Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfpre4 Structured version   Visualization version   GIF version

Theorem dfpre4 38503
Description: Alternate definition of the predecessor of the 𝑁 set. The SucMap is just the "PreMap"; we did not define it because we do not expect to use it extensively in future (cf. the comments of df-sucmap 38485). (Contributed by Peter Mazsa, 26-Jan-2026.)
Assertion
Ref Expression
dfpre4 (𝑁𝑉 → pre 𝑁 = (℩𝑚𝑚 ∈ [𝑁] SucMap ))
Distinct variable groups:   𝑚,𝑁   𝑚,𝑉

Proof of Theorem dfpre4
StepHypRef Expression
1 df-pre 38498 . 2 pre 𝑁 = (℩𝑚𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁))
2 dfpred4 38502 . . . . 5 (𝑁𝑉 → Pred( SucMap , dom SucMap , 𝑁) = [𝑁]( SucMap ↾ dom SucMap ))
3 relsucmap 38490 . . . . . . . 8 Rel SucMap
4 dfrel5 38388 . . . . . . . 8 (Rel SucMap ↔ ( SucMap ↾ dom SucMap ) = SucMap )
53, 4mpbi 230 . . . . . . 7 ( SucMap ↾ dom SucMap ) = SucMap
65cnveqi 5813 . . . . . 6 ( SucMap ↾ dom SucMap ) = SucMap
76eceq2i 8664 . . . . 5 [𝑁]( SucMap ↾ dom SucMap ) = [𝑁] SucMap
82, 7eqtrdi 2782 . . . 4 (𝑁𝑉 → Pred( SucMap , dom SucMap , 𝑁) = [𝑁] SucMap )
98eleq2d 2817 . . 3 (𝑁𝑉 → (𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁) ↔ 𝑚 ∈ [𝑁] SucMap ))
109iotabidv 6465 . 2 (𝑁𝑉 → (℩𝑚𝑚 ∈ Pred( SucMap , dom SucMap , 𝑁)) = (℩𝑚𝑚 ∈ [𝑁] SucMap ))
111, 10eqtrid 2778 1 (𝑁𝑉 → pre 𝑁 = (℩𝑚𝑚 ∈ [𝑁] SucMap ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ccnv 5613  dom cdm 5614  cres 5616  Rel wrel 5619  Predcpred 6247  cio 6435  [cec 8620   SucMap csucmap 38227   pre cpre 38229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-ec 8624  df-sucmap 38485  df-pre 38498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator