MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relinxp Structured version   Visualization version   GIF version

Theorem relinxp 5815
Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.)
Assertion
Ref Expression
relinxp Rel (𝑅 ∩ (𝐴 × 𝐵))

Proof of Theorem relinxp
StepHypRef Expression
1 relxp 5695 . 2 Rel (𝐴 × 𝐵)
2 relin2 5814 . 2 (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵)))
31, 2ax-mp 5 1 Rel (𝑅 ∩ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  cin 3948   × cxp 5675  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966  df-opab 5212  df-xp 5683  df-rel 5684
This theorem is referenced by:  elinxp  6020  cnvcnv  6192  tpostpos  8231  erinxp  8785  brdom3  10523  brdom5  10524  brdom4  10525  fpwwe2lem7  10632  fpwwe2lem8  10633  fpwwe2lem11  10636  pwsle  17438  opsrtoslem2  21617  elrn3  34732  bj-idres  36041  br1cnvinxp  37124  inxprnres  37161  inxpss  37180  inxpss2  37184  iss2  37213  inxp2  37236  inxpxrn  37265
  Copyright terms: Public domain W3C validator