Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanl2.1 | ⊢ 𝜓 |
mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | jctr 524 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpanr1 699 mp3an2 1447 reuss 4247 tfrlem11 8190 tfr3 8201 oe0 8314 unfi 8917 dif1enALT 8980 indpi 10594 map2psrpr 10797 axcnre 10851 muleqadd 11549 divdiv2 11617 addltmul 12139 supxrpnf 12981 supxrunb1 12982 supxrunb2 12983 iimulcl 24006 clwwlknonex2lem2 28373 nmopadjlem 30352 nmopcoadji 30364 opsqrlem6 30408 hstrbi 30529 sgncl 32405 poimirlem3 35707 aacllem 46391 |
Copyright terms: Public domain | W3C validator |