MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanl2 Structured version   Visualization version   GIF version

Theorem mpanl2 701
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanl2.1 𝜓
mpanl2.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl2 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanl2
StepHypRef Expression
1 mpanl2.1 . . 3 𝜓
21jctr 524 . 2 (𝜑 → (𝜑𝜓))
3 mpanl2.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 580 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpanr1  703  mp3an2  1451  reuss  4293  tfrlem11  8359  tfr3  8370  oe0  8489  unfi  9141  dif1ennnALT  9229  indpi  10867  map2psrpr  11070  axcnre  11124  muleqadd  11829  divdiv2  11901  addltmul  12425  supxrpnf  13285  supxrunb1  13286  supxrunb2  13287  iimulcl  24840  clwwlknonex2lem2  30044  nmopadjlem  32025  nmopcoadji  32037  opsqrlem6  32081  hstrbi  32202  sgncl  32763  poimirlem3  37624  dflim5  43325  aacllem  49794
  Copyright terms: Public domain W3C validator