Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatfv Structured version   Visualization version   GIF version

Theorem tfsconcatfv 42394
Description: The value of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatfv ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝑋,𝑑,𝑥,𝑦,𝑧   + ,𝑑
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)   𝑋(𝑎,𝑏)

Proof of Theorem tfsconcatfv
StepHypRef Expression
1 tfsconcat.op . . . . 5 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatfv1 42392 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴𝑋))
32adantlr 712 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴𝑋))
4 simpr 484 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → 𝑋𝐶)
54iftrued 4536 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐴𝑋))
63, 5eqtr4d 2774 . 2 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
7 simpr 484 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ¬ 𝑋𝐶)
87iffalsed 4539 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
9 simpll 764 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)))
10 onss 7776 . . . . . . . 8 (𝐷 ∈ On → 𝐷 ⊆ On)
1110adantl 481 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ⊆ On)
1211ad3antlr 728 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝐷 ⊆ On)
13 simpllr 773 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
14 simplrl 774 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝐶 ∈ On)
15 oacl 8539 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
1615adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On)
17 onelon 6389 . . . . . . . . . 10 (((𝐶 +o 𝐷) ∈ On ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On)
1816, 17sylan 579 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On)
19 ontri1 6398 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋 ↔ ¬ 𝑋𝐶))
2014, 18, 19syl2anc 583 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶𝑋 ↔ ¬ 𝑋𝐶))
2120biimpar 477 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝐶𝑋)
22 simplr 766 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝑋 ∈ (𝐶 +o 𝐷))
23 oawordex2 42379 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑋𝑋 ∈ (𝐶 +o 𝐷))) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2413, 21, 22, 23syl12anc 834 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2514, 18jca 511 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶 ∈ On ∧ 𝑋 ∈ On))
26 oawordeu 8559 . . . . . . 7 (((𝐶 ∈ On ∧ 𝑋 ∈ On) ∧ 𝐶𝑋) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋)
2725, 21, 26syl2an2r 682 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋)
28 reuss 4316 . . . . . 6 ((𝐷 ⊆ On ∧ ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋 ∧ ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) → ∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2912, 24, 27, 28syl3anc 1370 . . . . 5 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
30 riotacl 7386 . . . . 5 (∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋 → (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷)
3129, 30syl 17 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷)
321tfsconcatfv2 42393 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
339, 31, 32syl2anc 583 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
34 riotasbc 7387 . . . . . 6 (∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋[(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋)
3529, 34syl 17 . . . . 5 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → [(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋)
36 sbceq1g 4414 . . . . . . 7 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = 𝑋))
37 csbov2g 7458 . . . . . . . . 9 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑))
38 csbvarg 4431 . . . . . . . . . 10 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑 = (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))
3938oveq2d 7428 . . . . . . . . 9 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
4037, 39eqtrd 2771 . . . . . . . 8 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
4140eqeq1d 2733 . . . . . . 7 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋))
4236, 41bitrd 279 . . . . . 6 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋))
4342biimpa 476 . . . . 5 (((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷[(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)
4431, 35, 43syl2anc 583 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)
4544fveq2d 6895 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = ((𝐴 + 𝐵)‘𝑋))
468, 33, 453eqtr2rd 2778 . 2 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
476, 46pm2.61dan 810 1 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wrex 3069  ∃!wreu 3373  Vcvv 3473  [wsbc 3777  csb 3893  cdif 3945  cun 3946  wss 3948  ifcif 4528  {copab 5210  dom cdm 5676  Oncon0 6364   Fn wfn 6538  cfv 6543  crio 7367  (class class class)co 7412  cmpo 7414   +o coa 8467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-oadd 8474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator