MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poirr2 Structured version   Visualization version   GIF version

Theorem poirr2 5860
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
poirr2 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)

Proof of Theorem poirr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5763 . . . 4 Rel ( I ↾ 𝐴)
2 relin2 5572 . . . 4 (Rel ( I ↾ 𝐴) → Rel (𝑅 ∩ ( I ↾ 𝐴)))
31, 2mp1i 13 . . 3 (𝑅 Po 𝐴 → Rel (𝑅 ∩ ( I ↾ 𝐴)))
4 df-br 4963 . . . . 5 (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)))
5 brin 5014 . . . . 5 (𝑥(𝑅 ∩ ( I ↾ 𝐴))𝑦 ↔ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
64, 5bitr3i 278 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)) ↔ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
7 vex 3440 . . . . . . . . 9 𝑦 ∈ V
87brresi 5743 . . . . . . . 8 (𝑥( I ↾ 𝐴)𝑦 ↔ (𝑥𝐴𝑥 I 𝑦))
9 poirr 5373 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
107ideq 5609 . . . . . . . . . . . 12 (𝑥 I 𝑦𝑥 = 𝑦)
11 breq2 4966 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥𝑅𝑥𝑥𝑅𝑦))
1210, 11sylbi 218 . . . . . . . . . . 11 (𝑥 I 𝑦 → (𝑥𝑅𝑥𝑥𝑅𝑦))
1312notbid 319 . . . . . . . . . 10 (𝑥 I 𝑦 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
149, 13syl5ibcom 246 . . . . . . . . 9 ((𝑅 Po 𝐴𝑥𝐴) → (𝑥 I 𝑦 → ¬ 𝑥𝑅𝑦))
1514expimpd 454 . . . . . . . 8 (𝑅 Po 𝐴 → ((𝑥𝐴𝑥 I 𝑦) → ¬ 𝑥𝑅𝑦))
168, 15syl5bi 243 . . . . . . 7 (𝑅 Po 𝐴 → (𝑥( I ↾ 𝐴)𝑦 → ¬ 𝑥𝑅𝑦))
1716con2d 136 . . . . . 6 (𝑅 Po 𝐴 → (𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦))
18 imnan 400 . . . . . 6 ((𝑥𝑅𝑦 → ¬ 𝑥( I ↾ 𝐴)𝑦) ↔ ¬ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
1917, 18sylib 219 . . . . 5 (𝑅 Po 𝐴 → ¬ (𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦))
2019pm2.21d 121 . . . 4 (𝑅 Po 𝐴 → ((𝑥𝑅𝑦𝑥( I ↾ 𝐴)𝑦) → ⟨𝑥, 𝑦⟩ ∈ ∅))
216, 20syl5bi 243 . . 3 (𝑅 Po 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ( I ↾ 𝐴)) → ⟨𝑥, 𝑦⟩ ∈ ∅))
223, 21relssdv 5547 . 2 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅)
23 ss0 4272 . 2 ((𝑅 ∩ ( I ↾ 𝐴)) ⊆ ∅ → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
2422, 23syl 17 1 (𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  cin 3858  wss 3859  c0 4211  cop 4478   class class class wbr 4962   I cid 5347   Po wpo 5360  cres 5445  Rel wrel 5448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-id 5348  df-po 5362  df-xp 5449  df-rel 5450  df-res 5455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator