Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatfv Structured version   Visualization version   GIF version

Theorem tfsconcatfv 43303
Description: The value of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatfv ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝑋,𝑑,𝑥,𝑦,𝑧   + ,𝑑
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)   𝑋(𝑎,𝑏)

Proof of Theorem tfsconcatfv
StepHypRef Expression
1 tfsconcat.op . . . . 5 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatfv1 43301 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴𝑋))
32adantlr 714 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴𝑋))
4 simpr 484 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → 𝑋𝐶)
54iftrued 4556 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐴𝑋))
63, 5eqtr4d 2783 . 2 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
7 simpr 484 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ¬ 𝑋𝐶)
87iffalsed 4559 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
9 simpll 766 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)))
10 onss 7820 . . . . . . . 8 (𝐷 ∈ On → 𝐷 ⊆ On)
1110adantl 481 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ⊆ On)
1211ad3antlr 730 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝐷 ⊆ On)
13 simpllr 775 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
14 simplrl 776 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝐶 ∈ On)
15 oacl 8591 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
1615adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On)
17 onelon 6420 . . . . . . . . . 10 (((𝐶 +o 𝐷) ∈ On ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On)
1816, 17sylan 579 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On)
19 ontri1 6429 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋 ↔ ¬ 𝑋𝐶))
2014, 18, 19syl2anc 583 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶𝑋 ↔ ¬ 𝑋𝐶))
2120biimpar 477 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝐶𝑋)
22 simplr 768 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝑋 ∈ (𝐶 +o 𝐷))
23 oawordex2 43288 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑋𝑋 ∈ (𝐶 +o 𝐷))) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2413, 21, 22, 23syl12anc 836 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2514, 18jca 511 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶 ∈ On ∧ 𝑋 ∈ On))
26 oawordeu 8611 . . . . . . 7 (((𝐶 ∈ On ∧ 𝑋 ∈ On) ∧ 𝐶𝑋) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋)
2725, 21, 26syl2an2r 684 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋)
28 reuss 4346 . . . . . 6 ((𝐷 ⊆ On ∧ ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋 ∧ ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) → ∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2912, 24, 27, 28syl3anc 1371 . . . . 5 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
30 riotacl 7422 . . . . 5 (∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋 → (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷)
3129, 30syl 17 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷)
321tfsconcatfv2 43302 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
339, 31, 32syl2anc 583 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
34 riotasbc 7423 . . . . . 6 (∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋[(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋)
3529, 34syl 17 . . . . 5 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → [(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋)
36 sbceq1g 4440 . . . . . . 7 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = 𝑋))
37 csbov2g 7496 . . . . . . . . 9 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑))
38 csbvarg 4457 . . . . . . . . . 10 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑 = (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))
3938oveq2d 7464 . . . . . . . . 9 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
4037, 39eqtrd 2780 . . . . . . . 8 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
4140eqeq1d 2742 . . . . . . 7 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋))
4236, 41bitrd 279 . . . . . 6 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋))
4342biimpa 476 . . . . 5 (((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷[(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)
4431, 35, 43syl2anc 583 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)
4544fveq2d 6924 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = ((𝐴 + 𝐵)‘𝑋))
468, 33, 453eqtr2rd 2787 . 2 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
476, 46pm2.61dan 812 1 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  ∃!wreu 3386  Vcvv 3488  [wsbc 3804  csb 3921  cdif 3973  cun 3974  wss 3976  ifcif 4548  {copab 5228  dom cdm 5700  Oncon0 6395   Fn wfn 6568  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator