Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refssfne Structured version   Visualization version   GIF version

Theorem refssfne 36331
Description: A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
refssfne.1 𝑋 = 𝐴
refssfne.2 𝑌 = 𝐵
Assertion
Ref Expression
refssfne (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐

Proof of Theorem refssfne
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 23411 . . . . . . 7 Rel Ref
21brrelex2i 5680 . . . . . 6 (𝐵Ref𝐴𝐴 ∈ V)
32adantl 481 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴 ∈ V)
41brrelex1i 5679 . . . . . 6 (𝐵Ref𝐴𝐵 ∈ V)
54adantl 481 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐵 ∈ V)
6 unexg 7683 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
73, 5, 6syl2anc 584 . . . 4 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐴𝐵) ∈ V)
8 ssun2 4132 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
98a1i 11 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐵 ⊆ (𝐴𝐵))
10 ssun1 4131 . . . . . . 7 𝐴 ⊆ (𝐴𝐵)
1110a1i 11 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴 ⊆ (𝐴𝐵))
12 eqimss2 3997 . . . . . . . . 9 (𝑋 = 𝑌𝑌𝑋)
1312adantr 480 . . . . . . . 8 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝑌𝑋)
14 ssequn2 4142 . . . . . . . 8 (𝑌𝑋 ↔ (𝑋𝑌) = 𝑋)
1513, 14sylib 218 . . . . . . 7 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑋𝑌) = 𝑋)
1615eqcomd 2735 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝑋 = (𝑋𝑌))
17 refssfne.1 . . . . . . 7 𝑋 = 𝐴
18 refssfne.2 . . . . . . . . 9 𝑌 = 𝐵
1917, 18uneq12i 4119 . . . . . . . 8 (𝑋𝑌) = ( 𝐴 𝐵)
20 uniun 4884 . . . . . . . 8 (𝐴𝐵) = ( 𝐴 𝐵)
2119, 20eqtr4i 2755 . . . . . . 7 (𝑋𝑌) = (𝐴𝐵)
2217, 21fness 36322 . . . . . 6 (((𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝑋 = (𝑋𝑌)) → 𝐴Fne(𝐴𝐵))
237, 11, 16, 22syl3anc 1373 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴Fne(𝐴𝐵))
24 elun 4106 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
25 ssid 3960 . . . . . . . . . . 11 𝑥𝑥
26 sseq2 3964 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
2726rspcev 3579 . . . . . . . . . . 11 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑥𝑦)
2825, 27mpan2 691 . . . . . . . . . 10 (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦)
2928a1i 11 . . . . . . . . 9 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦))
30 refssex 23414 . . . . . . . . . . 11 ((𝐵Ref𝐴𝑥𝐵) → ∃𝑦𝐴 𝑥𝑦)
3130ex 412 . . . . . . . . . 10 (𝐵Ref𝐴 → (𝑥𝐵 → ∃𝑦𝐴 𝑥𝑦))
3231adantl 481 . . . . . . . . 9 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥𝐵 → ∃𝑦𝐴 𝑥𝑦))
3329, 32jaod 859 . . . . . . . 8 ((𝑋 = 𝑌𝐵Ref𝐴) → ((𝑥𝐴𝑥𝐵) → ∃𝑦𝐴 𝑥𝑦))
3424, 33biimtrid 242 . . . . . . 7 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥 ∈ (𝐴𝐵) → ∃𝑦𝐴 𝑥𝑦))
3534ralrimiv 3120 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)
3621, 17isref 23412 . . . . . . 7 ((𝐴𝐵) ∈ V → ((𝐴𝐵)Ref𝐴 ↔ (𝑋 = (𝑋𝑌) ∧ ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)))
377, 36syl 17 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → ((𝐴𝐵)Ref𝐴 ↔ (𝑋 = (𝑋𝑌) ∧ ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)))
3816, 35, 37mpbir2and 713 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐴𝐵)Ref𝐴)
399, 23, 38jca32 515 . . . 4 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)))
40 sseq2 3964 . . . . . 6 (𝑐 = (𝐴𝐵) → (𝐵𝑐𝐵 ⊆ (𝐴𝐵)))
41 breq2 5099 . . . . . . 7 (𝑐 = (𝐴𝐵) → (𝐴Fne𝑐𝐴Fne(𝐴𝐵)))
42 breq1 5098 . . . . . . 7 (𝑐 = (𝐴𝐵) → (𝑐Ref𝐴 ↔ (𝐴𝐵)Ref𝐴))
4341, 42anbi12d 632 . . . . . 6 (𝑐 = (𝐴𝐵) → ((𝐴Fne𝑐𝑐Ref𝐴) ↔ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)))
4440, 43anbi12d 632 . . . . 5 (𝑐 = (𝐴𝐵) → ((𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) ↔ (𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴))))
4544spcegv 3554 . . . 4 ((𝐴𝐵) ∈ V → ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)) → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
467, 39, 45sylc 65 . . 3 ((𝑋 = 𝑌𝐵Ref𝐴) → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)))
4746ex 412 . 2 (𝑋 = 𝑌 → (𝐵Ref𝐴 → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
48 vex 3442 . . . . . . . 8 𝑐 ∈ V
4948ssex 5263 . . . . . . 7 (𝐵𝑐𝐵 ∈ V)
5049ad2antrl 728 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵 ∈ V)
51 simprl 770 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵𝑐)
52 simpl 482 . . . . . . 7 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑋 = 𝑌)
53 eqid 2729 . . . . . . . . . 10 𝑐 = 𝑐
5453, 17refbas 23413 . . . . . . . . 9 (𝑐Ref𝐴𝑋 = 𝑐)
5554adantl 481 . . . . . . . 8 ((𝐴Fne𝑐𝑐Ref𝐴) → 𝑋 = 𝑐)
5655ad2antll 729 . . . . . . 7 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑋 = 𝑐)
5752, 56eqtr3d 2766 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑌 = 𝑐)
5818, 53ssref 23415 . . . . . 6 ((𝐵 ∈ V ∧ 𝐵𝑐𝑌 = 𝑐) → 𝐵Ref𝑐)
5950, 51, 57, 58syl3anc 1373 . . . . 5 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵Ref𝑐)
60 simprrr 781 . . . . 5 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑐Ref𝐴)
61 reftr 23417 . . . . 5 ((𝐵Ref𝑐𝑐Ref𝐴) → 𝐵Ref𝐴)
6259, 60, 61syl2anc 584 . . . 4 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵Ref𝐴)
6362ex 412 . . 3 (𝑋 = 𝑌 → ((𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) → 𝐵Ref𝐴))
6463exlimdv 1933 . 2 (𝑋 = 𝑌 → (∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) → 𝐵Ref𝐴))
6547, 64impbid 212 1 (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cun 3903  wss 3905   cuni 4861   class class class wbr 5095  Refcref 23405  Fnecfne 36309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-topgen 17365  df-ref 23408  df-fne 36310
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator