MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshftf1o Structured version   Visualization version   GIF version

Theorem icoshftf1o 13511
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
Assertion
Ref Expression
icoshftf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icoshftf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icoshft 13510 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,)𝐵) → (𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
21ralrimiv 3143 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
3 readdcl 11236 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
433adant2 1130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
5 readdcl 11236 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
653adant1 1129 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
7 renegcl 11570 . . . . . . . . 9 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
873ad2ant3 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐶 ∈ ℝ)
9 icoshft 13510 . . . . . . . 8 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ ∧ -𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
104, 6, 8, 9syl3anc 1370 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
1110imp 406 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)))
126rexrd 11309 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ*)
13 icossre 13465 . . . . . . . . . 10 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
144, 12, 13syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
1514sselda 3995 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℝ)
1615recnd 11287 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℂ)
17 simpl3 1192 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℝ)
1817recnd 11287 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℂ)
1916, 18negsubd 11624 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) = (𝑦𝐶))
204recnd 11287 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℂ)
21 simp3 1137 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
2221recnd 11287 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
2320, 22negsubd 11624 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = ((𝐴 + 𝐶) − 𝐶))
24 simp1 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
2524recnd 11287 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
2625, 22pncand 11619 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) − 𝐶) = 𝐴)
2723, 26eqtrd 2775 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = 𝐴)
286recnd 11287 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℂ)
2928, 22negsubd 11624 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = ((𝐵 + 𝐶) − 𝐶))
30 simp2 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3130recnd 11287 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
3231, 22pncand 11619 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) − 𝐶) = 𝐵)
3329, 32eqtrd 2775 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = 𝐵)
3427, 33oveq12d 7449 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3534adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3611, 19, 353eltr3d 2853 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦𝐶) ∈ (𝐴[,)𝐵))
37 reueq 3746 . . . . 5 ((𝑦𝐶) ∈ (𝐴[,)𝐵) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3836, 37sylib 218 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3915adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℝ)
4039recnd 11287 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℂ)
41 simpll3 1213 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4241recnd 11287 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℂ)
43 simpl1 1190 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐴 ∈ ℝ)
44 simpl2 1191 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ)
4544rexrd 11309 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ*)
46 icossre 13465 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
4743, 45, 46syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝐴[,)𝐵) ⊆ ℝ)
4847sselda 3995 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
4948recnd 11287 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℂ)
5040, 42, 49subadd2d 11637 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ((𝑦𝐶) = 𝑥 ↔ (𝑥 + 𝐶) = 𝑦))
51 eqcom 2742 . . . . . 6 (𝑥 = (𝑦𝐶) ↔ (𝑦𝐶) = 𝑥)
52 eqcom 2742 . . . . . 6 (𝑦 = (𝑥 + 𝐶) ↔ (𝑥 + 𝐶) = 𝑦)
5350, 51, 523bitr4g 314 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 = (𝑦𝐶) ↔ 𝑦 = (𝑥 + 𝐶)))
5453reubidva 3394 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
5538, 54mpbid 232 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
5655ralrimiva 3144 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
57 icoshftf1o.1 . . 3 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
5857f1ompt 7131 . 2 (𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ (∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ∧ ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
592, 56, 58sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  ∃!wreu 3376  wss 3963  cmpt 5231  1-1-ontowf1o 6562  (class class class)co 7431  cr 11152   + caddc 11156  *cxr 11292  cmin 11490  -cneg 11491  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-ico 13390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator