MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshftf1o Structured version   Visualization version   GIF version

Theorem icoshftf1o 12852
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
Assertion
Ref Expression
icoshftf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icoshftf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icoshft 12851 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,)𝐵) → (𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
21ralrimiv 3148 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
3 readdcl 10609 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
433adant2 1128 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
5 readdcl 10609 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
653adant1 1127 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
7 renegcl 10938 . . . . . . . . 9 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
873ad2ant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐶 ∈ ℝ)
9 icoshft 12851 . . . . . . . 8 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ ∧ -𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
104, 6, 8, 9syl3anc 1368 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
1110imp 410 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)))
126rexrd 10680 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ*)
13 icossre 12806 . . . . . . . . . 10 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
144, 12, 13syl2anc 587 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
1514sselda 3915 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℝ)
1615recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℂ)
17 simpl3 1190 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℝ)
1817recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℂ)
1916, 18negsubd 10992 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) = (𝑦𝐶))
204recnd 10658 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℂ)
21 simp3 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
2221recnd 10658 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
2320, 22negsubd 10992 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = ((𝐴 + 𝐶) − 𝐶))
24 simp1 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
2524recnd 10658 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
2625, 22pncand 10987 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) − 𝐶) = 𝐴)
2723, 26eqtrd 2833 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = 𝐴)
286recnd 10658 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℂ)
2928, 22negsubd 10992 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = ((𝐵 + 𝐶) − 𝐶))
30 simp2 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3130recnd 10658 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
3231, 22pncand 10987 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) − 𝐶) = 𝐵)
3329, 32eqtrd 2833 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = 𝐵)
3427, 33oveq12d 7153 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3534adantr 484 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3611, 19, 353eltr3d 2904 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦𝐶) ∈ (𝐴[,)𝐵))
37 reueq 3676 . . . . 5 ((𝑦𝐶) ∈ (𝐴[,)𝐵) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3836, 37sylib 221 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3915adantr 484 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℝ)
4039recnd 10658 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℂ)
41 simpll3 1211 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4241recnd 10658 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℂ)
43 simpl1 1188 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐴 ∈ ℝ)
44 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ)
4544rexrd 10680 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ*)
46 icossre 12806 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
4743, 45, 46syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝐴[,)𝐵) ⊆ ℝ)
4847sselda 3915 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
4948recnd 10658 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℂ)
5040, 42, 49subadd2d 11005 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ((𝑦𝐶) = 𝑥 ↔ (𝑥 + 𝐶) = 𝑦))
51 eqcom 2805 . . . . . 6 (𝑥 = (𝑦𝐶) ↔ (𝑦𝐶) = 𝑥)
52 eqcom 2805 . . . . . 6 (𝑦 = (𝑥 + 𝐶) ↔ (𝑥 + 𝐶) = 𝑦)
5350, 51, 523bitr4g 317 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 = (𝑦𝐶) ↔ 𝑦 = (𝑥 + 𝐶)))
5453reubidva 3341 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
5538, 54mpbid 235 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
5655ralrimiva 3149 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
57 icoshftf1o.1 . . 3 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
5857f1ompt 6852 . 2 (𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ (∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ∧ ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
592, 56, 58sylanbrc 586 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  ∃!wreu 3108  wss 3881  cmpt 5110  1-1-ontowf1o 6323  (class class class)co 7135  cr 10525   + caddc 10529  *cxr 10663  cmin 10859  -cneg 10860  [,)cico 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-ico 12732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator