![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanl2.1 | ⊢ 𝜓 |
mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | jctr 524 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanr1 703 mp3an2 1448 reuss 4333 tfrlem11 8427 tfr3 8438 oe0 8559 unfi 9210 dif1ennnALT 9309 indpi 10945 map2psrpr 11148 axcnre 11202 muleqadd 11905 divdiv2 11977 addltmul 12500 supxrpnf 13357 supxrunb1 13358 supxrunb2 13359 iimulcl 24980 clwwlknonex2lem2 30137 nmopadjlem 32118 nmopcoadji 32130 opsqrlem6 32174 hstrbi 32295 sgncl 34520 poimirlem3 37610 dflim5 43319 aacllem 49032 |
Copyright terms: Public domain | W3C validator |