MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsq2reu Structured version   Visualization version   GIF version

Theorem addsq2reu 26788
Description: For each complex number 𝐶, there exists a unique complex number 𝑎 added to the square of a unique another complex number 𝑏 resulting in the given complex number 𝐶. The unique complex number 𝑎 is 𝐶, and the unique another complex number 𝑏 is 0.

Remark: This, together with addsqnreup 26791, is an example showing that the pattern ∃!𝑎𝐴∃!𝑏𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑). See also comments for df-eu 2567 and 2eu4 2654. For more details see comment for addsqnreup 26791. (Contributed by AV, 21-Jun-2023.)

Assertion
Ref Expression
addsq2reu (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsq2reu
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
2 oveq1 7364 . . . . . . 7 (𝑎 = 𝐶 → (𝑎 + (𝑏↑2)) = (𝐶 + (𝑏↑2)))
32eqeq1d 2738 . . . . . 6 (𝑎 = 𝐶 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝐶 + (𝑏↑2)) = 𝐶))
43reubidv 3371 . . . . 5 (𝑎 = 𝐶 → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶))
5 eqeq1 2740 . . . . . . 7 (𝑎 = 𝐶 → (𝑎 = 𝑐𝐶 = 𝑐))
65imbi2d 340 . . . . . 6 (𝑎 = 𝐶 → ((∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐) ↔ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
76ralbidv 3174 . . . . 5 (𝑎 = 𝐶 → (∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐) ↔ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
84, 7anbi12d 631 . . . 4 (𝑎 = 𝐶 → ((∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)) ↔ (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))))
98adantl 482 . . 3 ((𝐶 ∈ ℂ ∧ 𝑎 = 𝐶) → ((∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)) ↔ (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))))
10 0cnd 11148 . . . . . 6 (𝐶 ∈ ℂ → 0 ∈ ℂ)
11 reueq 3695 . . . . . 6 (0 ∈ ℂ ↔ ∃!𝑏 ∈ ℂ 𝑏 = 0)
1210, 11sylib 217 . . . . 5 (𝐶 ∈ ℂ → ∃!𝑏 ∈ ℂ 𝑏 = 0)
13 subid 11420 . . . . . . . . 9 (𝐶 ∈ ℂ → (𝐶𝐶) = 0)
1413adantr 481 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶𝐶) = 0)
1514eqeq1d 2738 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶𝐶) = (𝑏↑2) ↔ 0 = (𝑏↑2)))
16 simpl 483 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
17 simpr 485 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
1817sqcld 14049 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
1916, 16, 18subaddd 11530 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶𝐶) = (𝑏↑2) ↔ (𝐶 + (𝑏↑2)) = 𝐶))
20 eqcom 2743 . . . . . . . . 9 (0 = (𝑏↑2) ↔ (𝑏↑2) = 0)
21 sqeq0 14025 . . . . . . . . 9 (𝑏 ∈ ℂ → ((𝑏↑2) = 0 ↔ 𝑏 = 0))
2220, 21bitrid 282 . . . . . . . 8 (𝑏 ∈ ℂ → (0 = (𝑏↑2) ↔ 𝑏 = 0))
2322adantl 482 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (0 = (𝑏↑2) ↔ 𝑏 = 0))
2415, 19, 233bitr3d 308 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 + (𝑏↑2)) = 𝐶𝑏 = 0))
2524reubidva 3369 . . . . 5 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 𝑏 = 0))
2612, 25mpbird 256 . . . 4 (𝐶 ∈ ℂ → ∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶)
27 simpr 485 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → 𝑐 ∈ ℂ)
2827adantr 481 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → 𝑐 ∈ ℂ)
29 sqcl 14023 . . . . . . . . 9 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
3029adantl 482 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
31 simpl 483 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → 𝐶 ∈ ℂ)
3231adantr 481 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
3328, 30, 32addrsub 11572 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → ((𝑐 + (𝑏↑2)) = 𝐶 ↔ (𝑏↑2) = (𝐶𝑐)))
3433reubidva 3369 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐)))
35 subcl 11400 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝐶𝑐) ∈ ℂ)
36 reusq0 15347 . . . . . . . 8 ((𝐶𝑐) ∈ ℂ → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) ↔ (𝐶𝑐) = 0))
3735, 36syl 17 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) ↔ (𝐶𝑐) = 0))
38 subeq0 11427 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐶𝑐) = 0 ↔ 𝐶 = 𝑐))
3938biimpd 228 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐶𝑐) = 0 → 𝐶 = 𝑐))
4037, 39sylbid 239 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) → 𝐶 = 𝑐))
4134, 40sylbid 239 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))
4241ralrimiva 3143 . . . 4 (𝐶 ∈ ℂ → ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))
4326, 42jca 512 . . 3 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
441, 9, 43rspcedvd 3583 . 2 (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)))
45 oveq1 7364 . . . . 5 (𝑎 = 𝑐 → (𝑎 + (𝑏↑2)) = (𝑐 + (𝑏↑2)))
4645eqeq1d 2738 . . . 4 (𝑎 = 𝑐 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑐 + (𝑏↑2)) = 𝐶))
4746reubidv 3371 . . 3 (𝑎 = 𝑐 → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶))
4847reu8 3691 . 2 (∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑎 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)))
4944, 48sylibr 233 1 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  ∃!wreu 3351  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054  cmin 11385  2c2 12208  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator