Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatfv Structured version   Visualization version   GIF version

Theorem tfsconcatfv 43323
Description: The value of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatfv ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝑋,𝑑,𝑥,𝑦,𝑧   + ,𝑑
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)   𝑋(𝑎,𝑏)

Proof of Theorem tfsconcatfv
StepHypRef Expression
1 tfsconcat.op . . . . 5 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatfv1 43321 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴𝑋))
32adantlr 715 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴𝑋))
4 simpr 484 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → 𝑋𝐶)
54iftrued 4498 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐴𝑋))
63, 5eqtr4d 2768 . 2 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
7 simpr 484 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ¬ 𝑋𝐶)
87iffalsed 4501 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
9 simpll 766 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)))
10 onss 7763 . . . . . . . 8 (𝐷 ∈ On → 𝐷 ⊆ On)
1110adantl 481 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ⊆ On)
1211ad3antlr 731 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝐷 ⊆ On)
13 simpllr 775 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
14 simplrl 776 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝐶 ∈ On)
15 oacl 8501 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
1615adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On)
17 onelon 6359 . . . . . . . . . 10 (((𝐶 +o 𝐷) ∈ On ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On)
1816, 17sylan 580 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On)
19 ontri1 6368 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋 ↔ ¬ 𝑋𝐶))
2014, 18, 19syl2anc 584 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶𝑋 ↔ ¬ 𝑋𝐶))
2120biimpar 477 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝐶𝑋)
22 simplr 768 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝑋 ∈ (𝐶 +o 𝐷))
23 oawordex2 43308 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑋𝑋 ∈ (𝐶 +o 𝐷))) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2413, 21, 22, 23syl12anc 836 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2514, 18jca 511 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶 ∈ On ∧ 𝑋 ∈ On))
26 oawordeu 8521 . . . . . . 7 (((𝐶 ∈ On ∧ 𝑋 ∈ On) ∧ 𝐶𝑋) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋)
2725, 21, 26syl2an2r 685 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋)
28 reuss 4292 . . . . . 6 ((𝐷 ⊆ On ∧ ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋 ∧ ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) → ∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2912, 24, 27, 28syl3anc 1373 . . . . 5 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
30 riotacl 7363 . . . . 5 (∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋 → (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷)
3129, 30syl 17 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷)
321tfsconcatfv2 43322 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
339, 31, 32syl2anc 584 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
34 riotasbc 7364 . . . . . 6 (∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋[(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋)
3529, 34syl 17 . . . . 5 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → [(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋)
36 sbceq1g 4382 . . . . . . 7 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = 𝑋))
37 csbov2g 7437 . . . . . . . . 9 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑))
38 csbvarg 4399 . . . . . . . . . 10 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑 = (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))
3938oveq2d 7405 . . . . . . . . 9 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
4037, 39eqtrd 2765 . . . . . . . 8 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
4140eqeq1d 2732 . . . . . . 7 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋))
4236, 41bitrd 279 . . . . . 6 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋))
4342biimpa 476 . . . . 5 (((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷[(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)
4431, 35, 43syl2anc 584 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)
4544fveq2d 6864 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = ((𝐴 + 𝐵)‘𝑋))
468, 33, 453eqtr2rd 2772 . 2 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
476, 46pm2.61dan 812 1 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  ∃!wreu 3354  Vcvv 3450  [wsbc 3755  csb 3864  cdif 3913  cun 3914  wss 3916  ifcif 4490  {copab 5171  dom cdm 5640  Oncon0 6334   Fn wfn 6508  cfv 6513  crio 7345  (class class class)co 7389  cmpo 7391   +o coa 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-oadd 8440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator