MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsq2reu Structured version   Visualization version   GIF version

Theorem addsq2reu 27379
Description: For each complex number 𝐶, there exists a unique complex number 𝑎 added to the square of a unique another complex number 𝑏 resulting in the given complex number 𝐶. The unique complex number 𝑎 is 𝐶, and the unique another complex number 𝑏 is 0.

Remark: This, together with addsqnreup 27382, is an example showing that the pattern ∃!𝑎𝐴∃!𝑏𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑). See also comments for df-eu 2564 and 2eu4 2650. For more details see comment for addsqnreup 27382. (Contributed by AV, 21-Jun-2023.)

Assertion
Ref Expression
addsq2reu (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑎,𝑏

Proof of Theorem addsq2reu
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
2 oveq1 7353 . . . . . . 7 (𝑎 = 𝐶 → (𝑎 + (𝑏↑2)) = (𝐶 + (𝑏↑2)))
32eqeq1d 2733 . . . . . 6 (𝑎 = 𝐶 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝐶 + (𝑏↑2)) = 𝐶))
43reubidv 3362 . . . . 5 (𝑎 = 𝐶 → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶))
5 eqeq1 2735 . . . . . . 7 (𝑎 = 𝐶 → (𝑎 = 𝑐𝐶 = 𝑐))
65imbi2d 340 . . . . . 6 (𝑎 = 𝐶 → ((∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐) ↔ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
76ralbidv 3155 . . . . 5 (𝑎 = 𝐶 → (∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐) ↔ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
84, 7anbi12d 632 . . . 4 (𝑎 = 𝐶 → ((∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)) ↔ (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))))
98adantl 481 . . 3 ((𝐶 ∈ ℂ ∧ 𝑎 = 𝐶) → ((∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)) ↔ (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))))
10 0cnd 11105 . . . . . 6 (𝐶 ∈ ℂ → 0 ∈ ℂ)
11 reueq 3696 . . . . . 6 (0 ∈ ℂ ↔ ∃!𝑏 ∈ ℂ 𝑏 = 0)
1210, 11sylib 218 . . . . 5 (𝐶 ∈ ℂ → ∃!𝑏 ∈ ℂ 𝑏 = 0)
13 subid 11380 . . . . . . . . 9 (𝐶 ∈ ℂ → (𝐶𝐶) = 0)
1413adantr 480 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝐶𝐶) = 0)
1514eqeq1d 2733 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶𝐶) = (𝑏↑2) ↔ 0 = (𝑏↑2)))
16 simpl 482 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
17 simpr 484 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
1817sqcld 14051 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
1916, 16, 18subaddd 11490 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶𝐶) = (𝑏↑2) ↔ (𝐶 + (𝑏↑2)) = 𝐶))
20 eqcom 2738 . . . . . . . . 9 (0 = (𝑏↑2) ↔ (𝑏↑2) = 0)
21 sqeq0 14027 . . . . . . . . 9 (𝑏 ∈ ℂ → ((𝑏↑2) = 0 ↔ 𝑏 = 0))
2220, 21bitrid 283 . . . . . . . 8 (𝑏 ∈ ℂ → (0 = (𝑏↑2) ↔ 𝑏 = 0))
2322adantl 481 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (0 = (𝑏↑2) ↔ 𝑏 = 0))
2415, 19, 233bitr3d 309 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑏 ∈ ℂ) → ((𝐶 + (𝑏↑2)) = 𝐶𝑏 = 0))
2524reubidva 3360 . . . . 5 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ 𝑏 = 0))
2612, 25mpbird 257 . . . 4 (𝐶 ∈ ℂ → ∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶)
27 simpr 484 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → 𝑐 ∈ ℂ)
2827adantr 480 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → 𝑐 ∈ ℂ)
29 sqcl 14025 . . . . . . . . 9 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
3029adantl 481 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
31 simpl 482 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → 𝐶 ∈ ℂ)
3231adantr 480 . . . . . . . 8 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → 𝐶 ∈ ℂ)
3328, 30, 32addrsub 11534 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑏 ∈ ℂ) → ((𝑐 + (𝑏↑2)) = 𝐶 ↔ (𝑏↑2) = (𝐶𝑐)))
3433reubidva 3360 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐)))
35 subcl 11359 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝐶𝑐) ∈ ℂ)
36 reusq0 15372 . . . . . . . 8 ((𝐶𝑐) ∈ ℂ → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) ↔ (𝐶𝑐) = 0))
3735, 36syl 17 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) ↔ (𝐶𝑐) = 0))
38 subeq0 11387 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐶𝑐) = 0 ↔ 𝐶 = 𝑐))
3938biimpd 229 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐶𝑐) = 0 → 𝐶 = 𝑐))
4037, 39sylbid 240 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑏↑2) = (𝐶𝑐) → 𝐶 = 𝑐))
4134, 40sylbid 240 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))
4241ralrimiva 3124 . . . 4 (𝐶 ∈ ℂ → ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐))
4326, 42jca 511 . . 3 (𝐶 ∈ ℂ → (∃!𝑏 ∈ ℂ (𝐶 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝐶 = 𝑐)))
441, 9, 43rspcedvd 3579 . 2 (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)))
45 oveq1 7353 . . . . 5 (𝑎 = 𝑐 → (𝑎 + (𝑏↑2)) = (𝑐 + (𝑏↑2)))
4645eqeq1d 2733 . . . 4 (𝑎 = 𝑐 → ((𝑎 + (𝑏↑2)) = 𝐶 ↔ (𝑐 + (𝑏↑2)) = 𝐶))
4746reubidv 3362 . . 3 (𝑎 = 𝑐 → (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶))
4847reu8 3692 . 2 (∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ↔ ∃𝑎 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∀𝑐 ∈ ℂ (∃!𝑏 ∈ ℂ (𝑐 + (𝑏↑2)) = 𝐶𝑎 = 𝑐)))
4944, 48sylibr 234 1 (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  (class class class)co 7346  cc 11004  0cc0 11006   + caddc 11009  cmin 11344  2c2 12180  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator