MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanl2 Structured version   Visualization version   GIF version

Theorem mpanl2 701
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanl2.1 𝜓
mpanl2.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl2 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanl2
StepHypRef Expression
1 mpanl2.1 . . 3 𝜓
21jctr 524 . 2 (𝜑 → (𝜑𝜓))
3 mpanl2.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 580 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpanr1  703  mp3an2  1451  reuss  4277  tfrlem11  8307  tfr3  8318  oe0  8437  unfi  9080  dif1ennnALT  9161  indpi  10795  map2psrpr  10998  axcnre  11052  muleqadd  11758  divdiv2  11830  addltmul  12354  supxrpnf  13214  supxrunb1  13215  supxrunb2  13216  iimulcl  24858  clwwlknonex2lem2  30083  nmopadjlem  32064  nmopcoadji  32076  opsqrlem6  32120  hstrbi  32241  sgncl  32809  poimirlem3  37662  dflim5  43361  aacllem  49832
  Copyright terms: Public domain W3C validator