Proof of Theorem cnvref4
| Step | Hyp | Ref
| Expression |
| 1 | | dfrel6 38370 |
. . . . . . 7
⊢ (Rel
𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) |
| 2 | 1 | biimpi 216 |
. . . . . 6
⊢ (Rel
𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) |
| 3 | 2 | dmeqd 5890 |
. . . . 5
⊢ (Rel
𝑅 → dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = dom 𝑅) |
| 4 | 2 | rneqd 5923 |
. . . . 5
⊢ (Rel
𝑅 → ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = ran 𝑅) |
| 5 | 3, 4 | xpeq12d 5690 |
. . . 4
⊢ (Rel
𝑅 → (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅))) = (dom 𝑅 × ran 𝑅)) |
| 6 | 5 | ineq2d 4200 |
. . 3
⊢ (Rel
𝑅 → (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) = (𝑆 ∩ (dom 𝑅 × ran 𝑅))) |
| 7 | 6 | sseq2d 3996 |
. 2
⊢ (Rel
𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)))) |
| 8 | | relxp 5677 |
. . . 4
⊢ Rel (dom
𝑅 × ran 𝑅) |
| 9 | | relin2 5797 |
. . . 4
⊢ (Rel (dom
𝑅 × ran 𝑅) → Rel (𝑅 ∩ (dom 𝑅 × ran 𝑅))) |
| 10 | | relssinxpdmrn 38372 |
. . . 4
⊢ (Rel
(𝑅 ∩ (dom 𝑅 × ran 𝑅)) → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆)) |
| 11 | 8, 9, 10 | mp2b 10 |
. . 3
⊢ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆) |
| 12 | 2 | sseq1d 3995 |
. . 3
⊢ (Rel
𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆 ↔ 𝑅 ⊆ 𝑆)) |
| 13 | 11, 12 | bitrid 283 |
. 2
⊢ (Rel
𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ 𝑅 ⊆ 𝑆)) |
| 14 | 7, 13 | bitr3d 281 |
1
⊢ (Rel
𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) |