MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poirr2 Structured version   Visualization version   GIF version

Theorem poirr2 6100
Description: A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
poirr2 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)

Proof of Theorem poirr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5979 . . . 4 Rel ( I ↾ 𝐴)
2 relin2 5779 . . . 4 (Rel ( I ↾ 𝐴) → Rel (𝑅 ∩ ( I ↾ 𝐴)))
31, 2mp1i 13 . . 3 (𝑅 Po 𝐴 → Rel (𝑅 ∩ ( I ↾ 𝐴)))
4 df-br 5111 . . . . 5 (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)))
5 brin 5162 . . . . 5 (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
64, 5bitr3i 277 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)) ↔ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
7 vex 3454 . . . . . . . . 9 𝑦 ∈ V
87brresi 5962 . . . . . . . 8 (𝑥( I ↾ 𝐴)𝑦 ↔ (𝑥𝐴𝑥 I 𝑦))
9 poirr 5561 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
107ideq 5819 . . . . . . . . . . . 12 (𝑥 I 𝑦𝑥 = 𝑦)
11 breq2 5114 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝑅𝑥𝑥𝑅𝑦))
1210, 11sylbi 217 . . . . . . . . . . 11 (𝑥 I 𝑦 → (𝑥𝑅𝑥𝑥𝑅𝑦))
1312notbid 318 . . . . . . . . . 10 (𝑥 I 𝑦 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
149, 13syl5ibcom 245 . . . . . . . . 9 ((𝑅 Po 𝐴𝑥𝐴) → (𝑥 I 𝑦 → ¬ 𝑥𝑅𝑦))
1514expimpd 453 . . . . . . . 8 (𝑅 Po 𝐴 → ((𝑥𝐴𝑥 I 𝑦) → ¬ 𝑥𝑅𝑦))
168, 15biimtrid 242 . . . . . . 7 (𝑅 Po 𝐴 → (𝑥( I ↾ 𝐴)𝑦 → ¬ 𝑥𝑅𝑦))
1716con2d 134 . . . . . 6 (𝑅 Po 𝐴 → (𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦))
18 imnan 399 . . . . . 6 ((𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦) ↔ ¬ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
1917, 18sylib 218 . . . . 5 (𝑅 Po 𝐴 → ¬ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
2019pm2.21d 121 . . . 4 (𝑅 Po 𝐴 → ((𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦) → ⟨𝑥, 𝑦⟩ ∈ ∅))
216, 20biimtrid 242 . . 3 (𝑅 Po 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)) → ⟨𝑥, 𝑦⟩ ∈ ∅))
223, 21relssdv 5754 . 2 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅)
23 ss0 4368 . 2 ((𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅ → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
2422, 23syl 17 1 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  c0 4299  cop 4598   class class class wbr 5110   I cid 5535   Po wpo 5547  cres 5643  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-po 5549  df-xp 5647  df-rel 5648  df-res 5653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator