MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbaib Structured version   Visualization version   GIF version

Theorem rbaib 538
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
rbaib (𝜒 → (𝜑𝜓))

Proof of Theorem rbaib
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21rbaibr 537 . 2 (𝜒 → (𝜓𝜑))
32bicomd 223 1 (𝜒 → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm5.75  1030  cador  1608  reusv1  5352  reusv2lem1  5353  fpwwe2  10596  fzsplit2  13510  saddisjlem  16434  smupval  16458  smueqlem  16460  prmrec  16893  ablnsg  19777  cnprest  23176  flimrest  23870  fclsrest  23911  tsmssubm  24030  setsxms  24367  tcphcph  25137  ellimc2  25778  fsumvma2  27125  chpub  27131  mdbr2  32225  mdsl2i  32251  fzsplit3  32716  posrasymb  32891  trleile  32897  fvineqsneu  37399  cnvcnvintabd  43589  grumnud  44275  mofeu  48836
  Copyright terms: Public domain W3C validator