![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanl2.1 | ⊢ 𝜓 |
mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | jctr 526 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 581 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: mpanr1 702 mp3an2 1450 reuss 4317 tfrlem11 8388 tfr3 8399 oe0 8522 unfi 9172 dif1ennnALT 9277 indpi 10902 map2psrpr 11105 axcnre 11159 muleqadd 11858 divdiv2 11926 addltmul 12448 supxrpnf 13297 supxrunb1 13298 supxrunb2 13299 iimulcl 24453 clwwlknonex2lem2 29361 nmopadjlem 31342 nmopcoadji 31354 opsqrlem6 31398 hstrbi 31519 sgncl 33537 poimirlem3 36491 dflim5 42079 aacllem 47848 |
Copyright terms: Public domain | W3C validator |