Proof of Theorem rngosn3
| Step | Hyp | Ref
| Expression |
| 1 | | on1el3.1 |
. . . . . . . . . 10
⊢ 𝐺 = (1st ‘𝑅) |
| 2 | 1 | rngogrpo 37918 |
. . . . . . . . 9
⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 3 | | on1el3.2 |
. . . . . . . . . 10
⊢ 𝑋 = ran 𝐺 |
| 4 | 3 | grpofo 30519 |
. . . . . . . . 9
⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
| 5 | | fof 6819 |
. . . . . . . . 9
⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| 6 | 2, 4, 5 | 3syl 18 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| 7 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| 8 | | id 22 |
. . . . . . . . 9
⊢ (𝑋 = {𝐴} → 𝑋 = {𝐴}) |
| 9 | 8 | sqxpeqd 5716 |
. . . . . . . 8
⊢ (𝑋 = {𝐴} → (𝑋 × 𝑋) = ({𝐴} × {𝐴})) |
| 10 | 9, 8 | feq23d 6730 |
. . . . . . 7
⊢ (𝑋 = {𝐴} → (𝐺:(𝑋 × 𝑋)⟶𝑋 ↔ 𝐺:({𝐴} × {𝐴})⟶{𝐴})) |
| 11 | 7, 10 | syl5ibcom 245 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} → 𝐺:({𝐴} × {𝐴})⟶{𝐴})) |
| 12 | 7 | fdmd 6745 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → dom 𝐺 = (𝑋 × 𝑋)) |
| 13 | 12 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 × 𝑋) = dom 𝐺) |
| 14 | | fdm 6744 |
. . . . . . . . 9
⊢ (𝐺:({𝐴} × {𝐴})⟶{𝐴} → dom 𝐺 = ({𝐴} × {𝐴})) |
| 15 | 14 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝐺:({𝐴} × {𝐴})⟶{𝐴} → ((𝑋 × 𝑋) = dom 𝐺 ↔ (𝑋 × 𝑋) = ({𝐴} × {𝐴}))) |
| 16 | 13, 15 | syl5ibcom 245 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} → (𝑋 × 𝑋) = ({𝐴} × {𝐴}))) |
| 17 | | xpid11 5942 |
. . . . . . 7
⊢ ((𝑋 × 𝑋) = ({𝐴} × {𝐴}) ↔ 𝑋 = {𝐴}) |
| 18 | 16, 17 | imbitrdi 251 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} → 𝑋 = {𝐴})) |
| 19 | 11, 18 | impbid 212 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} ↔ 𝐺:({𝐴} × {𝐴})⟶{𝐴})) |
| 20 | | simpr 484 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
| 21 | | xpsng 7158 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
| 22 | 20, 21 | sylancom 588 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
| 23 | 22 | feq2d 6721 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} ↔ 𝐺:{〈𝐴, 𝐴〉}⟶{𝐴})) |
| 24 | | opex 5468 |
. . . . . 6
⊢
〈𝐴, 𝐴〉 ∈ V |
| 25 | | fsng 7156 |
. . . . . 6
⊢
((〈𝐴, 𝐴〉 ∈ V ∧ 𝐴 ∈ 𝐵) → (𝐺:{〈𝐴, 𝐴〉}⟶{𝐴} ↔ 𝐺 = {〈〈𝐴, 𝐴〉, 𝐴〉})) |
| 26 | 24, 20, 25 | sylancr 587 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝐺:{〈𝐴, 𝐴〉}⟶{𝐴} ↔ 𝐺 = {〈〈𝐴, 𝐴〉, 𝐴〉})) |
| 27 | 19, 23, 26 | 3bitrd 305 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} ↔ 𝐺 = {〈〈𝐴, 𝐴〉, 𝐴〉})) |
| 28 | 1 | eqeq1i 2741 |
. . . 4
⊢ (𝐺 = {〈〈𝐴, 𝐴〉, 𝐴〉} ↔ (1st ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉}) |
| 29 | 27, 28 | bitrdi 287 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} ↔ (1st ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉})) |
| 30 | 29 | anbi1d 631 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → ((𝑋 = {𝐴} ∧ (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉}) ↔ ((1st
‘𝑅) =
{〈〈𝐴, 𝐴〉, 𝐴〉} ∧ (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉}))) |
| 31 | | eqid 2736 |
. . . . . . 7
⊢
(2nd ‘𝑅) = (2nd ‘𝑅) |
| 32 | 1, 31, 3 | rngosm 37908 |
. . . . . 6
⊢ (𝑅 ∈ RingOps →
(2nd ‘𝑅):(𝑋 × 𝑋)⟶𝑋) |
| 33 | 32 | adantr 480 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (2nd ‘𝑅):(𝑋 × 𝑋)⟶𝑋) |
| 34 | 9, 8 | feq23d 6730 |
. . . . 5
⊢ (𝑋 = {𝐴} → ((2nd ‘𝑅):(𝑋 × 𝑋)⟶𝑋 ↔ (2nd ‘𝑅):({𝐴} × {𝐴})⟶{𝐴})) |
| 35 | 33, 34 | syl5ibcom 245 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} → (2nd ‘𝑅):({𝐴} × {𝐴})⟶{𝐴})) |
| 36 | 22 | feq2d 6721 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → ((2nd ‘𝑅):({𝐴} × {𝐴})⟶{𝐴} ↔ (2nd ‘𝑅):{〈𝐴, 𝐴〉}⟶{𝐴})) |
| 37 | | fsng 7156 |
. . . . . 6
⊢
((〈𝐴, 𝐴〉 ∈ V ∧ 𝐴 ∈ 𝐵) → ((2nd ‘𝑅):{〈𝐴, 𝐴〉}⟶{𝐴} ↔ (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉})) |
| 38 | 24, 20, 37 | sylancr 587 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → ((2nd ‘𝑅):{〈𝐴, 𝐴〉}⟶{𝐴} ↔ (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉})) |
| 39 | 36, 38 | bitrd 279 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → ((2nd ‘𝑅):({𝐴} × {𝐴})⟶{𝐴} ↔ (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉})) |
| 40 | 35, 39 | sylibd 239 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} → (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉})) |
| 41 | 40 | pm4.71d 561 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} ↔ (𝑋 = {𝐴} ∧ (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉}))) |
| 42 | | relrngo 37904 |
. . . . . 6
⊢ Rel
RingOps |
| 43 | | df-rel 5691 |
. . . . . 6
⊢ (Rel
RingOps ↔ RingOps ⊆ (V × V)) |
| 44 | 42, 43 | mpbi 230 |
. . . . 5
⊢ RingOps
⊆ (V × V) |
| 45 | 44 | sseli 3978 |
. . . 4
⊢ (𝑅 ∈ RingOps → 𝑅 ∈ (V ×
V)) |
| 46 | 45 | adantr 480 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → 𝑅 ∈ (V × V)) |
| 47 | | eqop 8057 |
. . 3
⊢ (𝑅 ∈ (V × V) →
(𝑅 =
〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉 ↔ ((1st
‘𝑅) =
{〈〈𝐴, 𝐴〉, 𝐴〉} ∧ (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉}))) |
| 48 | 46, 47 | syl 17 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉 ↔ ((1st
‘𝑅) =
{〈〈𝐴, 𝐴〉, 𝐴〉} ∧ (2nd ‘𝑅) = {〈〈𝐴, 𝐴〉, 𝐴〉}))) |
| 49 | 30, 41, 48 | 3bitr4d 311 |
1
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) |