| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.75 1030 cador 1608 reusv1 5355 reusv2lem1 5356 fpwwe2 10603 fzsplit2 13517 saddisjlem 16441 smupval 16465 smueqlem 16467 prmrec 16900 ablnsg 19784 cnprest 23183 flimrest 23877 fclsrest 23918 tsmssubm 24037 setsxms 24374 tcphcph 25144 ellimc2 25785 fsumvma2 27132 chpub 27138 mdbr2 32232 mdsl2i 32258 fzsplit3 32723 posrasymb 32898 trleile 32904 fvineqsneu 37406 cnvcnvintabd 43596 grumnud 44282 mofeu 48840 |
| Copyright terms: Public domain | W3C validator |