![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanl2.1 | ⊢ 𝜓 |
mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | jctr 525 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: mpanr1 699 mp3an2 1441 reuss 4204 tfrlem11 7876 tfr3 7887 oe0 7998 dif1en 8597 indpi 10175 map2psrpr 10378 axcnre 10432 muleqadd 11132 divdiv2 11200 addltmul 11721 frnnn0supp 11801 supxrpnf 12561 supxrunb1 12562 supxrunb2 12563 iimulcl 23224 clwwlknonex2lem2 27574 nmopadjlem 29557 nmopcoadji 29569 opsqrlem6 29613 hstrbi 29734 sgncl 31413 poimirlem3 34426 aacllem 44382 |
Copyright terms: Public domain | W3C validator |