MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poirr2 Structured version   Visualization version   GIF version

Theorem poirr2 6029
Description: A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
poirr2 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)

Proof of Theorem poirr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5920 . . . 4 Rel ( I ↾ 𝐴)
2 relin2 5723 . . . 4 (Rel ( I ↾ 𝐴) → Rel (𝑅 ∩ ( I ↾ 𝐴)))
31, 2mp1i 13 . . 3 (𝑅 Po 𝐴 → Rel (𝑅 ∩ ( I ↾ 𝐴)))
4 df-br 5075 . . . . 5 (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)))
5 brin 5126 . . . . 5 (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
64, 5bitr3i 276 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)) ↔ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
7 vex 3436 . . . . . . . . 9 𝑦 ∈ V
87brresi 5900 . . . . . . . 8 (𝑥( I ↾ 𝐴)𝑦 ↔ (𝑥𝐴𝑥 I 𝑦))
9 poirr 5515 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
107ideq 5761 . . . . . . . . . . . 12 (𝑥 I 𝑦𝑥 = 𝑦)
11 breq2 5078 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝑅𝑥𝑥𝑅𝑦))
1210, 11sylbi 216 . . . . . . . . . . 11 (𝑥 I 𝑦 → (𝑥𝑅𝑥𝑥𝑅𝑦))
1312notbid 318 . . . . . . . . . 10 (𝑥 I 𝑦 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
149, 13syl5ibcom 244 . . . . . . . . 9 ((𝑅 Po 𝐴𝑥𝐴) → (𝑥 I 𝑦 → ¬ 𝑥𝑅𝑦))
1514expimpd 454 . . . . . . . 8 (𝑅 Po 𝐴 → ((𝑥𝐴𝑥 I 𝑦) → ¬ 𝑥𝑅𝑦))
168, 15syl5bi 241 . . . . . . 7 (𝑅 Po 𝐴 → (𝑥( I ↾ 𝐴)𝑦 → ¬ 𝑥𝑅𝑦))
1716con2d 134 . . . . . 6 (𝑅 Po 𝐴 → (𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦))
18 imnan 400 . . . . . 6 ((𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦) ↔ ¬ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
1917, 18sylib 217 . . . . 5 (𝑅 Po 𝐴 → ¬ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
2019pm2.21d 121 . . . 4 (𝑅 Po 𝐴 → ((𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦) → ⟨𝑥, 𝑦⟩ ∈ ∅))
216, 20syl5bi 241 . . 3 (𝑅 Po 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)) → ⟨𝑥, 𝑦⟩ ∈ ∅))
223, 21relssdv 5698 . 2 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅)
23 ss0 4332 . 2 ((𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅ → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
2422, 23syl 17 1 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887  c0 4256  cop 4567   class class class wbr 5074   I cid 5488   Po wpo 5501  cres 5591  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-po 5503  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator