Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relsucmap Structured version   Visualization version   GIF version

Theorem relsucmap 38490
Description: The successor map is a relation. (Contributed by Peter Mazsa, 7-Jan-2026.)
Assertion
Ref Expression
relsucmap Rel SucMap

Proof of Theorem relsucmap
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sucmap 38485 . 2 SucMap = {⟨𝑚, 𝑛⟩ ∣ suc 𝑚 = 𝑛}
21relopabi 5761 1 Rel SucMap
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Rel wrel 5619  suc csuc 6308   SucMap csucmap 38227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-xp 5620  df-rel 5621  df-sucmap 38485
This theorem is referenced by:  dfpre4  38503  presuc  38520
  Copyright terms: Public domain W3C validator