MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbaib Structured version   Visualization version   GIF version

Theorem rbaib 538
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
rbaib (𝜒 → (𝜑𝜓))

Proof of Theorem rbaib
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21rbaibr 537 . 2 (𝜒 → (𝜓𝜑))
32bicomd 222 1 (𝜒 → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  pm5.75  1025  cador  1611  reusv1  5315  reusv2lem1  5316  fpwwe2  10330  fzsplit2  13210  saddisjlem  16099  smupval  16123  smueqlem  16125  prmrec  16551  ablnsg  19363  cnprest  22348  flimrest  23042  fclsrest  23083  tsmssubm  23202  setsxms  23540  tcphcph  24306  ellimc2  24946  fsumvma2  26267  chpub  26273  mdbr2  30559  mdsl2i  30585  fzsplit3  31017  posrasymb  31145  trleile  31151  fvineqsneu  35509  cnvcnvintabd  41097  grumnud  41793  mofeu  46063
  Copyright terms: Public domain W3C validator