| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
| Ref | Expression |
|---|---|
| relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5672 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | relin2 5792 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3925 × cxp 5652 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: inxp 5811 elinxp 6006 cnvcnv 6181 tpostpos 8245 brinxper 8748 erinxp 8805 brdom3 10542 brdom5 10543 brdom4 10544 fpwwe2lem7 10651 fpwwe2lem8 10652 fpwwe2lem11 10655 pwsle 17506 opsrtoslem2 22014 elrn3 35779 bj-idres 37178 br1cnvinxp 38274 inxprnres 38310 inxpss 38329 inxpss2 38333 iss2 38362 inxp2 38385 inxpxrn 38413 |
| Copyright terms: Public domain | W3C validator |