Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvref4 Structured version   Visualization version   GIF version

Theorem cnvref4 38332
Description: Two ways to say that a relation is a subclass. (Contributed by Peter Mazsa, 11-Apr-2023.)
Assertion
Ref Expression
cnvref4 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))

Proof of Theorem cnvref4
StepHypRef Expression
1 dfrel6 38329 . . . . . . 7 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
21biimpi 216 . . . . . 6 (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
32dmeqd 5869 . . . . 5 (Rel 𝑅 → dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = dom 𝑅)
42rneqd 5902 . . . . 5 (Rel 𝑅 → ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = ran 𝑅)
53, 4xpeq12d 5669 . . . 4 (Rel 𝑅 → (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅))) = (dom 𝑅 × ran 𝑅))
65ineq2d 4183 . . 3 (Rel 𝑅 → (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) = (𝑆 ∩ (dom 𝑅 × ran 𝑅)))
76sseq2d 3979 . 2 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅))))
8 relxp 5656 . . . 4 Rel (dom 𝑅 × ran 𝑅)
9 relin2 5776 . . . 4 (Rel (dom 𝑅 × ran 𝑅) → Rel (𝑅 ∩ (dom 𝑅 × ran 𝑅)))
10 relssinxpdmrn 38331 . . . 4 (Rel (𝑅 ∩ (dom 𝑅 × ran 𝑅)) → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆))
118, 9, 10mp2b 10 . . 3 ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆)
122sseq1d 3978 . . 3 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆𝑅𝑆))
1311, 12bitrid 283 . 2 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ 𝑅𝑆))
147, 13bitr3d 281 1 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  cin 3913  wss 3914   × cxp 5636  dom cdm 5638  ran crn 5639  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by:  dfcnvrefrel4  38523
  Copyright terms: Public domain W3C validator