Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | rbaibr 539 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
3 | 2 | bicomd 222 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm5.75 1027 cador 1609 reusv1 5344 reusv2lem1 5345 fpwwe2 10504 fzsplit2 13386 saddisjlem 16270 smupval 16294 smueqlem 16296 prmrec 16720 ablnsg 19543 cnprest 22545 flimrest 23239 fclsrest 23280 tsmssubm 23399 setsxms 23739 tcphcph 24506 ellimc2 25146 fsumvma2 26467 chpub 26473 mdbr2 30945 mdsl2i 30971 fzsplit3 31400 posrasymb 31528 trleile 31534 fvineqsneu 35736 cnvcnvintabd 41581 grumnud 42277 mofeu 46593 |
Copyright terms: Public domain | W3C validator |