Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfinref Structured version   Visualization version   GIF version

Theorem locfinref 33787
Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypotheses
Ref Expression
locfinref.x 𝑋 = 𝐽
locfinref.1 (𝜑𝑈𝐽)
locfinref.2 (𝜑𝑋 = 𝑈)
locfinref.3 (𝜑𝑉𝐽)
locfinref.4 (𝜑𝑉Ref𝑈)
locfinref.5 (𝜑𝑉 ∈ (LocFin‘𝐽))
Assertion
Ref Expression
locfinref (𝜑 → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑉   𝜑,𝑓
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem locfinref
Dummy variables 𝑔 𝑥 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f0 6802 . . . 4 ∅:∅⟶𝐽
2 simpr 484 . . . . 5 ((𝜑𝑈 = ∅) → 𝑈 = ∅)
32feq2d 6733 . . . 4 ((𝜑𝑈 = ∅) → (∅:𝑈𝐽 ↔ ∅:∅⟶𝐽))
41, 3mpbiri 258 . . 3 ((𝜑𝑈 = ∅) → ∅:𝑈𝐽)
5 rn0 5950 . . . . 5 ran ∅ = ∅
6 0ex 5325 . . . . . 6 ∅ ∈ V
7 refref 23542 . . . . . 6 (∅ ∈ V → ∅Ref∅)
86, 7ax-mp 5 . . . . 5 ∅Ref∅
95, 8eqbrtri 5187 . . . 4 ran ∅Ref∅
109, 2breqtrrid 5204 . . 3 ((𝜑𝑈 = ∅) → ran ∅Ref𝑈)
11 sn0top 23027 . . . . . 6 {∅} ∈ Top
1211a1i 11 . . . . 5 ((𝜑𝑈 = ∅) → {∅} ∈ Top)
13 eqidd 2741 . . . . 5 ((𝜑𝑈 = ∅) → ∅ = ∅)
14 ral0 4536 . . . . . 6 𝑥 ∈ ∅ ∃𝑛 ∈ {∅} (𝑥𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
1514a1i 11 . . . . 5 ((𝜑𝑈 = ∅) → ∀𝑥 ∈ ∅ ∃𝑛 ∈ {∅} (𝑥𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
166unisn 4950 . . . . . . 7 {∅} = ∅
1716eqcomi 2749 . . . . . 6 ∅ = {∅}
185unieqi 4943 . . . . . . 7 ran ∅ =
19 uni0 4959 . . . . . . 7 ∅ = ∅
2018, 19eqtr2i 2769 . . . . . 6 ∅ = ran ∅
2117, 20islocfin 23546 . . . . 5 (ran ∅ ∈ (LocFin‘{∅}) ↔ ({∅} ∈ Top ∧ ∅ = ∅ ∧ ∀𝑥 ∈ ∅ ∃𝑛 ∈ {∅} (𝑥𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2212, 13, 15, 21syl3anbrc 1343 . . . 4 ((𝜑𝑈 = ∅) → ran ∅ ∈ (LocFin‘{∅}))
23 locfinref.2 . . . . . . . . 9 (𝜑𝑋 = 𝑈)
2423adantr 480 . . . . . . . 8 ((𝜑𝑈 = ∅) → 𝑋 = 𝑈)
252unieqd 4944 . . . . . . . 8 ((𝜑𝑈 = ∅) → 𝑈 = ∅)
2624, 25eqtrd 2780 . . . . . . 7 ((𝜑𝑈 = ∅) → 𝑋 = ∅)
27 locfinref.x . . . . . . 7 𝑋 = 𝐽
2826, 27, 193eqtr3g 2803 . . . . . 6 ((𝜑𝑈 = ∅) → 𝐽 = ∅)
29 locfinref.5 . . . . . . . 8 (𝜑𝑉 ∈ (LocFin‘𝐽))
30 locfintop 23550 . . . . . . . 8 (𝑉 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
31 0top 23011 . . . . . . . 8 (𝐽 ∈ Top → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))
3229, 30, 313syl 18 . . . . . . 7 (𝜑 → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))
3332adantr 480 . . . . . 6 ((𝜑𝑈 = ∅) → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))
3428, 33mpbid 232 . . . . 5 ((𝜑𝑈 = ∅) → 𝐽 = {∅})
3534fveq2d 6924 . . . 4 ((𝜑𝑈 = ∅) → (LocFin‘𝐽) = (LocFin‘{∅}))
3622, 35eleqtrrd 2847 . . 3 ((𝜑𝑈 = ∅) → ran ∅ ∈ (LocFin‘𝐽))
37 feq1 6728 . . . . 5 (𝑓 = ∅ → (𝑓:𝑈𝐽 ↔ ∅:𝑈𝐽))
38 rneq 5961 . . . . . 6 (𝑓 = ∅ → ran 𝑓 = ran ∅)
3938breq1d 5176 . . . . 5 (𝑓 = ∅ → (ran 𝑓Ref𝑈 ↔ ran ∅Ref𝑈))
4038eleq1d 2829 . . . . 5 (𝑓 = ∅ → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran ∅ ∈ (LocFin‘𝐽)))
4137, 39, 403anbi123d 1436 . . . 4 (𝑓 = ∅ → ((𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ (∅:𝑈𝐽 ∧ ran ∅Ref𝑈 ∧ ran ∅ ∈ (LocFin‘𝐽))))
426, 41spcev 3619 . . 3 ((∅:𝑈𝐽 ∧ ran ∅Ref𝑈 ∧ ran ∅ ∈ (LocFin‘𝐽)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
434, 10, 36, 42syl3anc 1371 . 2 ((𝜑𝑈 = ∅) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
44 locfinref.1 . . . . 5 (𝜑𝑈𝐽)
45 locfinref.3 . . . . 5 (𝜑𝑉𝐽)
46 locfinref.4 . . . . 5 (𝜑𝑉Ref𝑈)
4727, 44, 23, 45, 46, 29locfinreflem 33786 . . . 4 (𝜑 → ∃𝑔((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽))))
4847adantr 480 . . 3 ((𝜑𝑈 ≠ ∅) → ∃𝑔((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽))))
49 simpl 482 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝜑𝑈 ≠ ∅))
50 simprl1 1218 . . . . . . . 8 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → Fun 𝑔)
51 fdmrn 6779 . . . . . . . 8 (Fun 𝑔𝑔:dom 𝑔⟶ran 𝑔)
5250, 51sylib 218 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑔:dom 𝑔⟶ran 𝑔)
53 simprl3 1220 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔𝐽)
5452, 53fssd 6764 . . . . . 6 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑔:dom 𝑔𝐽)
55 fconstg 6808 . . . . . . . 8 (∅ ∈ V → ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶{∅})
566, 55mp1i 13 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶{∅})
57 0opn 22931 . . . . . . . . . 10 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5829, 30, 573syl 18 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝐽)
5958ad2antrr 725 . . . . . . . 8 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ∅ ∈ 𝐽)
6059snssd 4834 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → {∅} ⊆ 𝐽)
6156, 60fssd 6764 . . . . . 6 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶𝐽)
62 disjdif 4495 . . . . . . 7 (dom 𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅
6362a1i 11 . . . . . 6 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (dom 𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅)
64 fun2 6784 . . . . . 6 (((𝑔:dom 𝑔𝐽 ∧ ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶𝐽) ∧ (dom 𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽)
6554, 61, 63, 64syl21anc 837 . . . . 5 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽)
66 simprl2 1219 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → dom 𝑔𝑈)
67 undif 4505 . . . . . . 7 (dom 𝑔𝑈 ↔ (dom 𝑔 ∪ (𝑈 ∖ dom 𝑔)) = 𝑈)
6866, 67sylib 218 . . . . . 6 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (dom 𝑔 ∪ (𝑈 ∖ dom 𝑔)) = 𝑈)
6968feq2d 6733 . . . . 5 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽 ↔ (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽))
7065, 69mpbid 232 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽)
71 simpr 484 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔)
72 simprrl 780 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔Ref𝑈)
7372adantr 480 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran 𝑔Ref𝑈)
7471, 73eqbrtrd 5188 . . . . 5 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈)
75 simpr 484 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅}))
7649simprd 495 . . . . . . . 8 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑈 ≠ ∅)
77 refun0 23544 . . . . . . . 8 ((ran 𝑔Ref𝑈𝑈 ≠ ∅) → (ran 𝑔 ∪ {∅})Ref𝑈)
7872, 76, 77syl2anc 583 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (ran 𝑔 ∪ {∅})Ref𝑈)
7978adantr 480 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → (ran 𝑔 ∪ {∅})Ref𝑈)
8075, 79eqbrtrd 5188 . . . . 5 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈)
81 rnxpss 6203 . . . . . . 7 ran ((𝑈 ∖ dom 𝑔) × {∅}) ⊆ {∅}
82 sssn 4851 . . . . . . 7 (ran ((𝑈 ∖ dom 𝑔) × {∅}) ⊆ {∅} ↔ (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ ∨ ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅}))
8381, 82mpbi 230 . . . . . 6 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ ∨ ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅})
84 rnun 6177 . . . . . . . . 9 ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ ran ((𝑈 ∖ dom 𝑔) × {∅}))
85 uneq2 4185 . . . . . . . . 9 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ → (ran 𝑔 ∪ ran ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ ∅))
8684, 85eqtrid 2792 . . . . . . . 8 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ ∅))
87 un0 4417 . . . . . . . 8 (ran 𝑔 ∪ ∅) = ran 𝑔
8886, 87eqtrdi 2796 . . . . . . 7 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔)
89 uneq2 4185 . . . . . . . 8 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅} → (ran 𝑔 ∪ ran ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅}))
9084, 89eqtrid 2792 . . . . . . 7 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅} → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅}))
9188, 90orim12i 907 . . . . . 6 ((ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ ∨ ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅}) → (ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔 ∨ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})))
9283, 91mp1i 13 . . . . 5 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔 ∨ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})))
9374, 80, 92mpjaodan 959 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈)
94 simprrr 781 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔 ∈ (LocFin‘𝐽))
9594adantr 480 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran 𝑔 ∈ (LocFin‘𝐽))
9671, 95eqeltrd 2844 . . . . 5 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))
9794adantr 480 . . . . . . 7 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran 𝑔 ∈ (LocFin‘𝐽))
98 snfi 9109 . . . . . . . 8 {∅} ∈ Fin
9998a1i 11 . . . . . . 7 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → {∅} ∈ Fin)
10059adantr 480 . . . . . . . . 9 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ∅ ∈ 𝐽)
101100snssd 4834 . . . . . . . 8 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → {∅} ⊆ 𝐽)
102101unissd 4941 . . . . . . 7 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → {∅} ⊆ 𝐽)
103 lfinun 23554 . . . . . . 7 ((ran 𝑔 ∈ (LocFin‘𝐽) ∧ {∅} ∈ Fin ∧ {∅} ⊆ 𝐽) → (ran 𝑔 ∪ {∅}) ∈ (LocFin‘𝐽))
10497, 99, 102, 103syl3anc 1371 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → (ran 𝑔 ∪ {∅}) ∈ (LocFin‘𝐽))
10575, 104eqeltrd 2844 . . . . 5 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))
10696, 105, 92mpjaodan 959 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))
107 refrel 23537 . . . . . . . . 9 Rel Ref
108107brrelex2i 5757 . . . . . . . 8 (𝑉Ref𝑈𝑈 ∈ V)
109 difexg 5347 . . . . . . . 8 (𝑈 ∈ V → (𝑈 ∖ dom 𝑔) ∈ V)
11046, 108, 1093syl 18 . . . . . . 7 (𝜑 → (𝑈 ∖ dom 𝑔) ∈ V)
111110adantr 480 . . . . . 6 ((𝜑𝑈 ≠ ∅) → (𝑈 ∖ dom 𝑔) ∈ V)
112 p0ex 5402 . . . . . . 7 {∅} ∈ V
113 xpexg 7785 . . . . . . 7 (((𝑈 ∖ dom 𝑔) ∈ V ∧ {∅} ∈ V) → ((𝑈 ∖ dom 𝑔) × {∅}) ∈ V)
114112, 113mpan2 690 . . . . . 6 ((𝑈 ∖ dom 𝑔) ∈ V → ((𝑈 ∖ dom 𝑔) × {∅}) ∈ V)
115 vex 3492 . . . . . . 7 𝑔 ∈ V
116 unexg 7778 . . . . . . 7 ((𝑔 ∈ V ∧ ((𝑈 ∖ dom 𝑔) × {∅}) ∈ V) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ V)
117115, 116mpan 689 . . . . . 6 (((𝑈 ∖ dom 𝑔) × {∅}) ∈ V → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ V)
118 feq1 6728 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (𝑓:𝑈𝐽 ↔ (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽))
119 rneq 5961 . . . . . . . . 9 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → ran 𝑓 = ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})))
120119breq1d 5176 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (ran 𝑓Ref𝑈 ↔ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈))
121119eleq1d 2829 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽)))
122118, 120, 1213anbi123d 1436 . . . . . . 7 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → ((𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))))
123122spcegv 3610 . . . . . 6 ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ V → (((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
124111, 114, 117, 1234syl 19 . . . . 5 ((𝜑𝑈 ≠ ∅) → (((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
125124imp 406 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
12649, 70, 93, 106, 125syl13anc 1372 . . 3 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
12748, 126exlimddv 1934 . 2 ((𝜑𝑈 ≠ ∅) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
12843, 127pm2.61dane 3035 1 (𝜑 → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   cuni 4931   class class class wbr 5166   × cxp 5698  dom cdm 5700  ran crn 5701  Fun wfun 6567  wf 6569  cfv 6573  Fincfn 9003  Topctop 22920  Refcref 23531  LocFinclocfin 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-fin 9007  df-r1 9833  df-rank 9834  df-card 10008  df-ac 10185  df-top 22921  df-topon 22938  df-ref 23534  df-locfin 23536
This theorem is referenced by:  pcmplfinf  33807
  Copyright terms: Public domain W3C validator