MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshftf1o Structured version   Visualization version   GIF version

Theorem icoshftf1o 13411
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
Assertion
Ref Expression
icoshftf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icoshftf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icoshft 13410 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,)𝐵) → (𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
21ralrimiv 3124 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
3 readdcl 11127 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
433adant2 1131 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
5 readdcl 11127 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
653adant1 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
7 renegcl 11461 . . . . . . . . 9 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
873ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐶 ∈ ℝ)
9 icoshft 13410 . . . . . . . 8 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ ∧ -𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
104, 6, 8, 9syl3anc 1373 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
1110imp 406 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)))
126rexrd 11200 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ*)
13 icossre 13365 . . . . . . . . . 10 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
144, 12, 13syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
1514sselda 3943 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℝ)
1615recnd 11178 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℂ)
17 simpl3 1194 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℝ)
1817recnd 11178 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℂ)
1916, 18negsubd 11515 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) = (𝑦𝐶))
204recnd 11178 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℂ)
21 simp3 1138 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
2221recnd 11178 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
2320, 22negsubd 11515 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = ((𝐴 + 𝐶) − 𝐶))
24 simp1 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
2524recnd 11178 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
2625, 22pncand 11510 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) − 𝐶) = 𝐴)
2723, 26eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = 𝐴)
286recnd 11178 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℂ)
2928, 22negsubd 11515 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = ((𝐵 + 𝐶) − 𝐶))
30 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3130recnd 11178 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
3231, 22pncand 11510 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) − 𝐶) = 𝐵)
3329, 32eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = 𝐵)
3427, 33oveq12d 7387 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3534adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3611, 19, 353eltr3d 2842 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦𝐶) ∈ (𝐴[,)𝐵))
37 reueq 3705 . . . . 5 ((𝑦𝐶) ∈ (𝐴[,)𝐵) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3836, 37sylib 218 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3915adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℝ)
4039recnd 11178 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℂ)
41 simpll3 1215 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4241recnd 11178 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℂ)
43 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐴 ∈ ℝ)
44 simpl2 1193 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ)
4544rexrd 11200 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ*)
46 icossre 13365 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
4743, 45, 46syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝐴[,)𝐵) ⊆ ℝ)
4847sselda 3943 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
4948recnd 11178 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℂ)
5040, 42, 49subadd2d 11528 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ((𝑦𝐶) = 𝑥 ↔ (𝑥 + 𝐶) = 𝑦))
51 eqcom 2736 . . . . . 6 (𝑥 = (𝑦𝐶) ↔ (𝑦𝐶) = 𝑥)
52 eqcom 2736 . . . . . 6 (𝑦 = (𝑥 + 𝐶) ↔ (𝑥 + 𝐶) = 𝑦)
5350, 51, 523bitr4g 314 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 = (𝑦𝐶) ↔ 𝑦 = (𝑥 + 𝐶)))
5453reubidva 3367 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
5538, 54mpbid 232 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
5655ralrimiva 3125 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
57 icoshftf1o.1 . . 3 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
5857f1ompt 7065 . 2 (𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ (∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ∧ ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
592, 56, 58sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3349  wss 3911  cmpt 5183  1-1-ontowf1o 6498  (class class class)co 7369  cr 11043   + caddc 11047  *cxr 11183  cmin 11381  -cneg 11382  [,)cico 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-ico 13288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator