Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn3 Structured version   Visualization version   GIF version

Theorem rngosn3 36009
Description: Obsolete as of 25-Jan-2020. Use ring1zr 20459 or srg1zr 19680 instead. The only unital ring with a base set consisting in one element is the zero ring. (Contributed by FL, 13-Feb-2010.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1 𝐺 = (1st𝑅)
on1el3.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngosn3 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ 𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))

Proof of Theorem rngosn3
StepHypRef Expression
1 on1el3.1 . . . . . . . . . 10 𝐺 = (1st𝑅)
21rngogrpo 35995 . . . . . . . . 9 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 on1el3.2 . . . . . . . . . 10 𝑋 = ran 𝐺
43grpofo 28762 . . . . . . . . 9 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)
5 fof 6672 . . . . . . . . 9 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
62, 4, 53syl 18 . . . . . . . 8 (𝑅 ∈ RingOps → 𝐺:(𝑋 × 𝑋)⟶𝑋)
76adantr 480 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → 𝐺:(𝑋 × 𝑋)⟶𝑋)
8 id 22 . . . . . . . . 9 (𝑋 = {𝐴} → 𝑋 = {𝐴})
98sqxpeqd 5612 . . . . . . . 8 (𝑋 = {𝐴} → (𝑋 × 𝑋) = ({𝐴} × {𝐴}))
109, 8feq23d 6579 . . . . . . 7 (𝑋 = {𝐴} → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:({𝐴} × {𝐴})⟶{𝐴}))
117, 10syl5ibcom 244 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} → 𝐺:({𝐴} × {𝐴})⟶{𝐴}))
127fdmd 6595 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → dom 𝐺 = (𝑋 × 𝑋))
1312eqcomd 2744 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 × 𝑋) = dom 𝐺)
14 fdm 6593 . . . . . . . . 9 (𝐺:({𝐴} × {𝐴})⟶{𝐴} → dom 𝐺 = ({𝐴} × {𝐴}))
1514eqeq2d 2749 . . . . . . . 8 (𝐺:({𝐴} × {𝐴})⟶{𝐴} → ((𝑋 × 𝑋) = dom 𝐺 ↔ (𝑋 × 𝑋) = ({𝐴} × {𝐴})))
1613, 15syl5ibcom 244 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} → (𝑋 × 𝑋) = ({𝐴} × {𝐴})))
17 xpid11 5830 . . . . . . 7 ((𝑋 × 𝑋) = ({𝐴} × {𝐴}) ↔ 𝑋 = {𝐴})
1816, 17syl6ib 250 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} → 𝑋 = {𝐴}))
1911, 18impbid 211 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ 𝐺:({𝐴} × {𝐴})⟶{𝐴}))
20 simpr 484 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → 𝐴𝐵)
21 xpsng 6993 . . . . . . 7 ((𝐴𝐵𝐴𝐵) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
2220, 21sylancom 587 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
2322feq2d 6570 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} ↔ 𝐺:{⟨𝐴, 𝐴⟩}⟶{𝐴}))
24 opex 5373 . . . . . 6 𝐴, 𝐴⟩ ∈ V
25 fsng 6991 . . . . . 6 ((⟨𝐴, 𝐴⟩ ∈ V ∧ 𝐴𝐵) → (𝐺:{⟨𝐴, 𝐴⟩}⟶{𝐴} ↔ 𝐺 = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
2624, 20, 25sylancr 586 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝐺:{⟨𝐴, 𝐴⟩}⟶{𝐴} ↔ 𝐺 = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
2719, 23, 263bitrd 304 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ 𝐺 = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
281eqeq1i 2743 . . . 4 (𝐺 = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↔ (1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})
2927, 28bitrdi 286 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ (1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
3029anbi1d 629 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ((𝑋 = {𝐴} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) ↔ ((1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})))
31 eqid 2738 . . . . . . 7 (2nd𝑅) = (2nd𝑅)
321, 31, 3rngosm 35985 . . . . . 6 (𝑅 ∈ RingOps → (2nd𝑅):(𝑋 × 𝑋)⟶𝑋)
3332adantr 480 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (2nd𝑅):(𝑋 × 𝑋)⟶𝑋)
349, 8feq23d 6579 . . . . 5 (𝑋 = {𝐴} → ((2nd𝑅):(𝑋 × 𝑋)⟶𝑋 ↔ (2nd𝑅):({𝐴} × {𝐴})⟶{𝐴}))
3533, 34syl5ibcom 244 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} → (2nd𝑅):({𝐴} × {𝐴})⟶{𝐴}))
3622feq2d 6570 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ((2nd𝑅):({𝐴} × {𝐴})⟶{𝐴} ↔ (2nd𝑅):{⟨𝐴, 𝐴⟩}⟶{𝐴}))
37 fsng 6991 . . . . . 6 ((⟨𝐴, 𝐴⟩ ∈ V ∧ 𝐴𝐵) → ((2nd𝑅):{⟨𝐴, 𝐴⟩}⟶{𝐴} ↔ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
3824, 20, 37sylancr 586 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ((2nd𝑅):{⟨𝐴, 𝐴⟩}⟶{𝐴} ↔ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
3936, 38bitrd 278 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ((2nd𝑅):({𝐴} × {𝐴})⟶{𝐴} ↔ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
4035, 39sylibd 238 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} → (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
4140pm4.71d 561 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ (𝑋 = {𝐴} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})))
42 relrngo 35981 . . . . . 6 Rel RingOps
43 df-rel 5587 . . . . . 6 (Rel RingOps ↔ RingOps ⊆ (V × V))
4442, 43mpbi 229 . . . . 5 RingOps ⊆ (V × V)
4544sseli 3913 . . . 4 (𝑅 ∈ RingOps → 𝑅 ∈ (V × V))
4645adantr 480 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → 𝑅 ∈ (V × V))
47 eqop 7846 . . 3 (𝑅 ∈ (V × V) → (𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ↔ ((1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})))
4846, 47syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ↔ ((1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})))
4930, 41, 483bitr4d 310 1 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ 𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {csn 4558  cop 4564   × cxp 5578  dom cdm 5580  ran crn 5581  Rel wrel 5585  wf 6414  ontowfo 6416  cfv 6418  1st c1st 7802  2nd c2nd 7803  GrpOpcgr 28752  RingOpscrngo 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-1st 7804  df-2nd 7805  df-grpo 28756  df-ablo 28808  df-rngo 35980
This theorem is referenced by:  rngosn4  36010
  Copyright terms: Public domain W3C validator