![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rbaib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
rbaib | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | rbaibr 537 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜑)) |
3 | 2 | bicomd 223 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm5.75 1029 cador 1605 reusv1 5415 reusv2lem1 5416 fpwwe2 10712 fzsplit2 13609 saddisjlem 16510 smupval 16534 smueqlem 16536 prmrec 16969 ablnsg 19889 cnprest 23318 flimrest 24012 fclsrest 24053 tsmssubm 24172 setsxms 24512 tcphcph 25290 ellimc2 25932 fsumvma2 27276 chpub 27282 mdbr2 32328 mdsl2i 32354 fzsplit3 32799 posrasymb 32938 trleile 32944 fvineqsneu 37377 cnvcnvintabd 43562 grumnud 44255 mofeu 48561 |
Copyright terms: Public domain | W3C validator |