Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | rbaibr 541 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
3 | 2 | bicomd 226 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: pm5.75 1026 cador 1610 reusv1 5266 reusv2lem1 5267 fpwwe2 10103 fzsplit2 12981 saddisjlem 15863 smupval 15887 smueqlem 15889 prmrec 16313 ablnsg 19035 cnprest 21989 flimrest 22683 fclsrest 22724 tsmssubm 22843 setsxms 23181 tcphcph 23937 ellimc2 24576 fsumvma2 25897 chpub 25903 mdbr2 30178 mdsl2i 30204 fzsplit3 30639 posrasymb 30766 trleile 30775 fvineqsneu 35108 cnvcnvintabd 40673 grumnud 41367 |
Copyright terms: Public domain | W3C validator |