Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  presuc Structured version   Visualization version   GIF version

Theorem presuc 38520
Description: pre is a left-inverse of suc. This theorem gives a clean rewrite rule that eliminates pre on explicit successors. (Contributed by Peter Mazsa, 12-Jan-2026.)
Assertion
Ref Expression
presuc (𝑀𝑉 → pre suc 𝑀 = 𝑀)

Proof of Theorem presuc
StepHypRef Expression
1 sucmapsuc 38511 . . 3 (𝑀𝑉𝑀 SucMap suc 𝑀)
2 relsucmap 38490 . . . . 5 Rel SucMap
32relelrni 5888 . . . 4 (𝑀 SucMap suc 𝑀 → suc 𝑀 ∈ ran SucMap )
4 df-succl 38492 . . . 4 Suc = ran SucMap
53, 4eleqtrrdi 2842 . . 3 (𝑀 SucMap suc 𝑀 → suc 𝑀 ∈ Suc )
6 sucpre 38519 . . 3 (suc 𝑀 ∈ Suc → suc pre suc 𝑀 = suc 𝑀)
71, 5, 63syl 18 . 2 (𝑀𝑉 → suc pre suc 𝑀 = suc 𝑀)
8 suc11reg 9509 . 2 (suc pre suc 𝑀 = suc 𝑀 ↔ pre suc 𝑀 = 𝑀)
97, 8sylib 218 1 (𝑀𝑉 → pre suc 𝑀 = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5089  ran crn 5615  suc csuc 6308   SucMap csucmap 38227   Suc csuccl 38228   pre cpre 38229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-eprel 5514  df-fr 5567  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-suc 6312  df-iota 6437  df-sucmap 38485  df-succl 38492  df-pre 38498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator