Step | Hyp | Ref
| Expression |
1 | | tfsconcat.op |
. . . . 5
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
2 | 1 | tfsconcatfv1 42392 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴‘𝑋)) |
3 | 2 | adantlr 712 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴‘𝑋)) |
4 | | simpr 484 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) |
5 | 4 | iftrued 4536 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋 ∈ 𝐶) → if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐴‘𝑋)) |
6 | 3, 5 | eqtr4d 2774 |
. 2
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) |
7 | | simpr 484 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ¬ 𝑋 ∈ 𝐶) |
8 | 7 | iffalsed 4539 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
9 | | simpll 764 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On))) |
10 | | onss 7776 |
. . . . . . . 8
⊢ (𝐷 ∈ On → 𝐷 ⊆ On) |
11 | 10 | adantl 481 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ⊆ On) |
12 | 11 | ad3antlr 728 |
. . . . . 6
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → 𝐷 ⊆ On) |
13 | | simpllr 773 |
. . . . . . 7
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
14 | | simplrl 774 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝐶 ∈ On) |
15 | | oacl 8539 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On) |
16 | 15 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On) |
17 | | onelon 6389 |
. . . . . . . . . 10
⊢ (((𝐶 +o 𝐷) ∈ On ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On) |
18 | 16, 17 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On) |
19 | | ontri1 6398 |
. . . . . . . . 9
⊢ ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝐶)) |
20 | 14, 18, 19 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝐶)) |
21 | 20 | biimpar 477 |
. . . . . . 7
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → 𝐶 ⊆ 𝑋) |
22 | | simplr 766 |
. . . . . . 7
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → 𝑋 ∈ (𝐶 +o 𝐷)) |
23 | | oawordex2 42379 |
. . . . . . 7
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶 ⊆ 𝑋 ∧ 𝑋 ∈ (𝐶 +o 𝐷))) → ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) |
24 | 13, 21, 22, 23 | syl12anc 834 |
. . . . . 6
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) |
25 | 14, 18 | jca 511 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶 ∈ On ∧ 𝑋 ∈ On)) |
26 | | oawordeu 8559 |
. . . . . . 7
⊢ (((𝐶 ∈ On ∧ 𝑋 ∈ On) ∧ 𝐶 ⊆ 𝑋) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) |
27 | 25, 21, 26 | syl2an2r 682 |
. . . . . 6
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) |
28 | | reuss 4316 |
. . . . . 6
⊢ ((𝐷 ⊆ On ∧ ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋 ∧ ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) → ∃!𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) |
29 | 12, 24, 27, 28 | syl3anc 1370 |
. . . . 5
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ∃!𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) |
30 | | riotacl 7386 |
. . . . 5
⊢
(∃!𝑑 ∈
𝐷 (𝐶 +o 𝑑) = 𝑋 → (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) |
31 | 29, 30 | syl 17 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) |
32 | 1 | tfsconcatfv2 42393 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
33 | 9, 31, 32 | syl2anc 583 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
34 | | riotasbc 7387 |
. . . . . 6
⊢
(∃!𝑑 ∈
𝐷 (𝐶 +o 𝑑) = 𝑋 → [(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) |
35 | 29, 34 | syl 17 |
. . . . 5
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → [(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) |
36 | | sbceq1g 4414 |
. . . . . . 7
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋 ↔ ⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌(𝐶 +o 𝑑) = 𝑋)) |
37 | | csbov2g 7458 |
. . . . . . . . 9
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌(𝐶 +o 𝑑) = (𝐶 +o
⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌𝑑)) |
38 | | csbvarg 4431 |
. . . . . . . . . 10
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌𝑑 = (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) |
39 | 38 | oveq2d 7428 |
. . . . . . . . 9
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → (𝐶 +o
⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌𝑑) = (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
40 | 37, 39 | eqtrd 2771 |
. . . . . . . 8
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌(𝐶 +o 𝑑) = (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
41 | 40 | eqeq1d 2733 |
. . . . . . 7
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → (⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌(𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)) |
42 | 36, 41 | bitrd 279 |
. . . . . 6
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)) |
43 | 42 | biimpa 476 |
. . . . 5
⊢
(((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 ∧ [(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) → (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋) |
44 | 31, 35, 43 | syl2anc 583 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋) |
45 | 44 | fveq2d 6895 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = ((𝐴 + 𝐵)‘𝑋)) |
46 | 8, 33, 45 | 3eqtr2rd 2778 |
. 2
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) |
47 | 6, 46 | pm2.61dan 810 |
1
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) |