Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvref4 Structured version   Visualization version   GIF version

Theorem cnvref4 38357
Description: Two ways to say that a relation is a subclass. (Contributed by Peter Mazsa, 11-Apr-2023.)
Assertion
Ref Expression
cnvref4 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))

Proof of Theorem cnvref4
StepHypRef Expression
1 dfrel6 38354 . . . . . . 7 (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
21biimpi 216 . . . . . 6 (Rel 𝑅 → (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅)
32dmeqd 5843 . . . . 5 (Rel 𝑅 → dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = dom 𝑅)
42rneqd 5875 . . . . 5 (Rel 𝑅 → ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = ran 𝑅)
53, 4xpeq12d 5645 . . . 4 (Rel 𝑅 → (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅))) = (dom 𝑅 × ran 𝑅))
65ineq2d 4168 . . 3 (Rel 𝑅 → (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) = (𝑆 ∩ (dom 𝑅 × ran 𝑅)))
76sseq2d 3965 . 2 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅))))
8 relxp 5632 . . . 4 Rel (dom 𝑅 × ran 𝑅)
9 relin2 5751 . . . 4 (Rel (dom 𝑅 × ran 𝑅) → Rel (𝑅 ∩ (dom 𝑅 × ran 𝑅)))
10 relssinxpdmrn 38356 . . . 4 (Rel (𝑅 ∩ (dom 𝑅 × ran 𝑅)) → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆))
118, 9, 10mp2b 10 . . 3 ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆)
122sseq1d 3964 . . 3 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑆𝑅𝑆))
1311, 12bitrid 283 . 2 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom (𝑅 ∩ (dom 𝑅 × ran 𝑅)) × ran (𝑅 ∩ (dom 𝑅 × ran 𝑅)))) ↔ 𝑅𝑆))
147, 13bitr3d 281 1 (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  cin 3899  wss 3900   × cxp 5612  dom cdm 5614  ran crn 5615  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by:  dfcnvrefrel4  38548
  Copyright terms: Public domain W3C validator