MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reftr Structured version   Visualization version   GIF version

Theorem reftr 23338
Description: Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Assertion
Ref Expression
reftr ((𝐴Ref𝐵𝐵Ref𝐶) → 𝐴Ref𝐶)

Proof of Theorem reftr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 𝐵 = 𝐵
2 eqid 2731 . . . 4 𝐶 = 𝐶
31, 2refbas 23334 . . 3 (𝐵Ref𝐶 𝐶 = 𝐵)
4 eqid 2731 . . . 4 𝐴 = 𝐴
54, 1refbas 23334 . . 3 (𝐴Ref𝐵 𝐵 = 𝐴)
63, 5sylan9eqr 2793 . 2 ((𝐴Ref𝐵𝐵Ref𝐶) → 𝐶 = 𝐴)
7 refssex 23335 . . . . . 6 ((𝐴Ref𝐵𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
87ex 412 . . . . 5 (𝐴Ref𝐵 → (𝑥𝐴 → ∃𝑦𝐵 𝑥𝑦))
98adantr 480 . . . 4 ((𝐴Ref𝐵𝐵Ref𝐶) → (𝑥𝐴 → ∃𝑦𝐵 𝑥𝑦))
10 refssex 23335 . . . . . . 7 ((𝐵Ref𝐶𝑦𝐵) → ∃𝑧𝐶 𝑦𝑧)
1110ad2ant2lr 745 . . . . . 6 (((𝐴Ref𝐵𝐵Ref𝐶) ∧ (𝑦𝐵𝑥𝑦)) → ∃𝑧𝐶 𝑦𝑧)
12 sstr2 3989 . . . . . . . 8 (𝑥𝑦 → (𝑦𝑧𝑥𝑧))
1312reximdv 3169 . . . . . . 7 (𝑥𝑦 → (∃𝑧𝐶 𝑦𝑧 → ∃𝑧𝐶 𝑥𝑧))
1413ad2antll 726 . . . . . 6 (((𝐴Ref𝐵𝐵Ref𝐶) ∧ (𝑦𝐵𝑥𝑦)) → (∃𝑧𝐶 𝑦𝑧 → ∃𝑧𝐶 𝑥𝑧))
1511, 14mpd 15 . . . . 5 (((𝐴Ref𝐵𝐵Ref𝐶) ∧ (𝑦𝐵𝑥𝑦)) → ∃𝑧𝐶 𝑥𝑧)
1615rexlimdvaa 3155 . . . 4 ((𝐴Ref𝐵𝐵Ref𝐶) → (∃𝑦𝐵 𝑥𝑦 → ∃𝑧𝐶 𝑥𝑧))
179, 16syld 47 . . 3 ((𝐴Ref𝐵𝐵Ref𝐶) → (𝑥𝐴 → ∃𝑧𝐶 𝑥𝑧))
1817ralrimiv 3144 . 2 ((𝐴Ref𝐵𝐵Ref𝐶) → ∀𝑥𝐴𝑧𝐶 𝑥𝑧)
19 refrel 23332 . . . . 5 Rel Ref
2019brrelex1i 5732 . . . 4 (𝐴Ref𝐵𝐴 ∈ V)
2120adantr 480 . . 3 ((𝐴Ref𝐵𝐵Ref𝐶) → 𝐴 ∈ V)
224, 2isref 23333 . . 3 (𝐴 ∈ V → (𝐴Ref𝐶 ↔ ( 𝐶 = 𝐴 ∧ ∀𝑥𝐴𝑧𝐶 𝑥𝑧)))
2321, 22syl 17 . 2 ((𝐴Ref𝐵𝐵Ref𝐶) → (𝐴Ref𝐶 ↔ ( 𝐶 = 𝐴 ∧ ∀𝑥𝐴𝑧𝐶 𝑥𝑧)))
246, 18, 23mpbir2and 710 1 ((𝐴Ref𝐵𝐵Ref𝐶) → 𝐴Ref𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  wss 3948   cuni 4908   class class class wbr 5148  Refcref 23326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-ref 23329
This theorem is referenced by:  refssfne  35707
  Copyright terms: Public domain W3C validator