| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
| Ref | Expression |
|---|---|
| relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5634 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | relin2 5753 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3901 × cxp 5614 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 |
| This theorem is referenced by: inxp 5771 elinxp 5968 cnvcnv 6139 tpostpos 8176 brinxper 8651 erinxp 8715 brdom3 10419 brdom5 10420 brdom4 10421 fpwwe2lem7 10528 fpwwe2lem8 10529 fpwwe2lem11 10532 pwsle 17396 opsrtoslem2 21992 elrn3 35804 bj-idres 37200 br1cnvinxp 38297 inxprnres 38332 inxpss 38351 inxpss2 38355 iss2 38378 inxp2 38401 inxpxrn 38433 |
| Copyright terms: Public domain | W3C validator |