Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoablo2 Structured version   Visualization version   GIF version

Theorem rngoablo2 37411
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Assertion
Ref Expression
rngoablo2 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)

Proof of Theorem rngoablo2
StepHypRef Expression
1 df-br 5142 . . 3 (𝐺RingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps)
2 relrngo 37398 . . . . 5 Rel RingOps
32brrelex12i 5725 . . . 4 (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V))
4 op1stg 8001 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
53, 4syl 17 . . 3 (𝐺RingOps𝐻 → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
61, 5sylbir 234 . 2 (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
7 eqid 2725 . . 3 (1st ‘⟨𝐺, 𝐻⟩) = (1st ‘⟨𝐺, 𝐻⟩)
87rngoablo 37410 . 2 (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) ∈ AbelOp)
96, 8eqeltrrd 2826 1 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  cop 4628   class class class wbr 5141  cfv 6541  1st c1st 7987  AbelOpcablo 30370  RingOpscrngo 37396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7417  df-1st 7989  df-2nd 7990  df-rngo 37397
This theorem is referenced by:  isdivrngo  37452
  Copyright terms: Public domain W3C validator