Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoablo2 Structured version   Visualization version   GIF version

Theorem rngoablo2 36067
Description: In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Assertion
Ref Expression
rngoablo2 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)

Proof of Theorem rngoablo2
StepHypRef Expression
1 df-br 5075 . . 3 (𝐺RingOps𝐻 ↔ ⟨𝐺, 𝐻⟩ ∈ RingOps)
2 relrngo 36054 . . . . 5 Rel RingOps
32brrelex12i 5642 . . . 4 (𝐺RingOps𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V))
4 op1stg 7843 . . . 4 ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
53, 4syl 17 . . 3 (𝐺RingOps𝐻 → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
61, 5sylbir 234 . 2 (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) = 𝐺)
7 eqid 2738 . . 3 (1st ‘⟨𝐺, 𝐻⟩) = (1st ‘⟨𝐺, 𝐻⟩)
87rngoablo 36066 . 2 (⟨𝐺, 𝐻⟩ ∈ RingOps → (1st ‘⟨𝐺, 𝐻⟩) ∈ AbelOp)
96, 8eqeltrrd 2840 1 (⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   class class class wbr 5074  cfv 6433  1st c1st 7829  AbelOpcablo 28906  RingOpscrngo 36052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-1st 7831  df-2nd 7832  df-rngo 36053
This theorem is referenced by:  isdivrngo  36108
  Copyright terms: Public domain W3C validator