MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbaib Structured version   Visualization version   GIF version

Theorem rbaib 538
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
rbaib (𝜒 → (𝜑𝜓))

Proof of Theorem rbaib
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21rbaibr 537 . 2 (𝜒 → (𝜓𝜑))
32bicomd 223 1 (𝜒 → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm5.75  1030  cador  1609  reusv1  5335  reusv2lem1  5336  fpwwe2  10531  fzsplit2  13446  saddisjlem  16372  smupval  16396  smueqlem  16398  prmrec  16831  ablnsg  19757  cnprest  23202  flimrest  23896  fclsrest  23937  tsmssubm  24056  setsxms  24392  tcphcph  25162  ellimc2  25803  fsumvma2  27150  chpub  27156  mdbr2  32271  mdsl2i  32297  fzsplit3  32771  posrasymb  32943  trleile  32947  fvineqsneu  37444  cnvcnvintabd  43632  grumnud  44318  mofeu  48878
  Copyright terms: Public domain W3C validator