MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbaib Structured version   Visualization version   GIF version

Theorem rbaib 538
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
rbaib (𝜒 → (𝜑𝜓))

Proof of Theorem rbaib
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21rbaibr 537 . 2 (𝜒 → (𝜓𝜑))
32bicomd 223 1 (𝜒 → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm5.75  1030  cador  1604  reusv1  5402  reusv2lem1  5403  fpwwe2  10680  fzsplit2  13585  saddisjlem  16497  smupval  16521  smueqlem  16523  prmrec  16955  ablnsg  19879  cnprest  23312  flimrest  24006  fclsrest  24047  tsmssubm  24166  setsxms  24506  tcphcph  25284  ellimc2  25926  fsumvma2  27272  chpub  27278  mdbr2  32324  mdsl2i  32350  fzsplit3  32801  posrasymb  32939  trleile  32945  fvineqsneu  37393  cnvcnvintabd  43589  grumnud  44281  mofeu  48677
  Copyright terms: Public domain W3C validator