| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.75 1030 cador 1608 reusv1 5352 reusv2lem1 5353 fpwwe2 10596 fzsplit2 13510 saddisjlem 16434 smupval 16458 smueqlem 16460 prmrec 16893 ablnsg 19777 cnprest 23176 flimrest 23870 fclsrest 23911 tsmssubm 24030 setsxms 24367 tcphcph 25137 ellimc2 25778 fsumvma2 27125 chpub 27131 mdbr2 32225 mdsl2i 32251 fzsplit3 32716 posrasymb 32891 trleile 32897 fvineqsneu 37399 cnvcnvintabd 43589 grumnud 44275 mofeu 48836 |
| Copyright terms: Public domain | W3C validator |