Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvref4 Structured version   Visualization version   GIF version

Theorem cnvref4 38306
Description: Two ways to say that a relation is a subclass. (Contributed by Peter Mazsa, 11-Apr-2023.)
Assertion
Ref Expression
cnvref4 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))

Proof of Theorem cnvref4
StepHypRef Expression
1 dfrel6 38303 . . . . . . 7 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
21biimpi 216 . . . . . 6 (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
32dmeqd 5930 . . . . 5 (Rel 𝑅 → dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = dom 𝑅)
42rneqd 5963 . . . . 5 (Rel 𝑅 → ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = ran 𝑅)
53, 4xpeq12d 5731 . . . 4 (Rel 𝑅 → (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅))) = (dom 𝑅 × ran 𝑅))
65ineq2d 4241 . . 3 (Rel 𝑅 → (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) = (𝑆 ∩ (dom 𝑅 × ran 𝑅)))
76sseq2d 4041 . 2 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅))))
8 relxp 5718 . . . 4 Rel (dom 𝑅 × ran 𝑅)
9 relin2 5837 . . . 4 (Rel (dom 𝑅 × ran 𝑅) → Rel (𝑅 ∩ (dom 𝑅 × ran 𝑅)))
10 relssinxpdmrn 38305 . . . 4 (Rel (𝑅 ∩ (dom 𝑅 × ran 𝑅)) → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆))
118, 9, 10mp2b 10 . . 3 ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆)
122sseq1d 4040 . . 3 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆𝑅𝑆))
1311, 12bitrid 283 . 2 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ 𝑅𝑆))
147, 13bitr3d 281 1 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  cin 3975  wss 3976   × cxp 5698  dom cdm 5700  ran crn 5701  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  dfcnvrefrel4  38488
  Copyright terms: Public domain W3C validator