Proof of Theorem tfsconcatfv
| Step | Hyp | Ref
| Expression |
| 1 | | tfsconcat.op |
. . . . 5
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
| 2 | 1 | tfsconcatfv1 43352 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴‘𝑋)) |
| 3 | 2 | adantlr 715 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴‘𝑋)) |
| 4 | | simpr 484 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝐶) |
| 5 | 4 | iftrued 4533 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋 ∈ 𝐶) → if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐴‘𝑋)) |
| 6 | 3, 5 | eqtr4d 2780 |
. 2
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) |
| 7 | | simpr 484 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ¬ 𝑋 ∈ 𝐶) |
| 8 | 7 | iffalsed 4536 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
| 9 | | simpll 767 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On))) |
| 10 | | onss 7805 |
. . . . . . . 8
⊢ (𝐷 ∈ On → 𝐷 ⊆ On) |
| 11 | 10 | adantl 481 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐷 ⊆ On) |
| 12 | 11 | ad3antlr 731 |
. . . . . 6
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → 𝐷 ⊆ On) |
| 13 | | simpllr 776 |
. . . . . . 7
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
| 14 | | simplrl 777 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝐶 ∈ On) |
| 15 | | oacl 8573 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On) |
| 16 | 15 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 +o 𝐷) ∈ On) |
| 17 | | onelon 6409 |
. . . . . . . . . 10
⊢ (((𝐶 +o 𝐷) ∈ On ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On) |
| 18 | 16, 17 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → 𝑋 ∈ On) |
| 19 | | ontri1 6418 |
. . . . . . . . 9
⊢ ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝐶)) |
| 20 | 14, 18, 19 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝐶)) |
| 21 | 20 | biimpar 477 |
. . . . . . 7
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → 𝐶 ⊆ 𝑋) |
| 22 | | simplr 769 |
. . . . . . 7
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → 𝑋 ∈ (𝐶 +o 𝐷)) |
| 23 | | oawordex2 43339 |
. . . . . . 7
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶 ⊆ 𝑋 ∧ 𝑋 ∈ (𝐶 +o 𝐷))) → ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) |
| 24 | 13, 21, 22, 23 | syl12anc 837 |
. . . . . 6
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) |
| 25 | 14, 18 | jca 511 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → (𝐶 ∈ On ∧ 𝑋 ∈ On)) |
| 26 | | oawordeu 8593 |
. . . . . . 7
⊢ (((𝐶 ∈ On ∧ 𝑋 ∈ On) ∧ 𝐶 ⊆ 𝑋) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) |
| 27 | 25, 21, 26 | syl2an2r 685 |
. . . . . 6
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) |
| 28 | | reuss 4327 |
. . . . . 6
⊢ ((𝐷 ⊆ On ∧ ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋 ∧ ∃!𝑑 ∈ On (𝐶 +o 𝑑) = 𝑋) → ∃!𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) |
| 29 | 12, 24, 27, 28 | syl3anc 1373 |
. . . . 5
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ∃!𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) |
| 30 | | riotacl 7405 |
. . . . 5
⊢
(∃!𝑑 ∈
𝐷 (𝐶 +o 𝑑) = 𝑋 → (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) |
| 31 | 29, 30 | syl 17 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) |
| 32 | 1 | tfsconcatfv2 43353 |
. . . 4
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
| 33 | 9, 31, 32 | syl2anc 584 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
| 34 | | riotasbc 7406 |
. . . . . 6
⊢
(∃!𝑑 ∈
𝐷 (𝐶 +o 𝑑) = 𝑋 → [(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) |
| 35 | 29, 34 | syl 17 |
. . . . 5
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → [(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) |
| 36 | | sbceq1g 4417 |
. . . . . . 7
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋 ↔ ⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌(𝐶 +o 𝑑) = 𝑋)) |
| 37 | | csbov2g 7479 |
. . . . . . . . 9
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌(𝐶 +o 𝑑) = (𝐶 +o
⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌𝑑)) |
| 38 | | csbvarg 4434 |
. . . . . . . . . 10
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌𝑑 = (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) |
| 39 | 38 | oveq2d 7447 |
. . . . . . . . 9
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → (𝐶 +o
⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌𝑑) = (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
| 40 | 37, 39 | eqtrd 2777 |
. . . . . . . 8
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌(𝐶 +o 𝑑) = (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) |
| 41 | 40 | eqeq1d 2739 |
. . . . . . 7
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → (⦋(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑⦌(𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)) |
| 42 | 36, 41 | bitrd 279 |
. . . . . 6
⊢
((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 → ([(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋 ↔ (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋)) |
| 43 | 42 | biimpa 476 |
. . . . 5
⊢
(((℩𝑑
∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) ∈ 𝐷 ∧ [(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋) / 𝑑](𝐶 +o 𝑑) = 𝑋) → (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋) |
| 44 | 31, 35, 43 | syl2anc 584 |
. . . 4
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → (𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)) = 𝑋) |
| 45 | 44 | fveq2d 6910 |
. . 3
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘(𝐶 +o (℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋))) = ((𝐴 + 𝐵)‘𝑋)) |
| 46 | 8, 33, 45 | 3eqtr2rd 2784 |
. 2
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) ∧ ¬ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) |
| 47 | 6, 46 | pm2.61dan 813 |
1
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) |