MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbaib Structured version   Visualization version   GIF version

Theorem rbaib 539
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
rbaib (𝜒 → (𝜑𝜓))

Proof of Theorem rbaib
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21rbaibr 538 . 2 (𝜒 → (𝜓𝜑))
32bicomd 222 1 (𝜒 → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  pm5.75  1026  cador  1610  reusv1  5320  reusv2lem1  5321  fpwwe2  10399  fzsplit2  13281  saddisjlem  16171  smupval  16195  smueqlem  16197  prmrec  16623  ablnsg  19448  cnprest  22440  flimrest  23134  fclsrest  23175  tsmssubm  23294  setsxms  23634  tcphcph  24401  ellimc2  25041  fsumvma2  26362  chpub  26368  mdbr2  30658  mdsl2i  30684  fzsplit3  31115  posrasymb  31243  trleile  31249  fvineqsneu  35582  cnvcnvintabd  41208  grumnud  41904  mofeu  46175
  Copyright terms: Public domain W3C validator