| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
| Ref | Expression |
|---|---|
| relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5656 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | relin2 5776 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3913 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: inxp 5795 elinxp 5990 cnvcnv 6165 tpostpos 8225 brinxper 8700 erinxp 8764 brdom3 10481 brdom5 10482 brdom4 10483 fpwwe2lem7 10590 fpwwe2lem8 10591 fpwwe2lem11 10594 pwsle 17455 opsrtoslem2 21963 elrn3 35749 bj-idres 37148 br1cnvinxp 38245 inxprnres 38280 inxpss 38299 inxpss2 38303 iss2 38326 inxp2 38349 inxpxrn 38381 |
| Copyright terms: Public domain | W3C validator |