| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanl2.1 | ⊢ 𝜓 |
| mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr1 703 mp3an2 1451 reuss 4290 tfrlem11 8356 tfr3 8367 oe0 8486 unfi 9135 dif1ennnALT 9222 indpi 10860 map2psrpr 11063 axcnre 11117 muleqadd 11822 divdiv2 11894 addltmul 12418 supxrpnf 13278 supxrunb1 13279 supxrunb2 13280 iimulcl 24833 clwwlknonex2lem2 30037 nmopadjlem 32018 nmopcoadji 32030 opsqrlem6 32074 hstrbi 32195 sgncl 32756 poimirlem3 37617 dflim5 43318 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |