MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanl2 Structured version   Visualization version   GIF version

Theorem mpanl2 697
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanl2.1 𝜓
mpanl2.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl2 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanl2
StepHypRef Expression
1 mpanl2.1 . . 3 𝜓
21jctr 523 . 2 (𝜑 → (𝜑𝜓))
3 mpanl2.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 578 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  mpanr1  699  mp3an2  1447  reuss  4315  tfrlem11  8390  tfr3  8401  oe0  8524  unfi  9174  dif1ennnALT  9279  indpi  10904  map2psrpr  11107  axcnre  11161  muleqadd  11862  divdiv2  11930  addltmul  12452  supxrpnf  13301  supxrunb1  13302  supxrunb2  13303  iimulcl  24680  clwwlknonex2lem2  29628  nmopadjlem  31609  nmopcoadji  31621  opsqrlem6  31665  hstrbi  31786  sgncl  33835  poimirlem3  36794  dflim5  42381  aacllem  47935
  Copyright terms: Public domain W3C validator