Step | Hyp | Ref
| Expression |
1 | | relres 5856 |
. . . 4
⊢ Rel ( I
↾ 𝐴) |
2 | | relin2 5659 |
. . . 4
⊢ (Rel ( I
↾ 𝐴) → Rel
(𝑅 ∩ ( I ↾ 𝐴))) |
3 | 1, 2 | mp1i 13 |
. . 3
⊢ (𝑅 Po 𝐴 → Rel (𝑅 ∩ ( I ↾ 𝐴))) |
4 | | df-br 5036 |
. . . . 5
⊢ (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ( I ↾ 𝐴))) |
5 | | brin 5087 |
. . . . 5
⊢ (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦)) |
6 | 4, 5 | bitr3i 280 |
. . . 4
⊢
(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ( I ↾ 𝐴)) ↔ (𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦)) |
7 | | vex 3413 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
8 | 7 | brresi 5836 |
. . . . . . . 8
⊢ (𝑥( I ↾ 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 I 𝑦)) |
9 | | poirr 5457 |
. . . . . . . . . 10
⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
10 | 7 | ideq 5697 |
. . . . . . . . . . . 12
⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
11 | | breq2 5039 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
12 | 10, 11 | sylbi 220 |
. . . . . . . . . . 11
⊢ (𝑥 I 𝑦 → (𝑥𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
13 | 12 | notbid 321 |
. . . . . . . . . 10
⊢ (𝑥 I 𝑦 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)) |
14 | 9, 13 | syl5ibcom 248 |
. . . . . . . . 9
⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 I 𝑦 → ¬ 𝑥𝑅𝑦)) |
15 | 14 | expimpd 457 |
. . . . . . . 8
⊢ (𝑅 Po 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 I 𝑦) → ¬ 𝑥𝑅𝑦)) |
16 | 8, 15 | syl5bi 245 |
. . . . . . 7
⊢ (𝑅 Po 𝐴 → (𝑥( I ↾ 𝐴)𝑦 → ¬ 𝑥𝑅𝑦)) |
17 | 16 | con2d 136 |
. . . . . 6
⊢ (𝑅 Po 𝐴 → (𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦)) |
18 | | imnan 403 |
. . . . . 6
⊢ ((𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦) ↔ ¬ (𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦)) |
19 | 17, 18 | sylib 221 |
. . . . 5
⊢ (𝑅 Po 𝐴 → ¬ (𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦)) |
20 | 19 | pm2.21d 121 |
. . . 4
⊢ (𝑅 Po 𝐴 → ((𝑥𝑅𝑦 ∧ 𝑥( I ↾ 𝐴)𝑦) → 〈𝑥, 𝑦〉 ∈ ∅)) |
21 | 6, 20 | syl5bi 245 |
. . 3
⊢ (𝑅 Po 𝐴 → (〈𝑥, 𝑦〉 ∈ (𝑅 ∩ ( I ↾ 𝐴)) → 〈𝑥, 𝑦〉 ∈ ∅)) |
22 | 3, 21 | relssdv 5634 |
. 2
⊢ (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅) |
23 | | ss0 4297 |
. 2
⊢ ((𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅ → (𝑅 ∩ ( I ↾ 𝐴)) = ∅) |
24 | 22, 23 | syl 17 |
1
⊢ (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅) |