| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
| Ref | Expression |
|---|---|
| relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5641 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | relin2 5760 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3904 × cxp 5621 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-in 3912 df-ss 3922 df-opab 5158 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: inxp 5778 elinxp 5974 cnvcnv 6145 tpostpos 8186 brinxper 8661 erinxp 8725 brdom3 10441 brdom5 10442 brdom4 10443 fpwwe2lem7 10550 fpwwe2lem8 10551 fpwwe2lem11 10554 pwsle 17414 opsrtoslem2 21979 elrn3 35734 bj-idres 37133 br1cnvinxp 38230 inxprnres 38265 inxpss 38284 inxpss2 38288 iss2 38311 inxp2 38334 inxpxrn 38366 |
| Copyright terms: Public domain | W3C validator |