![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
Ref | Expression |
---|---|
relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5718 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
2 | relin2 5837 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3975 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: inxp 5856 elinxp 6048 cnvcnv 6223 tpostpos 8287 brinxper 8792 erinxp 8849 brdom3 10597 brdom5 10598 brdom4 10599 fpwwe2lem7 10706 fpwwe2lem8 10707 fpwwe2lem11 10710 pwsle 17552 opsrtoslem2 22103 elrn3 35724 bj-idres 37126 br1cnvinxp 38212 inxprnres 38248 inxpss 38267 inxpss2 38271 iss2 38300 inxp2 38323 inxpxrn 38351 |
Copyright terms: Public domain | W3C validator |