| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanl2.1 | ⊢ 𝜓 |
| mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr1 703 mp3an2 1451 reuss 4276 tfrlem11 8313 tfr3 8324 oe0 8443 unfi 9087 dif1ennnALT 9168 indpi 10805 map2psrpr 11008 axcnre 11062 muleqadd 11768 divdiv2 11840 addltmul 12364 supxrpnf 13219 supxrunb1 13220 supxrunb2 13221 iimulcl 24861 clwwlknonex2lem2 30090 nmopadjlem 32071 nmopcoadji 32083 opsqrlem6 32127 hstrbi 32248 sgncl 32819 poimirlem3 37683 dflim5 43446 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |