Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | rbaibr 538 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
3 | 2 | bicomd 222 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm5.75 1026 cador 1610 reusv1 5320 reusv2lem1 5321 fpwwe2 10399 fzsplit2 13281 saddisjlem 16171 smupval 16195 smueqlem 16197 prmrec 16623 ablnsg 19448 cnprest 22440 flimrest 23134 fclsrest 23175 tsmssubm 23294 setsxms 23634 tcphcph 24401 ellimc2 25041 fsumvma2 26362 chpub 26368 mdbr2 30658 mdsl2i 30684 fzsplit3 31115 posrasymb 31243 trleile 31249 fvineqsneu 35582 cnvcnvintabd 41208 grumnud 41904 mofeu 46175 |
Copyright terms: Public domain | W3C validator |