| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relsucmap | Structured version Visualization version GIF version | ||
| Description: The successor map is a relation. (Contributed by Peter Mazsa, 7-Jan-2026.) |
| Ref | Expression |
|---|---|
| relsucmap | ⊢ Rel SucMap |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sucmap 38485 | . 2 ⊢ SucMap = {〈𝑚, 𝑛〉 ∣ suc 𝑚 = 𝑛} | |
| 2 | 1 | relopabi 5761 | 1 ⊢ Rel SucMap |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Rel wrel 5619 suc csuc 6308 SucMap csucmap 38227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 df-sucmap 38485 |
| This theorem is referenced by: dfpre4 38503 presuc 38520 |
| Copyright terms: Public domain | W3C validator |