![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | rbaibr 539 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
3 | 2 | bicomd 222 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm5.75 1028 cador 1610 reusv1 5396 reusv2lem1 5397 fpwwe2 10638 fzsplit2 13526 saddisjlem 16405 smupval 16429 smueqlem 16431 prmrec 16855 ablnsg 19715 cnprest 22793 flimrest 23487 fclsrest 23528 tsmssubm 23647 setsxms 23987 tcphcph 24754 ellimc2 25394 fsumvma2 26717 chpub 26723 mdbr2 31549 mdsl2i 31575 fzsplit3 32005 posrasymb 32135 trleile 32141 fvineqsneu 36292 cnvcnvintabd 42351 grumnud 43045 mofeu 47514 |
Copyright terms: Public domain | W3C validator |