![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intasym | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intasym | ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6100 | . . 3 ⊢ Rel ◡𝑅 | |
2 | relin2 5811 | . . 3 ⊢ (Rel ◡𝑅 → Rel (𝑅 ∩ ◡𝑅)) | |
3 | ssrel 5780 | . . 3 ⊢ (Rel (𝑅 ∩ ◡𝑅) → ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) → ⟨𝑥, 𝑦⟩ ∈ I )) |
5 | elin 3963 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅)) | |
6 | df-br 5148 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
7 | vex 3478 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
8 | vex 3478 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 5880 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
10 | df-br 5148 | . . . . . . 7 ⊢ (𝑥◡𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅) | |
11 | 9, 10 | bitr3i 276 | . . . . . 6 ⊢ (𝑦𝑅𝑥 ↔ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅) |
12 | 6, 11 | anbi12i 627 | . . . . 5 ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑅 ∧ ⟨𝑥, 𝑦⟩ ∈ ◡𝑅)) |
13 | 5, 12 | bitr4i 277 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) ↔ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
14 | df-br 5148 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I ) | |
15 | 8 | ideq 5850 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
16 | 14, 15 | bitr3i 276 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦) |
17 | 13, 16 | imbi12i 350 | . . 3 ⊢ ((⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
18 | 17 | 2albii 1822 | . 2 ⊢ (∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ ◡𝑅) → ⟨𝑥, 𝑦⟩ ∈ I ) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
19 | 4, 18 | bitri 274 | 1 ⊢ ((𝑅 ∩ ◡𝑅) ⊆ I ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 ∈ wcel 2106 ∩ cin 3946 ⊆ wss 3947 ⟨cop 4633 class class class wbr 5147 I cid 5572 ◡ccnv 5674 Rel wrel 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |