MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsq2reu Structured version   Visualization version   GIF version

Theorem addsq2reu 26493
Description: For each complex number 𝐶, there exists a unique complex number 𝑎 added to the square of a unique another complex number 𝑏 resulting in the given complex number 𝐶. The unique complex number 𝑎 is 𝐶, and the unique another complex number 𝑏 is 0.

Remark: This, together with addsqnreup 26496, is an example showing that the pattern ∃!𝑎𝐴∃!𝑏𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑). See also comments for df-eu 2569 and 2eu4 2656. For more details see comment for addsqnreup 26496. (Contributed by AV, 21-Jun-2023.)

Assertion
Ref Expression
addsq2reu (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsq2reu
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
2 oveq1 7262 . . . . . . 7 (𝑎 = 𝐶 → (𝑎 + (𝑏↑2)) = (𝐶 + (𝑏↑2)))
32eqeq1d 2740 . . . . . 6 (𝑎 = 𝐶 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝐶 + (𝑏↑2)) = 𝐶))
43reubidv 3315 . . . . 5 (𝑎 = 𝐶 → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶))
5 eqeq1 2742 . . . . . . 7 (𝑎 = 𝐶 → (𝑎 = 𝑐𝐶 = 𝑐))
65imbi2d 340 . . . . . 6 (𝑎 = 𝐶 → ((∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐) ↔ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
76ralbidv 3120 . . . . 5 (𝑎 = 𝐶 → (∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐) ↔ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
84, 7anbi12d 630 . . . 4 (𝑎 = 𝐶 → ((∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)) ↔ (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))))
98adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑎 = 𝐶) → ((∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)) ↔ (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))))
10 0cnd 10899 . . . . . 6 (𝐶 ∈ ℂ → 0 ∈ ℂ)
11 reueq 3667 . . . . . 6 (0 ∈ ℂ ↔ ∃!𝑏 ∈ ℂ 𝑏 = 0)
1210, 11sylib 217 . . . . 5 (𝐶 ∈ ℂ → ∃!𝑏 ∈ ℂ 𝑏 = 0)
13 subid 11170 . . . . . . . . 9 (𝐶 ∈ ℂ → (𝐶𝐶) = 0)
1413adantr 480 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶𝐶) = 0)
1514eqeq1d 2740 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶𝐶) = (𝑏↑2) ↔ 0 = (𝑏↑2)))
16 simpl 482 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
17 simpr 484 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
1817sqcld 13790 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
1916, 16, 18subaddd 11280 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶𝐶) = (𝑏↑2) ↔ (𝐶 + (𝑏↑2)) = 𝐶))
20 eqcom 2745 . . . . . . . . 9 (0 = (𝑏↑2) ↔ (𝑏↑2) = 0)
21 sqeq0 13768 . . . . . . . . 9 (𝑏 ∈ ℂ → ((𝑏↑2) = 0 ↔ 𝑏 = 0))
2220, 21syl5bb 282 . . . . . . . 8 (𝑏 ∈ ℂ → (0 = (𝑏↑2) ↔ 𝑏 = 0))
2322adantl 481 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (0 = (𝑏↑2) ↔ 𝑏 = 0))
2415, 19, 233bitr3d 308 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 + (𝑏↑2)) = 𝐶𝑏 = 0))
2524reubidva 3314 . . . . 5 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 𝑏 = 0))
2612, 25mpbird 256 . . . 4 (𝐶 ∈ ℂ → ∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶)
27 simpr 484 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → 𝑐 ∈ ℂ)
2827adantr 480 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → 𝑐 ∈ ℂ)
29 sqcl 13766 . . . . . . . . 9 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
3029adantl 481 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
31 simpl 482 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → 𝐶 ∈ ℂ)
3231adantr 480 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
3328, 30, 32addrsub 11322 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → ((𝑐 + (𝑏↑2)) = 𝐶 ↔ (𝑏↑2) = (𝐶𝑐)))
3433reubidva 3314 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐)))
35 subcl 11150 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝐶𝑐) ∈ ℂ)
36 reusq0 15102 . . . . . . . 8 ((𝐶𝑐) ∈ ℂ → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) ↔ (𝐶𝑐) = 0))
3735, 36syl 17 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) ↔ (𝐶𝑐) = 0))
38 subeq0 11177 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐶𝑐) = 0 ↔ 𝐶 = 𝑐))
3938biimpd 228 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐶𝑐) = 0 → 𝐶 = 𝑐))
4037, 39sylbid 239 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) → 𝐶 = 𝑐))
4134, 40sylbid 239 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))
4241ralrimiva 3107 . . . 4 (𝐶 ∈ ℂ → ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))
4326, 42jca 511 . . 3 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
441, 9, 43rspcedvd 3555 . 2 (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)))
45 oveq1 7262 . . . . 5 (𝑎 = 𝑐 → (𝑎 + (𝑏↑2)) = (𝑐 + (𝑏↑2)))
4645eqeq1d 2740 . . . 4 (𝑎 = 𝑐 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑐 + (𝑏↑2)) = 𝐶))
4746reubidv 3315 . . 3 (𝑎 = 𝑐 → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶))
4847reu8 3663 . 2 (∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑎 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)))
4944, 48sylibr 233 1 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  (class class class)co 7255  cc 10800  0cc0 10802   + caddc 10805  cmin 11135  2c2 11958  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator