Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refssfne Structured version   Visualization version   GIF version

Theorem refssfne 34474
Description: A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
refssfne.1 𝑋 = 𝐴
refssfne.2 𝑌 = 𝐵
Assertion
Ref Expression
refssfne (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐

Proof of Theorem refssfne
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 22567 . . . . . . 7 Rel Ref
21brrelex2i 5635 . . . . . 6 (𝐵Ref𝐴𝐴 ∈ V)
32adantl 481 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴 ∈ V)
41brrelex1i 5634 . . . . . 6 (𝐵Ref𝐴𝐵 ∈ V)
54adantl 481 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐵 ∈ V)
6 unexg 7577 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
73, 5, 6syl2anc 583 . . . 4 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐴𝐵) ∈ V)
8 ssun2 4103 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
98a1i 11 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐵 ⊆ (𝐴𝐵))
10 ssun1 4102 . . . . . . 7 𝐴 ⊆ (𝐴𝐵)
1110a1i 11 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴 ⊆ (𝐴𝐵))
12 eqimss2 3974 . . . . . . . . 9 (𝑋 = 𝑌𝑌𝑋)
1312adantr 480 . . . . . . . 8 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝑌𝑋)
14 ssequn2 4113 . . . . . . . 8 (𝑌𝑋 ↔ (𝑋𝑌) = 𝑋)
1513, 14sylib 217 . . . . . . 7 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑋𝑌) = 𝑋)
1615eqcomd 2744 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝑋 = (𝑋𝑌))
17 refssfne.1 . . . . . . 7 𝑋 = 𝐴
18 refssfne.2 . . . . . . . . 9 𝑌 = 𝐵
1917, 18uneq12i 4091 . . . . . . . 8 (𝑋𝑌) = ( 𝐴 𝐵)
20 uniun 4861 . . . . . . . 8 (𝐴𝐵) = ( 𝐴 𝐵)
2119, 20eqtr4i 2769 . . . . . . 7 (𝑋𝑌) = (𝐴𝐵)
2217, 21fness 34465 . . . . . 6 (((𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝑋 = (𝑋𝑌)) → 𝐴Fne(𝐴𝐵))
237, 11, 16, 22syl3anc 1369 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴Fne(𝐴𝐵))
24 elun 4079 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
25 ssid 3939 . . . . . . . . . . 11 𝑥𝑥
26 sseq2 3943 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
2726rspcev 3552 . . . . . . . . . . 11 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑥𝑦)
2825, 27mpan2 687 . . . . . . . . . 10 (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦)
2928a1i 11 . . . . . . . . 9 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦))
30 refssex 22570 . . . . . . . . . . 11 ((𝐵Ref𝐴𝑥𝐵) → ∃𝑦𝐴 𝑥𝑦)
3130ex 412 . . . . . . . . . 10 (𝐵Ref𝐴 → (𝑥𝐵 → ∃𝑦𝐴 𝑥𝑦))
3231adantl 481 . . . . . . . . 9 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥𝐵 → ∃𝑦𝐴 𝑥𝑦))
3329, 32jaod 855 . . . . . . . 8 ((𝑋 = 𝑌𝐵Ref𝐴) → ((𝑥𝐴𝑥𝐵) → ∃𝑦𝐴 𝑥𝑦))
3424, 33syl5bi 241 . . . . . . 7 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥 ∈ (𝐴𝐵) → ∃𝑦𝐴 𝑥𝑦))
3534ralrimiv 3106 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)
3621, 17isref 22568 . . . . . . 7 ((𝐴𝐵) ∈ V → ((𝐴𝐵)Ref𝐴 ↔ (𝑋 = (𝑋𝑌) ∧ ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)))
377, 36syl 17 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → ((𝐴𝐵)Ref𝐴 ↔ (𝑋 = (𝑋𝑌) ∧ ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)))
3816, 35, 37mpbir2and 709 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐴𝐵)Ref𝐴)
399, 23, 38jca32 515 . . . 4 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)))
40 sseq2 3943 . . . . . 6 (𝑐 = (𝐴𝐵) → (𝐵𝑐𝐵 ⊆ (𝐴𝐵)))
41 breq2 5074 . . . . . . 7 (𝑐 = (𝐴𝐵) → (𝐴Fne𝑐𝐴Fne(𝐴𝐵)))
42 breq1 5073 . . . . . . 7 (𝑐 = (𝐴𝐵) → (𝑐Ref𝐴 ↔ (𝐴𝐵)Ref𝐴))
4341, 42anbi12d 630 . . . . . 6 (𝑐 = (𝐴𝐵) → ((𝐴Fne𝑐𝑐Ref𝐴) ↔ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)))
4440, 43anbi12d 630 . . . . 5 (𝑐 = (𝐴𝐵) → ((𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) ↔ (𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴))))
4544spcegv 3526 . . . 4 ((𝐴𝐵) ∈ V → ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)) → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
467, 39, 45sylc 65 . . 3 ((𝑋 = 𝑌𝐵Ref𝐴) → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)))
4746ex 412 . 2 (𝑋 = 𝑌 → (𝐵Ref𝐴 → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
48 vex 3426 . . . . . . . 8 𝑐 ∈ V
4948ssex 5240 . . . . . . 7 (𝐵𝑐𝐵 ∈ V)
5049ad2antrl 724 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵 ∈ V)
51 simprl 767 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵𝑐)
52 simpl 482 . . . . . . 7 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑋 = 𝑌)
53 eqid 2738 . . . . . . . . . 10 𝑐 = 𝑐
5453, 17refbas 22569 . . . . . . . . 9 (𝑐Ref𝐴𝑋 = 𝑐)
5554adantl 481 . . . . . . . 8 ((𝐴Fne𝑐𝑐Ref𝐴) → 𝑋 = 𝑐)
5655ad2antll 725 . . . . . . 7 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑋 = 𝑐)
5752, 56eqtr3d 2780 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑌 = 𝑐)
5818, 53ssref 22571 . . . . . 6 ((𝐵 ∈ V ∧ 𝐵𝑐𝑌 = 𝑐) → 𝐵Ref𝑐)
5950, 51, 57, 58syl3anc 1369 . . . . 5 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵Ref𝑐)
60 simprrr 778 . . . . 5 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑐Ref𝐴)
61 reftr 22573 . . . . 5 ((𝐵Ref𝑐𝑐Ref𝐴) → 𝐵Ref𝐴)
6259, 60, 61syl2anc 583 . . . 4 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵Ref𝐴)
6362ex 412 . . 3 (𝑋 = 𝑌 → ((𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) → 𝐵Ref𝐴))
6463exlimdv 1937 . 2 (𝑋 = 𝑌 → (∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) → 𝐵Ref𝐴))
6547, 64impbid 211 1 (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cun 3881  wss 3883   cuni 4836   class class class wbr 5070  Refcref 22561  Fnecfne 34452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topgen 17071  df-ref 22564  df-fne 34453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator