| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1cdmsn | Structured version Visualization version GIF version | ||
| Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| f1cdmsn | ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6759 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→{𝐵} → 𝐹:𝐴⟶{𝐵}) | |
| 2 | fvconst 7139 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) | |
| 3 | 2 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) |
| 4 | fvconst 7139 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) | |
| 5 | 4 | 3adant2 1131 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) |
| 6 | 3, 5 | eqtr4d 2768 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 7 | 1, 6 | syl3an1 1163 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 8 | f1veqaeq 7234 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) | |
| 9 | 8 | 3impb 1114 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
| 10 | 7, 9 | mpd 15 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑦 = 𝑧) |
| 11 | 10 | 3expia 1121 | . . . 4 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝐴 → 𝑦 = 𝑧)) |
| 12 | 11 | ralrimiv 3125 | . . 3 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
| 13 | 12 | reximdva0 4321 | . 2 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
| 14 | issn 4799 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧 → ∃𝑥 𝐴 = {𝑥}) | |
| 15 | 13, 14 | syl 17 | 1 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∅c0 4299 {csn 4592 ⟶wf 6510 –1-1→wf1 6511 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fv 6522 |
| This theorem is referenced by: snnen2o 9191 sdom1 9196 1sdom2dom 9201 |
| Copyright terms: Public domain | W3C validator |