Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfinref Structured version   Visualization version   GIF version

Theorem locfinref 33838
Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypotheses
Ref Expression
locfinref.x 𝑋 = 𝐽
locfinref.1 (𝜑𝑈𝐽)
locfinref.2 (𝜑𝑋 = 𝑈)
locfinref.3 (𝜑𝑉𝐽)
locfinref.4 (𝜑𝑉Ref𝑈)
locfinref.5 (𝜑𝑉 ∈ (LocFin‘𝐽))
Assertion
Ref Expression
locfinref (𝜑 → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑉   𝜑,𝑓
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem locfinref
Dummy variables 𝑔 𝑥 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f0 6744 . . . 4 ∅:∅⟶𝐽
2 simpr 484 . . . . 5 ((𝜑𝑈 = ∅) → 𝑈 = ∅)
32feq2d 6675 . . . 4 ((𝜑𝑈 = ∅) → (∅:𝑈𝐽 ↔ ∅:∅⟶𝐽))
41, 3mpbiri 258 . . 3 ((𝜑𝑈 = ∅) → ∅:𝑈𝐽)
5 rn0 5892 . . . . 5 ran ∅ = ∅
6 0ex 5265 . . . . . 6 ∅ ∈ V
7 refref 23407 . . . . . 6 (∅ ∈ V → ∅Ref∅)
86, 7ax-mp 5 . . . . 5 ∅Ref∅
95, 8eqbrtri 5131 . . . 4 ran ∅Ref∅
109, 2breqtrrid 5148 . . 3 ((𝜑𝑈 = ∅) → ran ∅Ref𝑈)
11 sn0top 22893 . . . . . 6 {∅} ∈ Top
1211a1i 11 . . . . 5 ((𝜑𝑈 = ∅) → {∅} ∈ Top)
13 eqidd 2731 . . . . 5 ((𝜑𝑈 = ∅) → ∅ = ∅)
14 ral0 4479 . . . . . 6 𝑥 ∈ ∅ ∃𝑛 ∈ {∅} (𝑥𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
1514a1i 11 . . . . 5 ((𝜑𝑈 = ∅) → ∀𝑥 ∈ ∅ ∃𝑛 ∈ {∅} (𝑥𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
166unisn 4893 . . . . . . 7 {∅} = ∅
1716eqcomi 2739 . . . . . 6 ∅ = {∅}
185unieqi 4886 . . . . . . 7 ran ∅ =
19 uni0 4902 . . . . . . 7 ∅ = ∅
2018, 19eqtr2i 2754 . . . . . 6 ∅ = ran ∅
2117, 20islocfin 23411 . . . . 5 (ran ∅ ∈ (LocFin‘{∅}) ↔ ({∅} ∈ Top ∧ ∅ = ∅ ∧ ∀𝑥 ∈ ∅ ∃𝑛 ∈ {∅} (𝑥𝑛 ∧ {𝑠 ∈ ran ∅ ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2212, 13, 15, 21syl3anbrc 1344 . . . 4 ((𝜑𝑈 = ∅) → ran ∅ ∈ (LocFin‘{∅}))
23 locfinref.2 . . . . . . . . 9 (𝜑𝑋 = 𝑈)
2423adantr 480 . . . . . . . 8 ((𝜑𝑈 = ∅) → 𝑋 = 𝑈)
252unieqd 4887 . . . . . . . 8 ((𝜑𝑈 = ∅) → 𝑈 = ∅)
2624, 25eqtrd 2765 . . . . . . 7 ((𝜑𝑈 = ∅) → 𝑋 = ∅)
27 locfinref.x . . . . . . 7 𝑋 = 𝐽
2826, 27, 193eqtr3g 2788 . . . . . 6 ((𝜑𝑈 = ∅) → 𝐽 = ∅)
29 locfinref.5 . . . . . . . 8 (𝜑𝑉 ∈ (LocFin‘𝐽))
30 locfintop 23415 . . . . . . . 8 (𝑉 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
31 0top 22877 . . . . . . . 8 (𝐽 ∈ Top → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))
3229, 30, 313syl 18 . . . . . . 7 (𝜑 → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))
3332adantr 480 . . . . . 6 ((𝜑𝑈 = ∅) → ( 𝐽 = ∅ ↔ 𝐽 = {∅}))
3428, 33mpbid 232 . . . . 5 ((𝜑𝑈 = ∅) → 𝐽 = {∅})
3534fveq2d 6865 . . . 4 ((𝜑𝑈 = ∅) → (LocFin‘𝐽) = (LocFin‘{∅}))
3622, 35eleqtrrd 2832 . . 3 ((𝜑𝑈 = ∅) → ran ∅ ∈ (LocFin‘𝐽))
37 feq1 6669 . . . . 5 (𝑓 = ∅ → (𝑓:𝑈𝐽 ↔ ∅:𝑈𝐽))
38 rneq 5903 . . . . . 6 (𝑓 = ∅ → ran 𝑓 = ran ∅)
3938breq1d 5120 . . . . 5 (𝑓 = ∅ → (ran 𝑓Ref𝑈 ↔ ran ∅Ref𝑈))
4038eleq1d 2814 . . . . 5 (𝑓 = ∅ → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran ∅ ∈ (LocFin‘𝐽)))
4137, 39, 403anbi123d 1438 . . . 4 (𝑓 = ∅ → ((𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ (∅:𝑈𝐽 ∧ ran ∅Ref𝑈 ∧ ran ∅ ∈ (LocFin‘𝐽))))
426, 41spcev 3575 . . 3 ((∅:𝑈𝐽 ∧ ran ∅Ref𝑈 ∧ ran ∅ ∈ (LocFin‘𝐽)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
434, 10, 36, 42syl3anc 1373 . 2 ((𝜑𝑈 = ∅) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
44 locfinref.1 . . . . 5 (𝜑𝑈𝐽)
45 locfinref.3 . . . . 5 (𝜑𝑉𝐽)
46 locfinref.4 . . . . 5 (𝜑𝑉Ref𝑈)
4727, 44, 23, 45, 46, 29locfinreflem 33837 . . . 4 (𝜑 → ∃𝑔((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽))))
4847adantr 480 . . 3 ((𝜑𝑈 ≠ ∅) → ∃𝑔((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽))))
49 simpl 482 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝜑𝑈 ≠ ∅))
50 simprl1 1219 . . . . . . . 8 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → Fun 𝑔)
51 fdmrn 6722 . . . . . . . 8 (Fun 𝑔𝑔:dom 𝑔⟶ran 𝑔)
5250, 51sylib 218 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑔:dom 𝑔⟶ran 𝑔)
53 simprl3 1221 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔𝐽)
5452, 53fssd 6708 . . . . . 6 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑔:dom 𝑔𝐽)
55 fconstg 6750 . . . . . . . 8 (∅ ∈ V → ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶{∅})
566, 55mp1i 13 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶{∅})
57 0opn 22798 . . . . . . . . . 10 (𝐽 ∈ Top → ∅ ∈ 𝐽)
5829, 30, 573syl 18 . . . . . . . . 9 (𝜑 → ∅ ∈ 𝐽)
5958ad2antrr 726 . . . . . . . 8 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ∅ ∈ 𝐽)
6059snssd 4776 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → {∅} ⊆ 𝐽)
6156, 60fssd 6708 . . . . . 6 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶𝐽)
62 disjdif 4438 . . . . . . 7 (dom 𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅
6362a1i 11 . . . . . 6 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (dom 𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅)
64 fun2 6726 . . . . . 6 (((𝑔:dom 𝑔𝐽 ∧ ((𝑈 ∖ dom 𝑔) × {∅}):(𝑈 ∖ dom 𝑔)⟶𝐽) ∧ (dom 𝑔 ∩ (𝑈 ∖ dom 𝑔)) = ∅) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽)
6554, 61, 63, 64syl21anc 837 . . . . 5 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽)
66 simprl2 1220 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → dom 𝑔𝑈)
67 undif 4448 . . . . . . 7 (dom 𝑔𝑈 ↔ (dom 𝑔 ∪ (𝑈 ∖ dom 𝑔)) = 𝑈)
6866, 67sylib 218 . . . . . 6 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (dom 𝑔 ∪ (𝑈 ∖ dom 𝑔)) = 𝑈)
6968feq2d 6675 . . . . 5 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):(dom 𝑔 ∪ (𝑈 ∖ dom 𝑔))⟶𝐽 ↔ (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽))
7065, 69mpbid 232 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽)
71 simpr 484 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔)
72 simprrl 780 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔Ref𝑈)
7372adantr 480 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran 𝑔Ref𝑈)
7471, 73eqbrtrd 5132 . . . . 5 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈)
75 simpr 484 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅}))
7649simprd 495 . . . . . . . 8 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → 𝑈 ≠ ∅)
77 refun0 23409 . . . . . . . 8 ((ran 𝑔Ref𝑈𝑈 ≠ ∅) → (ran 𝑔 ∪ {∅})Ref𝑈)
7872, 76, 77syl2anc 584 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (ran 𝑔 ∪ {∅})Ref𝑈)
7978adantr 480 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → (ran 𝑔 ∪ {∅})Ref𝑈)
8075, 79eqbrtrd 5132 . . . . 5 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈)
81 rnxpss 6148 . . . . . . 7 ran ((𝑈 ∖ dom 𝑔) × {∅}) ⊆ {∅}
82 sssn 4793 . . . . . . 7 (ran ((𝑈 ∖ dom 𝑔) × {∅}) ⊆ {∅} ↔ (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ ∨ ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅}))
8381, 82mpbi 230 . . . . . 6 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ ∨ ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅})
84 rnun 6121 . . . . . . . . 9 ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ ran ((𝑈 ∖ dom 𝑔) × {∅}))
85 uneq2 4128 . . . . . . . . 9 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ → (ran 𝑔 ∪ ran ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ ∅))
8684, 85eqtrid 2777 . . . . . . . 8 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ ∅))
87 un0 4360 . . . . . . . 8 (ran 𝑔 ∪ ∅) = ran 𝑔
8886, 87eqtrdi 2781 . . . . . . 7 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔)
89 uneq2 4128 . . . . . . . 8 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅} → (ran 𝑔 ∪ ran ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅}))
9084, 89eqtrid 2777 . . . . . . 7 (ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅} → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅}))
9188, 90orim12i 908 . . . . . 6 ((ran ((𝑈 ∖ dom 𝑔) × {∅}) = ∅ ∨ ran ((𝑈 ∖ dom 𝑔) × {∅}) = {∅}) → (ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔 ∨ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})))
9283, 91mp1i 13 . . . . 5 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → (ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔 ∨ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})))
9374, 80, 92mpjaodan 960 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈)
94 simprrr 781 . . . . . . 7 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran 𝑔 ∈ (LocFin‘𝐽))
9594adantr 480 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran 𝑔 ∈ (LocFin‘𝐽))
9671, 95eqeltrd 2829 . . . . 5 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = ran 𝑔) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))
9794adantr 480 . . . . . . 7 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran 𝑔 ∈ (LocFin‘𝐽))
98 snfi 9017 . . . . . . . 8 {∅} ∈ Fin
9998a1i 11 . . . . . . 7 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → {∅} ∈ Fin)
10059adantr 480 . . . . . . . . 9 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ∅ ∈ 𝐽)
101100snssd 4776 . . . . . . . 8 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → {∅} ⊆ 𝐽)
102101unissd 4884 . . . . . . 7 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → {∅} ⊆ 𝐽)
103 lfinun 23419 . . . . . . 7 ((ran 𝑔 ∈ (LocFin‘𝐽) ∧ {∅} ∈ Fin ∧ {∅} ⊆ 𝐽) → (ran 𝑔 ∪ {∅}) ∈ (LocFin‘𝐽))
10497, 99, 102, 103syl3anc 1373 . . . . . 6 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → (ran 𝑔 ∪ {∅}) ∈ (LocFin‘𝐽))
10575, 104eqeltrd 2829 . . . . 5 ((((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) = (ran 𝑔 ∪ {∅})) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))
10696, 105, 92mpjaodan 960 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))
107 refrel 23402 . . . . . . . . 9 Rel Ref
108107brrelex2i 5698 . . . . . . . 8 (𝑉Ref𝑈𝑈 ∈ V)
109 difexg 5287 . . . . . . . 8 (𝑈 ∈ V → (𝑈 ∖ dom 𝑔) ∈ V)
11046, 108, 1093syl 18 . . . . . . 7 (𝜑 → (𝑈 ∖ dom 𝑔) ∈ V)
111110adantr 480 . . . . . 6 ((𝜑𝑈 ≠ ∅) → (𝑈 ∖ dom 𝑔) ∈ V)
112 p0ex 5342 . . . . . . 7 {∅} ∈ V
113 xpexg 7729 . . . . . . 7 (((𝑈 ∖ dom 𝑔) ∈ V ∧ {∅} ∈ V) → ((𝑈 ∖ dom 𝑔) × {∅}) ∈ V)
114112, 113mpan2 691 . . . . . 6 ((𝑈 ∖ dom 𝑔) ∈ V → ((𝑈 ∖ dom 𝑔) × {∅}) ∈ V)
115 vex 3454 . . . . . . 7 𝑔 ∈ V
116 unexg 7722 . . . . . . 7 ((𝑔 ∈ V ∧ ((𝑈 ∖ dom 𝑔) × {∅}) ∈ V) → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ V)
117115, 116mpan 690 . . . . . 6 (((𝑈 ∖ dom 𝑔) × {∅}) ∈ V → (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ V)
118 feq1 6669 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (𝑓:𝑈𝐽 ↔ (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽))
119 rneq 5903 . . . . . . . . 9 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → ran 𝑓 = ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})))
120119breq1d 5120 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (ran 𝑓Ref𝑈 ↔ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈))
121119eleq1d 2814 . . . . . . . 8 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽)))
122118, 120, 1213anbi123d 1438 . . . . . . 7 (𝑓 = (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) → ((𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))))
123122spcegv 3566 . . . . . 6 ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ V → (((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
124111, 114, 117, 1234syl 19 . . . . 5 ((𝜑𝑈 ≠ ∅) → (((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽)) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
125124imp 406 . . . 4 (((𝜑𝑈 ≠ ∅) ∧ ((𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})):𝑈𝐽 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅}))Ref𝑈 ∧ ran (𝑔 ∪ ((𝑈 ∖ dom 𝑔) × {∅})) ∈ (LocFin‘𝐽))) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
12649, 70, 93, 106, 125syl13anc 1374 . . 3 (((𝜑𝑈 ≠ ∅) ∧ ((Fun 𝑔 ∧ dom 𝑔𝑈 ∧ ran 𝑔𝐽) ∧ (ran 𝑔Ref𝑈 ∧ ran 𝑔 ∈ (LocFin‘𝐽)))) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
12748, 126exlimddv 1935 . 2 ((𝜑𝑈 ≠ ∅) → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
12843, 127pm2.61dane 3013 1 (𝜑 → ∃𝑓(𝑓:𝑈𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   cuni 4874   class class class wbr 5110   × cxp 5639  dom cdm 5641  ran crn 5642  Fun wfun 6508  wf 6510  cfv 6514  Fincfn 8921  Topctop 22787  Refcref 23396  LocFinclocfin 23398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-fin 8925  df-r1 9724  df-rank 9725  df-card 9899  df-ac 10076  df-top 22788  df-topon 22805  df-ref 23399  df-locfin 23401
This theorem is referenced by:  pcmplfinf  33858
  Copyright terms: Public domain W3C validator