| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.75 1030 cador 1608 reusv1 5339 reusv2lem1 5340 fpwwe2 10556 fzsplit2 13470 saddisjlem 16393 smupval 16417 smueqlem 16419 prmrec 16852 ablnsg 19744 cnprest 23192 flimrest 23886 fclsrest 23927 tsmssubm 24046 setsxms 24383 tcphcph 25153 ellimc2 25794 fsumvma2 27141 chpub 27147 mdbr2 32258 mdsl2i 32284 fzsplit3 32749 posrasymb 32922 trleile 32926 fvineqsneu 37384 cnvcnvintabd 43573 grumnud 44259 mofeu 48833 |
| Copyright terms: Public domain | W3C validator |