Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanl2.1 | ⊢ 𝜓 |
mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | jctr 528 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 583 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: mpanr1 703 mp3an2 1451 reuss 4231 tfrlem11 8124 tfr3 8135 oe0 8249 unfi 8850 dif1enALT 8907 indpi 10521 map2psrpr 10724 axcnre 10778 muleqadd 11476 divdiv2 11544 addltmul 12066 supxrpnf 12908 supxrunb1 12909 supxrunb2 12910 iimulcl 23834 clwwlknonex2lem2 28191 nmopadjlem 30170 nmopcoadji 30182 opsqrlem6 30226 hstrbi 30347 sgncl 32217 poimirlem3 35517 aacllem 46176 |
Copyright terms: Public domain | W3C validator |