Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refssfne Structured version   Visualization version   GIF version

Theorem refssfne 36423
Description: A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
refssfne.1 𝑋 = 𝐴
refssfne.2 𝑌 = 𝐵
Assertion
Ref Expression
refssfne (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐

Proof of Theorem refssfne
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 23424 . . . . . . 7 Rel Ref
21brrelex2i 5676 . . . . . 6 (𝐵Ref𝐴𝐴 ∈ V)
32adantl 481 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴 ∈ V)
41brrelex1i 5675 . . . . . 6 (𝐵Ref𝐴𝐵 ∈ V)
54adantl 481 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐵 ∈ V)
6 unexg 7682 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
73, 5, 6syl2anc 584 . . . 4 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐴𝐵) ∈ V)
8 ssun2 4128 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
98a1i 11 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐵 ⊆ (𝐴𝐵))
10 ssun1 4127 . . . . . . 7 𝐴 ⊆ (𝐴𝐵)
1110a1i 11 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴 ⊆ (𝐴𝐵))
12 eqimss2 3990 . . . . . . . . 9 (𝑋 = 𝑌𝑌𝑋)
1312adantr 480 . . . . . . . 8 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝑌𝑋)
14 ssequn2 4138 . . . . . . . 8 (𝑌𝑋 ↔ (𝑋𝑌) = 𝑋)
1513, 14sylib 218 . . . . . . 7 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑋𝑌) = 𝑋)
1615eqcomd 2739 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝑋 = (𝑋𝑌))
17 refssfne.1 . . . . . . 7 𝑋 = 𝐴
18 refssfne.2 . . . . . . . . 9 𝑌 = 𝐵
1917, 18uneq12i 4115 . . . . . . . 8 (𝑋𝑌) = ( 𝐴 𝐵)
20 uniun 4881 . . . . . . . 8 (𝐴𝐵) = ( 𝐴 𝐵)
2119, 20eqtr4i 2759 . . . . . . 7 (𝑋𝑌) = (𝐴𝐵)
2217, 21fness 36414 . . . . . 6 (((𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝑋 = (𝑋𝑌)) → 𝐴Fne(𝐴𝐵))
237, 11, 16, 22syl3anc 1373 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴Fne(𝐴𝐵))
24 elun 4102 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
25 ssid 3953 . . . . . . . . . . 11 𝑥𝑥
26 sseq2 3957 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
2726rspcev 3573 . . . . . . . . . . 11 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑥𝑦)
2825, 27mpan2 691 . . . . . . . . . 10 (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦)
2928a1i 11 . . . . . . . . 9 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦))
30 refssex 23427 . . . . . . . . . . 11 ((𝐵Ref𝐴𝑥𝐵) → ∃𝑦𝐴 𝑥𝑦)
3130ex 412 . . . . . . . . . 10 (𝐵Ref𝐴 → (𝑥𝐵 → ∃𝑦𝐴 𝑥𝑦))
3231adantl 481 . . . . . . . . 9 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥𝐵 → ∃𝑦𝐴 𝑥𝑦))
3329, 32jaod 859 . . . . . . . 8 ((𝑋 = 𝑌𝐵Ref𝐴) → ((𝑥𝐴𝑥𝐵) → ∃𝑦𝐴 𝑥𝑦))
3424, 33biimtrid 242 . . . . . . 7 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥 ∈ (𝐴𝐵) → ∃𝑦𝐴 𝑥𝑦))
3534ralrimiv 3124 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)
3621, 17isref 23425 . . . . . . 7 ((𝐴𝐵) ∈ V → ((𝐴𝐵)Ref𝐴 ↔ (𝑋 = (𝑋𝑌) ∧ ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)))
377, 36syl 17 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → ((𝐴𝐵)Ref𝐴 ↔ (𝑋 = (𝑋𝑌) ∧ ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)))
3816, 35, 37mpbir2and 713 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐴𝐵)Ref𝐴)
399, 23, 38jca32 515 . . . 4 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)))
40 sseq2 3957 . . . . . 6 (𝑐 = (𝐴𝐵) → (𝐵𝑐𝐵 ⊆ (𝐴𝐵)))
41 breq2 5097 . . . . . . 7 (𝑐 = (𝐴𝐵) → (𝐴Fne𝑐𝐴Fne(𝐴𝐵)))
42 breq1 5096 . . . . . . 7 (𝑐 = (𝐴𝐵) → (𝑐Ref𝐴 ↔ (𝐴𝐵)Ref𝐴))
4341, 42anbi12d 632 . . . . . 6 (𝑐 = (𝐴𝐵) → ((𝐴Fne𝑐𝑐Ref𝐴) ↔ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)))
4440, 43anbi12d 632 . . . . 5 (𝑐 = (𝐴𝐵) → ((𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) ↔ (𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴))))
4544spcegv 3548 . . . 4 ((𝐴𝐵) ∈ V → ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)) → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
467, 39, 45sylc 65 . . 3 ((𝑋 = 𝑌𝐵Ref𝐴) → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)))
4746ex 412 . 2 (𝑋 = 𝑌 → (𝐵Ref𝐴 → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
48 vex 3441 . . . . . . . 8 𝑐 ∈ V
4948ssex 5261 . . . . . . 7 (𝐵𝑐𝐵 ∈ V)
5049ad2antrl 728 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵 ∈ V)
51 simprl 770 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵𝑐)
52 simpl 482 . . . . . . 7 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑋 = 𝑌)
53 eqid 2733 . . . . . . . . . 10 𝑐 = 𝑐
5453, 17refbas 23426 . . . . . . . . 9 (𝑐Ref𝐴𝑋 = 𝑐)
5554adantl 481 . . . . . . . 8 ((𝐴Fne𝑐𝑐Ref𝐴) → 𝑋 = 𝑐)
5655ad2antll 729 . . . . . . 7 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑋 = 𝑐)
5752, 56eqtr3d 2770 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑌 = 𝑐)
5818, 53ssref 23428 . . . . . 6 ((𝐵 ∈ V ∧ 𝐵𝑐𝑌 = 𝑐) → 𝐵Ref𝑐)
5950, 51, 57, 58syl3anc 1373 . . . . 5 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵Ref𝑐)
60 simprrr 781 . . . . 5 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑐Ref𝐴)
61 reftr 23430 . . . . 5 ((𝐵Ref𝑐𝑐Ref𝐴) → 𝐵Ref𝐴)
6259, 60, 61syl2anc 584 . . . 4 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵Ref𝐴)
6362ex 412 . . 3 (𝑋 = 𝑌 → ((𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) → 𝐵Ref𝐴))
6463exlimdv 1934 . 2 (𝑋 = 𝑌 → (∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) → 𝐵Ref𝐴))
6547, 64impbid 212 1 (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cun 3896  wss 3898   cuni 4858   class class class wbr 5093  Refcref 23418  Fnecfne 36401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-topgen 17349  df-ref 23421  df-fne 36402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator