| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanl2.1 | ⊢ 𝜓 |
| mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr1 703 mp3an2 1451 reuss 4293 tfrlem11 8359 tfr3 8370 oe0 8489 unfi 9141 dif1ennnALT 9229 indpi 10867 map2psrpr 11070 axcnre 11124 muleqadd 11829 divdiv2 11901 addltmul 12425 supxrpnf 13285 supxrunb1 13286 supxrunb2 13287 iimulcl 24840 clwwlknonex2lem2 30044 nmopadjlem 32025 nmopcoadji 32037 opsqrlem6 32081 hstrbi 32202 sgncl 32763 poimirlem3 37624 dflim5 43325 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |