![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoablo2 | Structured version Visualization version GIF version |
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngoablo2 | ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5148 | . . 3 ⊢ (𝐺RingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps) | |
2 | relrngo 36752 | . . . . 5 ⊢ Rel RingOps | |
3 | 2 | brrelex12i 5729 | . . . 4 ⊢ (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V)) |
4 | op1stg 7983 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐺RingOps𝐻 → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) |
6 | 1, 5 | sylbir 234 | . 2 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺) |
7 | eqid 2732 | . . 3 ⊢ (1st ‘⟨𝐺, 𝐻⟩) = (1st ‘⟨𝐺, 𝐻⟩) | |
8 | 7 | rngoablo 36764 | . 2 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) ∈ AbelOp) |
9 | 6, 8 | eqeltrrd 2834 | 1 ⊢ (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 class class class wbr 5147 ‘cfv 6540 1st c1st 7969 AbelOpcablo 29784 RingOpscrngo 36750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-1st 7971 df-2nd 7972 df-rngo 36751 |
This theorem is referenced by: isdivrngo 36806 |
Copyright terms: Public domain | W3C validator |