MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanl2 Structured version   Visualization version   GIF version

Theorem mpanl2 701
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanl2.1 𝜓
mpanl2.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl2 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanl2
StepHypRef Expression
1 mpanl2.1 . . 3 𝜓
21jctr 524 . 2 (𝜑 → (𝜑𝜓))
3 mpanl2.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 580 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpanr1  703  mp3an2  1450  reuss  4326  tfrlem11  8429  tfr3  8440  oe0  8561  unfi  9212  dif1ennnALT  9312  indpi  10948  map2psrpr  11151  axcnre  11205  muleqadd  11908  divdiv2  11980  addltmul  12504  supxrpnf  13361  supxrunb1  13362  supxrunb2  13363  iimulcl  24967  clwwlknonex2lem2  30128  nmopadjlem  32109  nmopcoadji  32121  opsqrlem6  32165  hstrbi  32286  sgncl  34542  poimirlem3  37631  dflim5  43347  aacllem  49375
  Copyright terms: Public domain W3C validator