MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanl2 Structured version   Visualization version   GIF version

Theorem mpanl2 697
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanl2.1 𝜓
mpanl2.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl2 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanl2
StepHypRef Expression
1 mpanl2.1 . . 3 𝜓
21jctr 525 . 2 (𝜑 → (𝜑𝜓))
3 mpanl2.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 580 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397
This theorem is referenced by:  mpanr1  699  mp3an2  1441  reuss  4204  tfrlem11  7876  tfr3  7887  oe0  7998  dif1en  8597  indpi  10175  map2psrpr  10378  axcnre  10432  muleqadd  11132  divdiv2  11200  addltmul  11721  frnnn0supp  11801  supxrpnf  12561  supxrunb1  12562  supxrunb2  12563  iimulcl  23224  clwwlknonex2lem2  27574  nmopadjlem  29557  nmopcoadji  29569  opsqrlem6  29613  hstrbi  29734  sgncl  31413  poimirlem3  34426  aacllem  44382
  Copyright terms: Public domain W3C validator