![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
3 | 2 | bicomd 223 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm5.75 1030 cador 1604 reusv1 5402 reusv2lem1 5403 fpwwe2 10680 fzsplit2 13585 saddisjlem 16497 smupval 16521 smueqlem 16523 prmrec 16955 ablnsg 19879 cnprest 23312 flimrest 24006 fclsrest 24047 tsmssubm 24166 setsxms 24506 tcphcph 25284 ellimc2 25926 fsumvma2 27272 chpub 27278 mdbr2 32324 mdsl2i 32350 fzsplit3 32801 posrasymb 32939 trleile 32945 fvineqsneu 37393 cnvcnvintabd 43589 grumnud 44281 mofeu 48677 |
Copyright terms: Public domain | W3C validator |