Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . 3
⊢ (𝐶 ∈ ℂ → 𝐶 ∈
ℂ) |
2 | | oveq1 7163 |
. . . . . . 7
⊢ (𝑎 = 𝐶 → (𝑎 + (𝑏↑2)) = (𝐶 + (𝑏↑2))) |
3 | 2 | eqeq1d 2760 |
. . . . . 6
⊢ (𝑎 = 𝐶 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝐶 + (𝑏↑2)) = 𝐶)) |
4 | 3 | reubidv 3307 |
. . . . 5
⊢ (𝑎 = 𝐶 → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶)) |
5 | | eqeq1 2762 |
. . . . . . 7
⊢ (𝑎 = 𝐶 → (𝑎 = 𝑐 ↔ 𝐶 = 𝑐)) |
6 | 5 | imbi2d 344 |
. . . . . 6
⊢ (𝑎 = 𝐶 → ((∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝑎 = 𝑐) ↔ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝐶 = 𝑐))) |
7 | 6 | ralbidv 3126 |
. . . . 5
⊢ (𝑎 = 𝐶 → (∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝐶 = 𝑐))) |
8 | 4, 7 | anbi12d 633 |
. . . 4
⊢ (𝑎 = 𝐶 → ((∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝑎 = 𝑐)) ↔ (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝐶 = 𝑐)))) |
9 | 8 | adantl 485 |
. . 3
⊢ ((𝐶 ∈ ℂ ∧ 𝑎 = 𝐶) → ((∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝑎 = 𝑐)) ↔ (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝐶 = 𝑐)))) |
10 | | 0cnd 10685 |
. . . . . 6
⊢ (𝐶 ∈ ℂ → 0 ∈
ℂ) |
11 | | reueq 3653 |
. . . . . 6
⊢ (0 ∈
ℂ ↔ ∃!𝑏
∈ ℂ 𝑏 =
0) |
12 | 10, 11 | sylib 221 |
. . . . 5
⊢ (𝐶 ∈ ℂ →
∃!𝑏 ∈ ℂ
𝑏 = 0) |
13 | | subid 10956 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℂ → (𝐶 − 𝐶) = 0) |
14 | 13 | adantr 484 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶 − 𝐶) = 0) |
15 | 14 | eqeq1d 2760 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − 𝐶) = (𝑏↑2) ↔ 0 = (𝑏↑2))) |
16 | | simpl 486 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈
ℂ) |
17 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝑏 ∈
ℂ) |
18 | 17 | sqcld 13571 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈
ℂ) |
19 | 16, 16, 18 | subaddd 11066 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 − 𝐶) = (𝑏↑2) ↔ (𝐶 + (𝑏↑2)) = 𝐶)) |
20 | | eqcom 2765 |
. . . . . . . . 9
⊢ (0 =
(𝑏↑2) ↔ (𝑏↑2) = 0) |
21 | | sqeq0 13549 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℂ → ((𝑏↑2) = 0 ↔ 𝑏 = 0)) |
22 | 20, 21 | syl5bb 286 |
. . . . . . . 8
⊢ (𝑏 ∈ ℂ → (0 =
(𝑏↑2) ↔ 𝑏 = 0)) |
23 | 22 | adantl 485 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (0 =
(𝑏↑2) ↔ 𝑏 = 0)) |
24 | 15, 19, 23 | 3bitr3d 312 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 + (𝑏↑2)) = 𝐶 ↔ 𝑏 = 0)) |
25 | 24 | reubidva 3306 |
. . . . 5
⊢ (𝐶 ∈ ℂ →
(∃!𝑏 ∈ ℂ
(𝐶 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 𝑏 = 0)) |
26 | 12, 25 | mpbird 260 |
. . . 4
⊢ (𝐶 ∈ ℂ →
∃!𝑏 ∈ ℂ
(𝐶 + (𝑏↑2)) = 𝐶) |
27 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → 𝑐 ∈
ℂ) |
28 | 27 | adantr 484 |
. . . . . . . 8
⊢ (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → 𝑐 ∈
ℂ) |
29 | | sqcl 13547 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℂ → (𝑏↑2) ∈
ℂ) |
30 | 29 | adantl 485 |
. . . . . . . 8
⊢ (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈
ℂ) |
31 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → 𝐶 ∈
ℂ) |
32 | 31 | adantr 484 |
. . . . . . . 8
⊢ (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → 𝐶 ∈
ℂ) |
33 | 28, 30, 32 | addrsub 11108 |
. . . . . . 7
⊢ (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → ((𝑐 + (𝑏↑2)) = 𝐶 ↔ (𝑏↑2) = (𝐶 − 𝑐))) |
34 | 33 | reubidva 3306 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) →
(∃!𝑏 ∈ ℂ
(𝑐 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶 − 𝑐))) |
35 | | subcl 10936 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝐶 − 𝑐) ∈ ℂ) |
36 | | reusq0 14883 |
. . . . . . . 8
⊢ ((𝐶 − 𝑐) ∈ ℂ → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶 − 𝑐) ↔ (𝐶 − 𝑐) = 0)) |
37 | 35, 36 | syl 17 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) →
(∃!𝑏 ∈ ℂ
(𝑏↑2) = (𝐶 − 𝑐) ↔ (𝐶 − 𝑐) = 0)) |
38 | | subeq0 10963 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐶 − 𝑐) = 0 ↔ 𝐶 = 𝑐)) |
39 | 38 | biimpd 232 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐶 − 𝑐) = 0 → 𝐶 = 𝑐)) |
40 | 37, 39 | sylbid 243 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) →
(∃!𝑏 ∈ ℂ
(𝑏↑2) = (𝐶 − 𝑐) → 𝐶 = 𝑐)) |
41 | 34, 40 | sylbid 243 |
. . . . 5
⊢ ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) →
(∃!𝑏 ∈ ℂ
(𝑐 + (𝑏↑2)) = 𝐶 → 𝐶 = 𝑐)) |
42 | 41 | ralrimiva 3113 |
. . . 4
⊢ (𝐶 ∈ ℂ →
∀𝑐 ∈ ℂ
(∃!𝑏 ∈ ℂ
(𝑐 + (𝑏↑2)) = 𝐶 → 𝐶 = 𝑐)) |
43 | 26, 42 | jca 515 |
. . 3
⊢ (𝐶 ∈ ℂ →
(∃!𝑏 ∈ ℂ
(𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝐶 = 𝑐))) |
44 | 1, 9, 43 | rspcedvd 3546 |
. 2
⊢ (𝐶 ∈ ℂ →
∃𝑎 ∈ ℂ
(∃!𝑏 ∈ ℂ
(𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝑎 = 𝑐))) |
45 | | oveq1 7163 |
. . . . 5
⊢ (𝑎 = 𝑐 → (𝑎 + (𝑏↑2)) = (𝑐 + (𝑏↑2))) |
46 | 45 | eqeq1d 2760 |
. . . 4
⊢ (𝑎 = 𝑐 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑐 + (𝑏↑2)) = 𝐶)) |
47 | 46 | reubidv 3307 |
. . 3
⊢ (𝑎 = 𝑐 → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶)) |
48 | 47 | reu8 3649 |
. 2
⊢
(∃!𝑎 ∈
ℂ ∃!𝑏 ∈
ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑎 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 → 𝑎 = 𝑐))) |
49 | 44, 48 | sylibr 237 |
1
⊢ (𝐶 ∈ ℂ →
∃!𝑎 ∈ ℂ
∃!𝑏 ∈ ℂ
(𝑎 + (𝑏↑2)) = 𝐶) |