| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
| Ref | Expression |
|---|---|
| relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5703 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | relin2 5823 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3950 × cxp 5683 Rel wrel 5690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 df-opab 5206 df-xp 5691 df-rel 5692 |
| This theorem is referenced by: inxp 5842 elinxp 6037 cnvcnv 6212 tpostpos 8271 brinxper 8774 erinxp 8831 brdom3 10568 brdom5 10569 brdom4 10570 fpwwe2lem7 10677 fpwwe2lem8 10678 fpwwe2lem11 10681 pwsle 17537 opsrtoslem2 22080 elrn3 35762 bj-idres 37161 br1cnvinxp 38257 inxprnres 38293 inxpss 38312 inxpss2 38316 iss2 38345 inxp2 38368 inxpxrn 38396 |
| Copyright terms: Public domain | W3C validator |