MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relinxp Structured version   Visualization version   GIF version

Theorem relinxp 5756
Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.)
Assertion
Ref Expression
relinxp Rel (𝑅 ∩ (𝐴 × 𝐵))

Proof of Theorem relinxp
StepHypRef Expression
1 relxp 5638 . 2 Rel (𝐴 × 𝐵)
2 relin2 5755 . 2 (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵)))
31, 2ax-mp 5 1 Rel (𝑅 ∩ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  cin 3897   × cxp 5618  Rel wrel 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-in 3905  df-ss 3915  df-opab 5155  df-xp 5626  df-rel 5627
This theorem is referenced by:  elinxp  5961  cnvcnv  6130  tpostpos  8132  erinxp  8651  brdom3  10385  brdom5  10386  brdom4  10387  fpwwe2lem7  10494  fpwwe2lem8  10495  fpwwe2lem11  10498  pwsle  17300  opsrtoslem2  21369  elrn3  34018  bj-idres  35436  br1cnvinxp  36521  inxprnres  36558  inxpss  36577  inxpss2  36581  iss2  36610  inxp2  36633  inxpxrn  36662
  Copyright terms: Public domain W3C validator