| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanl2.1 | ⊢ 𝜓 |
| mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr1 703 mp3an2 1451 reuss 4307 tfrlem11 8407 tfr3 8418 oe0 8539 unfi 9190 dif1ennnALT 9288 indpi 10926 map2psrpr 11129 axcnre 11183 muleqadd 11886 divdiv2 11958 addltmul 12482 supxrpnf 13339 supxrunb1 13340 supxrunb2 13341 iimulcl 24889 clwwlknonex2lem2 30094 nmopadjlem 32075 nmopcoadji 32087 opsqrlem6 32131 hstrbi 32252 sgncl 32815 poimirlem3 37652 dflim5 43320 aacllem 49632 |
| Copyright terms: Public domain | W3C validator |