MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanl2 Structured version   Visualization version   GIF version

Theorem mpanl2 701
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanl2.1 𝜓
mpanl2.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl2 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanl2
StepHypRef Expression
1 mpanl2.1 . . 3 𝜓
21jctr 524 . 2 (𝜑 → (𝜑𝜓))
3 mpanl2.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 580 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpanr1  703  mp3an2  1451  reuss  4307  tfrlem11  8407  tfr3  8418  oe0  8539  unfi  9190  dif1ennnALT  9288  indpi  10926  map2psrpr  11129  axcnre  11183  muleqadd  11886  divdiv2  11958  addltmul  12482  supxrpnf  13339  supxrunb1  13340  supxrunb2  13341  iimulcl  24889  clwwlknonex2lem2  30094  nmopadjlem  32075  nmopcoadji  32087  opsqrlem6  32131  hstrbi  32252  sgncl  32815  poimirlem3  37652  dflim5  43320  aacllem  49632
  Copyright terms: Public domain W3C validator