Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
3 | 2 | bicomd 222 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm5.75 1025 cador 1611 reusv1 5315 reusv2lem1 5316 fpwwe2 10330 fzsplit2 13210 saddisjlem 16099 smupval 16123 smueqlem 16125 prmrec 16551 ablnsg 19363 cnprest 22348 flimrest 23042 fclsrest 23083 tsmssubm 23202 setsxms 23540 tcphcph 24306 ellimc2 24946 fsumvma2 26267 chpub 26273 mdbr2 30559 mdsl2i 30585 fzsplit3 31017 posrasymb 31145 trleile 31151 fvineqsneu 35509 cnvcnvintabd 41097 grumnud 41793 mofeu 46063 |
Copyright terms: Public domain | W3C validator |