MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relinxp Structured version   Visualization version   GIF version

Theorem relinxp 5807
Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.)
Assertion
Ref Expression
relinxp Rel (𝑅 ∩ (𝐴 × 𝐵))

Proof of Theorem relinxp
StepHypRef Expression
1 relxp 5687 . 2 Rel (𝐴 × 𝐵)
2 relin2 5806 . 2 (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵)))
31, 2ax-mp 5 1 Rel (𝑅 ∩ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  cin 3942   × cxp 5667  Rel wrel 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-in 3950  df-ss 3960  df-opab 5204  df-xp 5675  df-rel 5676
This theorem is referenced by:  elinxp  6012  cnvcnv  6184  tpostpos  8229  erinxp  8784  brdom3  10522  brdom5  10523  brdom4  10524  fpwwe2lem7  10631  fpwwe2lem8  10632  fpwwe2lem11  10635  pwsle  17444  opsrtoslem2  21954  elrn3  35264  bj-idres  36547  br1cnvinxp  37636  inxprnres  37673  inxpss  37692  inxpss2  37696  iss2  37725  inxp2  37748  inxpxrn  37777
  Copyright terms: Public domain W3C validator