Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refssfne Structured version   Visualization version   GIF version

Theorem refssfne 35559
Description: A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.)
Hypotheses
Ref Expression
refssfne.1 𝑋 = 𝐴
refssfne.2 𝑌 = 𝐵
Assertion
Ref Expression
refssfne (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑋,𝑐   𝑌,𝑐

Proof of Theorem refssfne
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 refrel 23245 . . . . . . 7 Rel Ref
21brrelex2i 5733 . . . . . 6 (𝐵Ref𝐴𝐴 ∈ V)
32adantl 481 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴 ∈ V)
41brrelex1i 5732 . . . . . 6 (𝐵Ref𝐴𝐵 ∈ V)
54adantl 481 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐵 ∈ V)
6 unexg 7740 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
73, 5, 6syl2anc 583 . . . 4 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐴𝐵) ∈ V)
8 ssun2 4173 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
98a1i 11 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐵 ⊆ (𝐴𝐵))
10 ssun1 4172 . . . . . . 7 𝐴 ⊆ (𝐴𝐵)
1110a1i 11 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴 ⊆ (𝐴𝐵))
12 eqimss2 4041 . . . . . . . . 9 (𝑋 = 𝑌𝑌𝑋)
1312adantr 480 . . . . . . . 8 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝑌𝑋)
14 ssequn2 4183 . . . . . . . 8 (𝑌𝑋 ↔ (𝑋𝑌) = 𝑋)
1513, 14sylib 217 . . . . . . 7 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑋𝑌) = 𝑋)
1615eqcomd 2737 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝑋 = (𝑋𝑌))
17 refssfne.1 . . . . . . 7 𝑋 = 𝐴
18 refssfne.2 . . . . . . . . 9 𝑌 = 𝐵
1917, 18uneq12i 4161 . . . . . . . 8 (𝑋𝑌) = ( 𝐴 𝐵)
20 uniun 4934 . . . . . . . 8 (𝐴𝐵) = ( 𝐴 𝐵)
2119, 20eqtr4i 2762 . . . . . . 7 (𝑋𝑌) = (𝐴𝐵)
2217, 21fness 35550 . . . . . 6 (((𝐴𝐵) ∈ V ∧ 𝐴 ⊆ (𝐴𝐵) ∧ 𝑋 = (𝑋𝑌)) → 𝐴Fne(𝐴𝐵))
237, 11, 16, 22syl3anc 1370 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → 𝐴Fne(𝐴𝐵))
24 elun 4148 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
25 ssid 4004 . . . . . . . . . . 11 𝑥𝑥
26 sseq2 4008 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
2726rspcev 3612 . . . . . . . . . . 11 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑥𝑦)
2825, 27mpan2 688 . . . . . . . . . 10 (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦)
2928a1i 11 . . . . . . . . 9 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥𝐴 → ∃𝑦𝐴 𝑥𝑦))
30 refssex 23248 . . . . . . . . . . 11 ((𝐵Ref𝐴𝑥𝐵) → ∃𝑦𝐴 𝑥𝑦)
3130ex 412 . . . . . . . . . 10 (𝐵Ref𝐴 → (𝑥𝐵 → ∃𝑦𝐴 𝑥𝑦))
3231adantl 481 . . . . . . . . 9 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥𝐵 → ∃𝑦𝐴 𝑥𝑦))
3329, 32jaod 856 . . . . . . . 8 ((𝑋 = 𝑌𝐵Ref𝐴) → ((𝑥𝐴𝑥𝐵) → ∃𝑦𝐴 𝑥𝑦))
3424, 33biimtrid 241 . . . . . . 7 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝑥 ∈ (𝐴𝐵) → ∃𝑦𝐴 𝑥𝑦))
3534ralrimiv 3144 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)
3621, 17isref 23246 . . . . . . 7 ((𝐴𝐵) ∈ V → ((𝐴𝐵)Ref𝐴 ↔ (𝑋 = (𝑋𝑌) ∧ ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)))
377, 36syl 17 . . . . . 6 ((𝑋 = 𝑌𝐵Ref𝐴) → ((𝐴𝐵)Ref𝐴 ↔ (𝑋 = (𝑋𝑌) ∧ ∀𝑥 ∈ (𝐴𝐵)∃𝑦𝐴 𝑥𝑦)))
3816, 35, 37mpbir2and 710 . . . . 5 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐴𝐵)Ref𝐴)
399, 23, 38jca32 515 . . . 4 ((𝑋 = 𝑌𝐵Ref𝐴) → (𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)))
40 sseq2 4008 . . . . . 6 (𝑐 = (𝐴𝐵) → (𝐵𝑐𝐵 ⊆ (𝐴𝐵)))
41 breq2 5152 . . . . . . 7 (𝑐 = (𝐴𝐵) → (𝐴Fne𝑐𝐴Fne(𝐴𝐵)))
42 breq1 5151 . . . . . . 7 (𝑐 = (𝐴𝐵) → (𝑐Ref𝐴 ↔ (𝐴𝐵)Ref𝐴))
4341, 42anbi12d 630 . . . . . 6 (𝑐 = (𝐴𝐵) → ((𝐴Fne𝑐𝑐Ref𝐴) ↔ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)))
4440, 43anbi12d 630 . . . . 5 (𝑐 = (𝐴𝐵) → ((𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) ↔ (𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴))))
4544spcegv 3587 . . . 4 ((𝐴𝐵) ∈ V → ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴Fne(𝐴𝐵) ∧ (𝐴𝐵)Ref𝐴)) → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
467, 39, 45sylc 65 . . 3 ((𝑋 = 𝑌𝐵Ref𝐴) → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)))
4746ex 412 . 2 (𝑋 = 𝑌 → (𝐵Ref𝐴 → ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
48 vex 3477 . . . . . . . 8 𝑐 ∈ V
4948ssex 5321 . . . . . . 7 (𝐵𝑐𝐵 ∈ V)
5049ad2antrl 725 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵 ∈ V)
51 simprl 768 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵𝑐)
52 simpl 482 . . . . . . 7 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑋 = 𝑌)
53 eqid 2731 . . . . . . . . . 10 𝑐 = 𝑐
5453, 17refbas 23247 . . . . . . . . 9 (𝑐Ref𝐴𝑋 = 𝑐)
5554adantl 481 . . . . . . . 8 ((𝐴Fne𝑐𝑐Ref𝐴) → 𝑋 = 𝑐)
5655ad2antll 726 . . . . . . 7 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑋 = 𝑐)
5752, 56eqtr3d 2773 . . . . . 6 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑌 = 𝑐)
5818, 53ssref 23249 . . . . . 6 ((𝐵 ∈ V ∧ 𝐵𝑐𝑌 = 𝑐) → 𝐵Ref𝑐)
5950, 51, 57, 58syl3anc 1370 . . . . 5 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵Ref𝑐)
60 simprrr 779 . . . . 5 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝑐Ref𝐴)
61 reftr 23251 . . . . 5 ((𝐵Ref𝑐𝑐Ref𝐴) → 𝐵Ref𝐴)
6259, 60, 61syl2anc 583 . . . 4 ((𝑋 = 𝑌 ∧ (𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))) → 𝐵Ref𝐴)
6362ex 412 . . 3 (𝑋 = 𝑌 → ((𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) → 𝐵Ref𝐴))
6463exlimdv 1935 . 2 (𝑋 = 𝑌 → (∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴)) → 𝐵Ref𝐴))
6547, 64impbid 211 1 (𝑋 = 𝑌 → (𝐵Ref𝐴 ↔ ∃𝑐(𝐵𝑐 ∧ (𝐴Fne𝑐𝑐Ref𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wex 1780  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  cun 3946  wss 3948   cuni 4908   class class class wbr 5148  Refcref 23239  Fnecfne 35537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topgen 17396  df-ref 23242  df-fne 35538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator