Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1cdmsn | Structured version Visualization version GIF version |
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
f1cdmsn | ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6670 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→{𝐵} → 𝐹:𝐴⟶{𝐵}) | |
2 | fvconst 7036 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) | |
3 | 2 | 3adant3 1131 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) |
4 | fvconst 7036 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) | |
5 | 4 | 3adant2 1130 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) |
6 | 3, 5 | eqtr4d 2781 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
7 | 1, 6 | syl3an1 1162 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
8 | f1veqaeq 7130 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) | |
9 | 8 | 3impb 1114 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
10 | 7, 9 | mpd 15 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑦 = 𝑧) |
11 | 10 | 3expia 1120 | . . . 4 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝐴 → 𝑦 = 𝑧)) |
12 | 11 | ralrimiv 3102 | . . 3 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
13 | 12 | reximdva0 4285 | . 2 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
14 | issn 4763 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧 → ∃𝑥 𝐴 = {𝑥}) | |
15 | 13, 14 | syl 17 | 1 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∅c0 4256 {csn 4561 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fv 6441 |
This theorem is referenced by: snnen2o 9026 |
Copyright terms: Public domain | W3C validator |