Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version |
Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
Ref | Expression |
---|---|
relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5638 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
2 | relin2 5755 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3897 × cxp 5618 Rel wrel 5625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-in 3905 df-ss 3915 df-opab 5155 df-xp 5626 df-rel 5627 |
This theorem is referenced by: elinxp 5961 cnvcnv 6130 tpostpos 8132 erinxp 8651 brdom3 10385 brdom5 10386 brdom4 10387 fpwwe2lem7 10494 fpwwe2lem8 10495 fpwwe2lem11 10498 pwsle 17300 opsrtoslem2 21369 elrn3 34018 bj-idres 35436 br1cnvinxp 36521 inxprnres 36558 inxpss 36577 inxpss2 36581 iss2 36610 inxp2 36633 inxpxrn 36662 |
Copyright terms: Public domain | W3C validator |