| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfpre4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the predecessor of the 𝑁 set. The ◡ SucMap is just the "PreMap"; we did not define it because we do not expect to use it extensively in future (cf. the comments of df-sucmap 38485). (Contributed by Peter Mazsa, 26-Jan-2026.) |
| Ref | Expression |
|---|---|
| dfpre4 | ⊢ (𝑁 ∈ 𝑉 → pre 𝑁 = (℩𝑚𝑚 ∈ [𝑁]◡ SucMap )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pre 38498 | . 2 ⊢ pre 𝑁 = (℩𝑚𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁)) | |
| 2 | dfpred4 38502 | . . . . 5 ⊢ (𝑁 ∈ 𝑉 → Pred( SucMap , dom SucMap , 𝑁) = [𝑁]◡( SucMap ↾ dom SucMap )) | |
| 3 | relsucmap 38490 | . . . . . . . 8 ⊢ Rel SucMap | |
| 4 | dfrel5 38388 | . . . . . . . 8 ⊢ (Rel SucMap ↔ ( SucMap ↾ dom SucMap ) = SucMap ) | |
| 5 | 3, 4 | mpbi 230 | . . . . . . 7 ⊢ ( SucMap ↾ dom SucMap ) = SucMap |
| 6 | 5 | cnveqi 5813 | . . . . . 6 ⊢ ◡( SucMap ↾ dom SucMap ) = ◡ SucMap |
| 7 | 6 | eceq2i 8664 | . . . . 5 ⊢ [𝑁]◡( SucMap ↾ dom SucMap ) = [𝑁]◡ SucMap |
| 8 | 2, 7 | eqtrdi 2782 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → Pred( SucMap , dom SucMap , 𝑁) = [𝑁]◡ SucMap ) |
| 9 | 8 | eleq2d 2817 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁) ↔ 𝑚 ∈ [𝑁]◡ SucMap )) |
| 10 | 9 | iotabidv 6465 | . 2 ⊢ (𝑁 ∈ 𝑉 → (℩𝑚𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁)) = (℩𝑚𝑚 ∈ [𝑁]◡ SucMap )) |
| 11 | 1, 10 | eqtrid 2778 | 1 ⊢ (𝑁 ∈ 𝑉 → pre 𝑁 = (℩𝑚𝑚 ∈ [𝑁]◡ SucMap )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ◡ccnv 5613 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 Predcpred 6247 ℩cio 6435 [cec 8620 SucMap csucmap 38227 pre cpre 38229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-ec 8624 df-sucmap 38485 df-pre 38498 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |