![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoablo2 | Structured version Visualization version GIF version |
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngoablo2 | ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5107 | . . 3 ⊢ (𝐺RingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps) | |
2 | relrngo 36401 | . . . . 5 ⊢ Rel RingOps | |
3 | 2 | brrelex12i 5688 | . . . 4 ⊢ (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
4 | op1stg 7934 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐺RingOps𝐻 → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) |
6 | 1, 5 | sylbir 234 | . 2 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) |
7 | eqid 2733 | . . 3 ⊢ (1st ‘⟨𝐺, 𝐻⟩) = (1st ‘⟨𝐺, 𝐻⟩) | |
8 | 7 | rngoablo 36413 | . 2 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) ∈ AbelOp) |
9 | 6, 8 | eqeltrrd 2835 | 1 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ⟨cop 4593 class class class wbr 5106 ‘cfv 6497 1st c1st 7920 AbelOpcablo 29528 RingOpscrngo 36399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-ov 7361 df-1st 7922 df-2nd 7923 df-rngo 36400 |
This theorem is referenced by: isdivrngo 36455 |
Copyright terms: Public domain | W3C validator |