Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoablo2 Structured version   Visualization version   GIF version

Theorem rngoablo2 37896
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Assertion
Ref Expression
rngoablo2 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)

Proof of Theorem rngoablo2
StepHypRef Expression
1 df-br 5149 . . 3 (𝐺RingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps)
2 relrngo 37883 . . . . 5 Rel RingOps
32brrelex12i 5744 . . . 4 (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V))
4 op1stg 8025 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
53, 4syl 17 . . 3 (𝐺RingOps𝐻 → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
61, 5sylbir 235 . 2 (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
7 eqid 2735 . . 3 (1st ‘⟨𝐺, 𝐻⟩) = (1st ‘⟨𝐺, 𝐻⟩)
87rngoablo 37895 . 2 (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) ∈ AbelOp)
96, 8eqeltrrd 2840 1 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cop 4637   class class class wbr 5148  cfv 6563  1st c1st 8011  AbelOpcablo 30573  RingOpscrngo 37881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-1st 8013  df-2nd 8014  df-rngo 37882
This theorem is referenced by:  isdivrngo  37937
  Copyright terms: Public domain W3C validator