| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.75 1030 cador 1608 reusv1 5367 reusv2lem1 5368 fpwwe2 10657 fzsplit2 13566 saddisjlem 16483 smupval 16507 smueqlem 16509 prmrec 16942 ablnsg 19828 cnprest 23227 flimrest 23921 fclsrest 23962 tsmssubm 24081 setsxms 24418 tcphcph 25189 ellimc2 25830 fsumvma2 27177 chpub 27183 mdbr2 32277 mdsl2i 32303 fzsplit3 32770 posrasymb 32945 trleile 32951 fvineqsneu 37429 cnvcnvintabd 43624 grumnud 44310 mofeu 48826 |
| Copyright terms: Public domain | W3C validator |