![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
Ref | Expression |
---|---|
relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5707 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
2 | relin2 5826 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3962 × cxp 5687 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-opab 5211 df-xp 5695 df-rel 5696 |
This theorem is referenced by: inxp 5845 elinxp 6039 cnvcnv 6214 tpostpos 8270 brinxper 8773 erinxp 8830 brdom3 10566 brdom5 10567 brdom4 10568 fpwwe2lem7 10675 fpwwe2lem8 10676 fpwwe2lem11 10679 pwsle 17539 opsrtoslem2 22098 elrn3 35742 bj-idres 37143 br1cnvinxp 38238 inxprnres 38274 inxpss 38293 inxpss2 38297 iss2 38326 inxp2 38349 inxpxrn 38377 |
Copyright terms: Public domain | W3C validator |