![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoablo2 | Structured version Visualization version GIF version |
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngoablo2 | ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5142 | . . 3 ⊢ (𝐺RingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps) | |
2 | relrngo 37398 | . . . . 5 ⊢ Rel RingOps | |
3 | 2 | brrelex12i 5725 | . . . 4 ⊢ (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
4 | op1stg 8001 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐺RingOps𝐻 → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) |
6 | 1, 5 | sylbir 234 | . 2 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) |
7 | eqid 2725 | . . 3 ⊢ (1st ‘⟨𝐺, 𝐻⟩) = (1st ‘⟨𝐺, 𝐻⟩) | |
8 | 7 | rngoablo 37410 | . 2 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) ∈ AbelOp) |
9 | 6, 8 | eqeltrrd 2826 | 1 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⟨cop 4628 class class class wbr 5141 ‘cfv 6541 1st c1st 7987 AbelOpcablo 30370 RingOpscrngo 37396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7417 df-1st 7989 df-2nd 7990 df-rngo 37397 |
This theorem is referenced by: isdivrngo 37452 |
Copyright terms: Public domain | W3C validator |