![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanl2.1 | ⊢ 𝜓 |
mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
2 | 1 | jctr 524 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 579 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanr1 702 mp3an2 1449 reuss 4346 tfrlem11 8444 tfr3 8455 oe0 8578 unfi 9238 dif1ennnALT 9339 indpi 10976 map2psrpr 11179 axcnre 11233 muleqadd 11934 divdiv2 12006 addltmul 12529 supxrpnf 13380 supxrunb1 13381 supxrunb2 13382 iimulcl 24985 clwwlknonex2lem2 30140 nmopadjlem 32121 nmopcoadji 32133 opsqrlem6 32177 hstrbi 32298 sgncl 34503 poimirlem3 37583 dflim5 43291 aacllem 48895 |
Copyright terms: Public domain | W3C validator |