Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoablo2 | Structured version Visualization version GIF version |
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngoablo2 | ⊢ (〈𝐺, 𝐻〉 ∈ RingOps → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5075 | . . 3 ⊢ (𝐺RingOps𝐻 ↔ 〈𝐺, 𝐻〉 ∈ RingOps) | |
2 | relrngo 36054 | . . . . 5 ⊢ Rel RingOps | |
3 | 2 | brrelex12i 5642 | . . . 4 ⊢ (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
4 | op1stg 7843 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘〈𝐺, 𝐻〉) = 𝐺) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐺RingOps𝐻 → (1st ‘〈𝐺, 𝐻〉) = 𝐺) |
6 | 1, 5 | sylbir 234 | . 2 ⊢ (〈𝐺, 𝐻〉 ∈ RingOps → (1st ‘〈𝐺, 𝐻〉) = 𝐺) |
7 | eqid 2738 | . . 3 ⊢ (1st ‘〈𝐺, 𝐻〉) = (1st ‘〈𝐺, 𝐻〉) | |
8 | 7 | rngoablo 36066 | . 2 ⊢ (〈𝐺, 𝐻〉 ∈ RingOps → (1st ‘〈𝐺, 𝐻〉) ∈ AbelOp) |
9 | 6, 8 | eqeltrrd 2840 | 1 ⊢ (〈𝐺, 𝐻〉 ∈ RingOps → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 class class class wbr 5074 ‘cfv 6433 1st c1st 7829 AbelOpcablo 28906 RingOpscrngo 36052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-1st 7831 df-2nd 7832 df-rngo 36053 |
This theorem is referenced by: isdivrngo 36108 |
Copyright terms: Public domain | W3C validator |