| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . 4
⊢ ∪ 𝐵 =
∪ 𝐵 |
| 2 | | eqid 2736 |
. . . 4
⊢ ∪ 𝐶 =
∪ 𝐶 |
| 3 | 1, 2 | refbas 23453 |
. . 3
⊢ (𝐵Ref𝐶 → ∪ 𝐶 = ∪
𝐵) |
| 4 | | eqid 2736 |
. . . 4
⊢ ∪ 𝐴 =
∪ 𝐴 |
| 5 | 4, 1 | refbas 23453 |
. . 3
⊢ (𝐴Ref𝐵 → ∪ 𝐵 = ∪
𝐴) |
| 6 | 3, 5 | sylan9eqr 2793 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → ∪ 𝐶 = ∪
𝐴) |
| 7 | | refssex 23454 |
. . . . . 6
⊢ ((𝐴Ref𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦) |
| 8 | 7 | ex 412 |
. . . . 5
⊢ (𝐴Ref𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦)) |
| 10 | | refssex 23454 |
. . . . . . 7
⊢ ((𝐵Ref𝐶 ∧ 𝑦 ∈ 𝐵) → ∃𝑧 ∈ 𝐶 𝑦 ⊆ 𝑧) |
| 11 | 10 | ad2ant2lr 748 |
. . . . . 6
⊢ (((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑦)) → ∃𝑧 ∈ 𝐶 𝑦 ⊆ 𝑧) |
| 12 | | sstr2 3970 |
. . . . . . . 8
⊢ (𝑥 ⊆ 𝑦 → (𝑦 ⊆ 𝑧 → 𝑥 ⊆ 𝑧)) |
| 13 | 12 | reximdv 3156 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝑦 → (∃𝑧 ∈ 𝐶 𝑦 ⊆ 𝑧 → ∃𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧)) |
| 14 | 13 | ad2antll 729 |
. . . . . 6
⊢ (((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑦)) → (∃𝑧 ∈ 𝐶 𝑦 ⊆ 𝑧 → ∃𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧)) |
| 15 | 11, 14 | mpd 15 |
. . . . 5
⊢ (((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ⊆ 𝑦)) → ∃𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧) |
| 16 | 15 | rexlimdvaa 3143 |
. . . 4
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → (∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦 → ∃𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧)) |
| 17 | 9, 16 | syld 47 |
. . 3
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → (𝑥 ∈ 𝐴 → ∃𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧)) |
| 18 | 17 | ralrimiv 3132 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧) |
| 19 | | refrel 23451 |
. . . . 5
⊢ Rel
Ref |
| 20 | 19 | brrelex1i 5715 |
. . . 4
⊢ (𝐴Ref𝐵 → 𝐴 ∈ V) |
| 21 | 20 | adantr 480 |
. . 3
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → 𝐴 ∈ V) |
| 22 | 4, 2 | isref 23452 |
. . 3
⊢ (𝐴 ∈ V → (𝐴Ref𝐶 ↔ (∪ 𝐶 = ∪
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧))) |
| 23 | 21, 22 | syl 17 |
. 2
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → (𝐴Ref𝐶 ↔ (∪ 𝐶 = ∪
𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑧 ∈ 𝐶 𝑥 ⊆ 𝑧))) |
| 24 | 6, 18, 23 | mpbir2and 713 |
1
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → 𝐴Ref𝐶) |