MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbaib Structured version   Visualization version   GIF version

Theorem rbaib 538
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
rbaib (𝜒 → (𝜑𝜓))

Proof of Theorem rbaib
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21rbaibr 537 . 2 (𝜒 → (𝜓𝜑))
32bicomd 223 1 (𝜒 → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm5.75  1030  cador  1609  reusv1  5337  reusv2lem1  5338  fpwwe2  10541  fzsplit2  13451  saddisjlem  16377  smupval  16401  smueqlem  16403  prmrec  16836  ablnsg  19761  cnprest  23205  flimrest  23899  fclsrest  23940  tsmssubm  24059  setsxms  24395  tcphcph  25165  ellimc2  25806  fsumvma2  27153  chpub  27159  mdbr2  32278  mdsl2i  32304  fzsplit3  32780  posrasymb  32955  trleile  32959  fvineqsneu  37476  cnvcnvintabd  43717  grumnud  44403  mofeu  48972
  Copyright terms: Public domain W3C validator