| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.75 1030 cador 1609 reusv1 5337 reusv2lem1 5338 fpwwe2 10541 fzsplit2 13451 saddisjlem 16377 smupval 16401 smueqlem 16403 prmrec 16836 ablnsg 19761 cnprest 23205 flimrest 23899 fclsrest 23940 tsmssubm 24059 setsxms 24395 tcphcph 25165 ellimc2 25806 fsumvma2 27153 chpub 27159 mdbr2 32278 mdsl2i 32304 fzsplit3 32780 posrasymb 32955 trleile 32959 fvineqsneu 37476 cnvcnvintabd 43717 grumnud 44403 mofeu 48972 |
| Copyright terms: Public domain | W3C validator |