Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatfv Structured version   Visualization version   GIF version

Theorem tfsconcatfv 43290
Description: The value of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatfv ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑑,𝑥,𝑦,𝑧   𝑋,𝑑,𝑥,𝑦,𝑧   + ,𝑑
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)   𝑋(𝑎,𝑏)

Proof of Theorem tfsconcatfv
StepHypRef Expression
1 tfsconcat.op . . . . 5 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatfv1 43288 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴𝑋))
32adantlr 715 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴𝑋))
4 simpr 484 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → 𝑋𝐶)
54iftrued 4506 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐴𝑋))
63, 5eqtr4d 2772 . 2 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
7 simpr 484 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ¬ 𝑋𝐶)
87iffalsed 4509 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
9 simpll 766 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)))
10 onss 7773 . . . . . . . 8 (𝐷 ∈ On → 𝐷 ⊆ On)
1110adantl 481 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ⊆ On)
1211ad3antlr 731 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝐷 ⊆ On)
13 simpllr 775 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
14 simplrl 776 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝐶 ∈ On)
15 oacl 8541 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
1615adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On)
17 onelon 6374 . . . . . . . . . 10 (((𝐶 +o 𝐷) ∈ On ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On)
1816, 17sylan 580 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On)
19 ontri1 6383 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋 ↔ ¬ 𝑋𝐶))
2014, 18, 19syl2anc 584 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶𝑋 ↔ ¬ 𝑋𝐶))
2120biimpar 477 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝐶𝑋)
22 simplr 768 . . . . . . 7 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → 𝑋 ∈ (𝐶 +o 𝐷))
23 oawordex2 43275 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑋𝑋 ∈ (𝐶 +o 𝐷))) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2413, 21, 22, 23syl12anc 836 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2514, 18jca 511 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶 ∈ On ∧ 𝑋 ∈ On))
26 oawordeu 8561 . . . . . . 7 (((𝐶 ∈ On ∧ 𝑋 ∈ On) ∧ 𝐶𝑋) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋)
2725, 21, 26syl2an2r 685 . . . . . 6 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋)
28 reuss 4300 . . . . . 6 ((𝐷 ⊆ On ∧ ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑋 ∧ ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) → ∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
2912, 24, 27, 28syl3anc 1372 . . . . 5 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)
30 riotacl 7373 . . . . 5 (∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋 → (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷)
3129, 30syl 17 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷)
321tfsconcatfv2 43289 . . . 4 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
339, 31, 32syl2anc 584 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
34 riotasbc 7374 . . . . . 6 (∃!𝑑𝐷 (𝐶 +o 𝑑) = 𝑋[(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋)
3529, 34syl 17 . . . . 5 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → [(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋)
36 sbceq1g 4390 . . . . . . 7 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = 𝑋))
37 csbov2g 7447 . . . . . . . . 9 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑))
38 csbvarg 4407 . . . . . . . . . 10 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑 = (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))
3938oveq2d 7415 . . . . . . . . 9 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
4037, 39eqtrd 2769 . . . . . . . 8 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)))
4140eqeq1d 2736 . . . . . . 7 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑(𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋))
4236, 41bitrd 279 . . . . . 6 ((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋))
4342biimpa 476 . . . . 5 (((𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷[(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)
4431, 35, 43syl2anc 584 . . . 4 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → (𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)
4544fveq2d 6876 . . 3 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))) = ((𝐴 + 𝐵)‘𝑋))
468, 33, 453eqtr2rd 2776 . 2 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
476, 46pm2.61dan 812 1 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋𝐶, (𝐴𝑋), (𝐵‘(𝑑𝐷 (𝐶 +o 𝑑) = 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  ∃!wreu 3355  Vcvv 3457  [wsbc 3763  csb 3872  cdif 3921  cun 3922  wss 3924  ifcif 4498  {copab 5178  dom cdm 5651  Oncon0 6349   Fn wfn 6522  cfv 6527  crio 7355  (class class class)co 7399  cmpo 7401   +o coa 8471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-oadd 8478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator