| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relinxp | Structured version Visualization version GIF version | ||
| Description: Intersection with a Cartesian product is a relation. (Contributed by Peter Mazsa, 4-Mar-2019.) |
| Ref | Expression |
|---|---|
| relinxp | ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5637 | . 2 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | relin2 5757 | . 2 ⊢ (Rel (𝐴 × 𝐵) → Rel (𝑅 ∩ (𝐴 × 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Rel (𝑅 ∩ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3897 × cxp 5617 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: inxp 5775 elinxp 5972 cnvcnv 6144 tpostpos 8182 brinxper 8657 erinxp 8721 brdom3 10426 brdom5 10427 brdom4 10428 fpwwe2lem7 10535 fpwwe2lem8 10536 fpwwe2lem11 10539 pwsle 17398 opsrtoslem2 21992 elrn3 35827 bj-idres 37225 br1cnvinxp 38314 inxprnres 38351 inxpss 38370 inxpss2 38374 iss2 38397 inxp2 38420 inxpxrn 38463 |
| Copyright terms: Public domain | W3C validator |