . . . 5
⊢ (𝑓 = ∅ → (ran 𝑓Ref𝑈 ↔ ran ∅Ref𝑈)) |
40 | 38 | eleq1d 2821 |
. . . . 5
⊢ (𝑓 = ∅ → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran ∅ ∈
(LocFin‘𝐽))) |
41 | 37, 39, 40 | 3anbi123d 1436 |
. . . 4
⊢ (𝑓 = ∅ → ((𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ (∅:𝑈⟶𝐽 ∧ ran ∅Ref𝑈 ∧ ran ∅ ∈
(LocFin‘𝐽)))) |
42 | 6, 41 | spcev 3550 |
. . 3
⊢
((∅:𝑈⟶𝐽 ∧ ran ∅Ref𝑈 ∧ ran ∅ ∈
(LocFin‘𝐽)) →
∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
43 | 4, 10, 36, 42 | syl3anc 1371 |
. 2
⊢ ((𝜑 ∧ 𝑈 = ∅) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
44 | | locfinref.1 |
. . . . 5
⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
45 | | locfinref.3 |
. . . . 5
⊢ (𝜑 → 𝑉 ⊆ 𝐽) |
46 | | locfinref.4 |
. . . . 5
⊢ (𝜑 → 𝑉Ref𝑈) |
47 | 27, 44, 23, 45, 46, 29 | locfinreflem 31835 |
. . . 4
⊢ (𝜑 → ∃𝑔((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) |
48 | 47 | adantr 482 |
. . 3
⊢ ((𝜑 ∧ 𝑈 ≠ ∅) → ∃𝑔((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) |
49 | | simpl 484 |
. . . 4
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝜑 ∧ 𝑈 ≠ ∅)) |
50 | | simprl1 1218 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → Fun 𝑔) |
51 | | fdmrn 6662 |
. . . . . . . 8
⊢ (Fun
𝑔 ↔ 𝑔:dom 𝑔⟶ran 𝑔) |
52 | 50, 51 | sylib 217 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑔:dom 𝑔⟶ran 𝑔) |
53 | | simprl3 1220 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔 ⊆ 𝐽) |
54 | 52, 53 | fssd 6648 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑔:dom 𝑔⟶𝐽) |
55 | | fconstg 6691 |
. . . . . . . 8
⊢ (∅
∈ V → ((𝑈 ∖
dom 𝑔) ×
{∅}):(𝑈 ∖ dom
𝑔)⟶{∅}) |
56 | 6, 55 | mp1i 13 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶{∅}) |
57 | | 0opn 22098 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top → ∅
∈ 𝐽) |
58 | 29, 30, 57 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈ 𝐽) |
59 | 58 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ∅ ∈ 𝐽) |
60 | 59 | snssd 4748 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → {∅} ⊆ 𝐽) |
61 | 56, 60 | fssd 6648 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶𝐽) |
62 | | disjdif 4411 |
. . . . . . 7
⊢ (dom
𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅ |
63 | 62 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (dom 𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅) |
64 | | fun2 6667 |
. . . . . 6
⊢ (((𝑔:dom 𝑔⟶𝐽 ∧ ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶𝐽) ∧ (dom 𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽) |
65 | 54, 61, 63, 64 | syl21anc 836 |
. . . . 5
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽) |
66 | | simprl2 1219 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → dom 𝑔 ⊆ 𝑈) |
67 | | undif 4421 |
. . . . . . 7
⊢ (dom
𝑔 ⊆ 𝑈 ↔ (dom 𝑔 ∪ (𝑈 ∖ dom 𝑔)) = 𝑈) |
68 | 66, 67 | sylib 217 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (dom 𝑔 ∪ (𝑈 ∖ dom 𝑔)) = 𝑈) |
69 | 68 | feq2d 6616 |
. . . . 5
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽 ↔ (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈⟶𝐽)) |
70 | 65, 69 | mpbid 231 |
. . . 4
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈⟶𝐽) |
71 | | simpr 486 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) |
72 | | simprrl 779 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔Ref𝑈) |
73 | 72 | adantr 482 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran 𝑔Ref𝑈) |
74 | 71, 73 | eqbrtrd 5103 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈) |
75 | | simpr 486 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran
(𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪
{∅})) |
76 | 49 | simprd 497 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑈 ≠ ∅) |
77 | | refun0 22711 |
. . . . . . . 8
⊢ ((ran
𝑔Ref𝑈 ∧ 𝑈 ≠ ∅) → (ran 𝑔 ∪ {∅})Ref𝑈) |
78 | 72, 76, 77 | syl2anc 585 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (ran 𝑔 ∪ {∅})Ref𝑈) |
79 | 78 | adantr 482 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → (ran
𝑔 ∪ {∅})Ref𝑈) |
80 | 75, 79 | eqbrtrd 5103 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran
(𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈) |
81 | | rnxpss 6090 |
. . . . . . 7
⊢ ran
((𝑈 ∖ dom 𝑔) × {∅}) ⊆
{∅} |
82 | | sssn 4765 |
. . . . . . 7
⊢ (ran
((𝑈 ∖ dom 𝑔) × {∅}) ⊆
{∅} ↔ (ran ((𝑈
∖ dom 𝑔) ×
{∅}) = ∅ ∨ ran ((𝑈 ∖ dom 𝑔) × {∅}) =
{∅})) |
83 | 81, 82 | mpbi 229 |
. . . . . 6
⊢ (ran
((𝑈 ∖ dom 𝑔) × {∅}) = ∅
∨ ran ((𝑈 ∖ dom
𝑔) × {∅}) =
{∅}) |
84 | | rnun 6064 |
. . . . . . . . 9
⊢ ran
(𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ ran ((𝑈 ∖ dom 𝑔) × {∅})) |
85 | | uneq2 4097 |
. . . . . . . . 9
⊢ (ran
((𝑈 ∖ dom 𝑔) × {∅}) = ∅
→ (ran 𝑔 ∪ ran
((𝑈 ∖ dom 𝑔) × {∅})) = (ran
𝑔 ∪
∅)) |
86 | 84, 85 | eqtrid 2788 |
. . . . . . . 8
⊢ (ran
((𝑈 ∖ dom 𝑔) × {∅}) = ∅
→ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪
∅)) |
87 | | un0 4330 |
. . . . . . . 8
⊢ (ran
𝑔 ∪ ∅) = ran
𝑔 |
88 | 86, 87 | eqtrdi 2792 |
. . . . . . 7
⊢ (ran
((𝑈 ∖ dom 𝑔) × {∅}) = ∅
→ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) |
89 | | uneq2 4097 |
. . . . . . . 8
⊢ (ran
((𝑈 ∖ dom 𝑔) × {∅}) = {∅}
→ (ran 𝑔 ∪ ran
((𝑈 ∖ dom 𝑔) × {∅})) = (ran
𝑔 ∪
{∅})) |
90 | 84, 89 | eqtrid 2788 |
. . . . . . 7
⊢ (ran
((𝑈 ∖ dom 𝑔) × {∅}) = {∅}
→ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪
{∅})) |
91 | 88, 90 | orim12i 907 |
. . . . . 6
⊢ ((ran
((𝑈 ∖ dom 𝑔) × {∅}) = ∅
∨ ran ((𝑈 ∖ dom
𝑔) × {∅}) =
{∅}) → (ran (𝑔
∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran
𝑔 ∨ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪
{∅}))) |
92 | 83, 91 | mp1i 13 |
. . . . 5
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔 ∨ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪
{∅}))) |
93 | 74, 80, 92 | mpjaodan 957 |
. . . 4
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈) |
94 | | simprrr 780 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔 ∈ (LocFin‘𝐽)) |
95 | 94 | adantr 482 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran 𝑔 ∈ (LocFin‘𝐽)) |
96 | 71, 95 | eqeltrd 2837 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
(LocFin‘𝐽)) |
97 | 94 | adantr 482 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran
𝑔 ∈
(LocFin‘𝐽)) |
98 | | snfi 8869 |
. . . . . . . 8
⊢ {∅}
∈ Fin |
99 | 98 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) →
{∅} ∈ Fin) |
100 | 59 | adantr 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) →
∅ ∈ 𝐽) |
101 | 100 | snssd 4748 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) →
{∅} ⊆ 𝐽) |
102 | 101 | unissd 4854 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ∪ {∅} ⊆ ∪ 𝐽) |
103 | | lfinun 22721 |
. . . . . . 7
⊢ ((ran
𝑔 ∈
(LocFin‘𝐽) ∧
{∅} ∈ Fin ∧ ∪ {∅} ⊆ ∪ 𝐽)
→ (ran 𝑔 ∪
{∅}) ∈ (LocFin‘𝐽)) |
104 | 97, 99, 102, 103 | syl3anc 1371 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → (ran
𝑔 ∪ {∅}) ∈
(LocFin‘𝐽)) |
105 | 75, 104 | eqeltrd 2837 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran
(𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
(LocFin‘𝐽)) |
106 | 96, 105, 92 | mpjaodan 957 |
. . . 4
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
(LocFin‘𝐽)) |
107 | | refrel 22704 |
. . . . . . . . 9
⊢ Rel
Ref |
108 | 107 | brrelex2i 5655 |
. . . . . . . 8
⊢ (𝑉Ref𝑈 → 𝑈 ∈ V) |
109 | | difexg 5260 |
. . . . . . . 8
⊢ (𝑈 ∈ V → (𝑈 ∖ dom 𝑔) ∈ V) |
110 | 46, 108, 109 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑈 ∖ dom 𝑔) ∈ V) |
111 | 110 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑈 ≠ ∅) → (𝑈 ∖ dom 𝑔) ∈ V) |
112 | | p0ex 5316 |
. . . . . . 7
⊢ {∅}
∈ V |
113 | | xpexg 7632 |
. . . . . . 7
⊢ (((𝑈 ∖ dom 𝑔) ∈ V ∧ {∅} ∈ V) →
((𝑈 ∖ dom 𝑔) × {∅}) ∈
V) |
114 | 112, 113 | mpan2 689 |
. . . . . 6
⊢ ((𝑈 ∖ dom 𝑔) ∈ V → ((𝑈 ∖ dom 𝑔) × {∅}) ∈
V) |
115 | | vex 3441 |
. . . . . . 7
⊢ 𝑔 ∈ V |
116 | | unexg 7631 |
. . . . . . 7
⊢ ((𝑔 ∈ V ∧ ((𝑈 ∖ dom 𝑔) × {∅}) ∈ V) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
V) |
117 | 115, 116 | mpan 688 |
. . . . . 6
⊢ (((𝑈 ∖ dom 𝑔) × {∅}) ∈ V → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
V) |
118 | | feq1 6611 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (𝑓:𝑈⟶𝐽 ↔ (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈⟶𝐽)) |
119 | | rneq 5857 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → ran 𝑓 = ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))) |
120 | 119 | breq1d 5091 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (ran 𝑓Ref𝑈 ↔ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈)) |
121 | 119 | eleq1d 2821 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
(LocFin‘𝐽))) |
122 | 118, 120,
121 | 3anbi123d 1436 |
. . . . . . 7
⊢ (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → ((𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈⟶𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
(LocFin‘𝐽)))) |
123 | 122 | spcegv 3541 |
. . . . . 6
⊢ ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ V →
(((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈⟶𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
(LocFin‘𝐽)) →
∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) |
124 | 111, 114,
117, 123 | 4syl 19 |
. . . . 5
⊢ ((𝜑 ∧ 𝑈 ≠ ∅) → (((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈⟶𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
(LocFin‘𝐽)) →
∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) |
125 | 124 | imp 408 |
. . . 4
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈⟶𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈
(LocFin‘𝐽))) →
∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
126 | 49, 70, 93, 106, 125 | syl13anc 1372 |
. . 3
⊢ (((𝜑 ∧ 𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔 ⊆ 𝑈 ∧ ran 𝑔 ⊆ 𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
127 | 48, 126 | exlimddv 1936 |
. 2
⊢ ((𝜑 ∧ 𝑈 ≠ ∅) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |
128 | 43, 127 | pm2.61dane 3030 |
1
⊢ (𝜑 → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) |