| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl2 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanl2.1 | ⊢ 𝜓 |
| mpanl2.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl2.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | jctr 524 | . 2 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl2.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr1 703 mp3an2 1451 reuss 4280 tfrlem11 8317 tfr3 8328 oe0 8447 unfi 9095 dif1ennnALT 9180 indpi 10820 map2psrpr 11023 axcnre 11077 muleqadd 11782 divdiv2 11854 addltmul 12378 supxrpnf 13238 supxrunb1 13239 supxrunb2 13240 iimulcl 24849 clwwlknonex2lem2 30070 nmopadjlem 32051 nmopcoadji 32063 opsqrlem6 32107 hstrbi 32228 sgncl 32789 poimirlem3 37602 dflim5 43302 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |