| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoi | Structured version Visualization version GIF version | ||
| Description: The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ringi.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| rngoi | ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | ringi.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | 1, 2 | opeq12i 4850 | . . . 4 ⊢ 〈𝐺, 𝐻〉 = 〈(1st ‘𝑅), (2nd ‘𝑅)〉 |
| 4 | relrngo 37887 | . . . . 5 ⊢ Rel RingOps | |
| 5 | 1st2nd 8027 | . . . . 5 ⊢ ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = 〈(1st ‘𝑅), (2nd ‘𝑅)〉) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝑅 = 〈(1st ‘𝑅), (2nd ‘𝑅)〉) |
| 7 | 3, 6 | eqtr4id 2784 | . . 3 ⊢ (𝑅 ∈ RingOps → 〈𝐺, 𝐻〉 = 𝑅) |
| 8 | id 22 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝑅 ∈ RingOps) | |
| 9 | 7, 8 | eqeltrd 2829 | . 2 ⊢ (𝑅 ∈ RingOps → 〈𝐺, 𝐻〉 ∈ RingOps) |
| 10 | 2 | fvexi 6879 | . . 3 ⊢ 𝐻 ∈ V |
| 11 | ringi.3 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 12 | 11 | isrngo 37888 | . . 3 ⊢ (𝐻 ∈ V → (〈𝐺, 𝐻〉 ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))) |
| 13 | 10, 12 | ax-mp 5 | . 2 ⊢ (〈𝐺, 𝐻〉 ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))) |
| 14 | 9, 13 | sylib 218 | 1 ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∃wrex 3055 Vcvv 3455 〈cop 4603 × cxp 5644 ran crn 5647 Rel wrel 5651 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 2nd c2nd 7976 AbelOpcablo 30480 RingOpscrngo 37885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-ov 7397 df-1st 7977 df-2nd 7978 df-rngo 37886 |
| This theorem is referenced by: rngosm 37891 rngoid 37893 rngoideu 37894 rngodi 37895 rngodir 37896 rngoass 37897 rngoablo 37899 rngorn1eq 37925 rngomndo 37926 |
| Copyright terms: Public domain | W3C validator |