| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
| Ref | Expression |
|---|---|
| relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5659 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | relin2 5779 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3916 × cxp 5639 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: inxp 5798 elinxp 5993 cnvcnv 6168 tpostpos 8228 brinxper 8703 erinxp 8767 brdom3 10488 brdom5 10489 brdom4 10490 fpwwe2lem7 10597 fpwwe2lem8 10598 fpwwe2lem11 10601 pwsle 17462 opsrtoslem2 21970 elrn3 35756 bj-idres 37155 br1cnvinxp 38252 inxprnres 38287 inxpss 38306 inxpss2 38310 iss2 38333 inxp2 38356 inxpxrn 38388 |
| Copyright terms: Public domain | W3C validator |