MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshftf1o Structured version   Visualization version   GIF version

Theorem icoshftf1o 13188
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
Assertion
Ref Expression
icoshftf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icoshftf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icoshft 13187 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,)𝐵) → (𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
21ralrimiv 3108 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
3 readdcl 10938 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
433adant2 1129 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
5 readdcl 10938 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
653adant1 1128 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
7 renegcl 11267 . . . . . . . . 9 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
873ad2ant3 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐶 ∈ ℝ)
9 icoshft 13187 . . . . . . . 8 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ ∧ -𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
104, 6, 8, 9syl3anc 1369 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
1110imp 406 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)))
126rexrd 11009 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ*)
13 icossre 13142 . . . . . . . . . 10 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
144, 12, 13syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
1514sselda 3925 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℝ)
1615recnd 10987 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℂ)
17 simpl3 1191 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℝ)
1817recnd 10987 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℂ)
1916, 18negsubd 11321 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) = (𝑦𝐶))
204recnd 10987 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℂ)
21 simp3 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
2221recnd 10987 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
2320, 22negsubd 11321 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = ((𝐴 + 𝐶) − 𝐶))
24 simp1 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
2524recnd 10987 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
2625, 22pncand 11316 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) − 𝐶) = 𝐴)
2723, 26eqtrd 2779 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = 𝐴)
286recnd 10987 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℂ)
2928, 22negsubd 11321 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = ((𝐵 + 𝐶) − 𝐶))
30 simp2 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3130recnd 10987 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
3231, 22pncand 11316 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) − 𝐶) = 𝐵)
3329, 32eqtrd 2779 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = 𝐵)
3427, 33oveq12d 7286 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3534adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3611, 19, 353eltr3d 2854 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦𝐶) ∈ (𝐴[,)𝐵))
37 reueq 3675 . . . . 5 ((𝑦𝐶) ∈ (𝐴[,)𝐵) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3836, 37sylib 217 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3915adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℝ)
4039recnd 10987 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℂ)
41 simpll3 1212 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4241recnd 10987 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℂ)
43 simpl1 1189 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐴 ∈ ℝ)
44 simpl2 1190 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ)
4544rexrd 11009 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ*)
46 icossre 13142 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
4743, 45, 46syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝐴[,)𝐵) ⊆ ℝ)
4847sselda 3925 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
4948recnd 10987 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℂ)
5040, 42, 49subadd2d 11334 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ((𝑦𝐶) = 𝑥 ↔ (𝑥 + 𝐶) = 𝑦))
51 eqcom 2746 . . . . . 6 (𝑥 = (𝑦𝐶) ↔ (𝑦𝐶) = 𝑥)
52 eqcom 2746 . . . . . 6 (𝑦 = (𝑥 + 𝐶) ↔ (𝑥 + 𝐶) = 𝑦)
5350, 51, 523bitr4g 313 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 = (𝑦𝐶) ↔ 𝑦 = (𝑥 + 𝐶)))
5453reubidva 3320 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
5538, 54mpbid 231 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
5655ralrimiva 3109 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
57 icoshftf1o.1 . . 3 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
5857f1ompt 6979 . 2 (𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ (∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ∧ ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
592, 56, 58sylanbrc 582 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  ∃!wreu 3067  wss 3891  cmpt 5161  1-1-ontowf1o 6429  (class class class)co 7268  cr 10854   + caddc 10858  *cxr 10992  cmin 11188  -cneg 11189  [,)cico 13063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-ico 13067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator