| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoablo2 | Structured version Visualization version GIF version | ||
| Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngoablo2 | ⊢ (〈𝐺, 𝐻〉 ∈ RingOps → 𝐺 ∈ AbelOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . . 3 ⊢ (𝐺RingOps𝐻 ↔ 〈𝐺, 𝐻〉 ∈ RingOps) | |
| 2 | relrngo 37890 | . . . . 5 ⊢ Rel RingOps | |
| 3 | 2 | brrelex12i 5693 | . . . 4 ⊢ (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
| 4 | op1stg 7980 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘〈𝐺, 𝐻〉) = 𝐺) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐺RingOps𝐻 → (1st ‘〈𝐺, 𝐻〉) = 𝐺) |
| 6 | 1, 5 | sylbir 235 | . 2 ⊢ (〈𝐺, 𝐻〉 ∈ RingOps → (1st ‘〈𝐺, 𝐻〉) = 𝐺) |
| 7 | eqid 2729 | . . 3 ⊢ (1st ‘〈𝐺, 𝐻〉) = (1st ‘〈𝐺, 𝐻〉) | |
| 8 | 7 | rngoablo 37902 | . 2 ⊢ (〈𝐺, 𝐻〉 ∈ RingOps → (1st ‘〈𝐺, 𝐻〉) ∈ AbelOp) |
| 9 | 6, 8 | eqeltrrd 2829 | 1 ⊢ (〈𝐺, 𝐻〉 ∈ RingOps → 𝐺 ∈ AbelOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 ‘cfv 6511 1st c1st 7966 AbelOpcablo 30473 RingOpscrngo 37888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-1st 7968 df-2nd 7969 df-rngo 37889 |
| This theorem is referenced by: isdivrngo 37944 |
| Copyright terms: Public domain | W3C validator |