MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanl2 Structured version   Visualization version   GIF version

Theorem mpanl2 701
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanl2.1 𝜓
mpanl2.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl2 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanl2
StepHypRef Expression
1 mpanl2.1 . . 3 𝜓
21jctr 524 . 2 (𝜑 → (𝜑𝜓))
3 mpanl2.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 580 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpanr1  703  mp3an2  1451  reuss  4290  tfrlem11  8356  tfr3  8367  oe0  8486  unfi  9135  dif1ennnALT  9222  indpi  10860  map2psrpr  11063  axcnre  11117  muleqadd  11822  divdiv2  11894  addltmul  12418  supxrpnf  13278  supxrunb1  13279  supxrunb2  13280  iimulcl  24833  clwwlknonex2lem2  30037  nmopadjlem  32018  nmopcoadji  32030  opsqrlem6  32074  hstrbi  32195  sgncl  32756  poimirlem3  37617  dflim5  43318  aacllem  49790
  Copyright terms: Public domain W3C validator