Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoablo2 Structured version   Visualization version   GIF version

Theorem rngoablo2 37903
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Assertion
Ref Expression
rngoablo2 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)

Proof of Theorem rngoablo2
StepHypRef Expression
1 df-br 5108 . . 3 (𝐺RingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps)
2 relrngo 37890 . . . . 5 Rel RingOps
32brrelex12i 5693 . . . 4 (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V))
4 op1stg 7980 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
53, 4syl 17 . . 3 (𝐺RingOps𝐻 → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
61, 5sylbir 235 . 2 (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
7 eqid 2729 . . 3 (1st ‘⟨𝐺, 𝐻⟩) = (1st ‘⟨𝐺, 𝐻⟩)
87rngoablo 37902 . 2 (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) ∈ AbelOp)
96, 8eqeltrrd 2829 1 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595   class class class wbr 5107  cfv 6511  1st c1st 7966  AbelOpcablo 30473  RingOpscrngo 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-1st 7968  df-2nd 7969  df-rngo 37889
This theorem is referenced by:  isdivrngo  37944
  Copyright terms: Public domain W3C validator