| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.75 1030 cador 1609 reusv1 5335 reusv2lem1 5336 fpwwe2 10531 fzsplit2 13446 saddisjlem 16372 smupval 16396 smueqlem 16398 prmrec 16831 ablnsg 19757 cnprest 23202 flimrest 23896 fclsrest 23937 tsmssubm 24056 setsxms 24392 tcphcph 25162 ellimc2 25803 fsumvma2 27150 chpub 27156 mdbr2 32271 mdsl2i 32297 fzsplit3 32771 posrasymb 32943 trleile 32947 fvineqsneu 37444 cnvcnvintabd 43632 grumnud 44318 mofeu 48878 |
| Copyright terms: Public domain | W3C validator |