![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cdmsn | Structured version Visualization version GIF version |
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
f1cdmsn | ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6739 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→{𝐵} → 𝐹:𝐴⟶{𝐵}) | |
2 | fvconst 7111 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) | |
3 | 2 | 3adant3 1133 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) |
4 | fvconst 7111 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) | |
5 | 4 | 3adant2 1132 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) |
6 | 3, 5 | eqtr4d 2776 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
7 | 1, 6 | syl3an1 1164 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
8 | f1veqaeq 7205 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) | |
9 | 8 | 3impb 1116 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
10 | 7, 9 | mpd 15 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑦 = 𝑧) |
11 | 10 | 3expia 1122 | . . . 4 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝐴 → 𝑦 = 𝑧)) |
12 | 11 | ralrimiv 3139 | . . 3 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
13 | 12 | reximdva0 4312 | . 2 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
14 | issn 4791 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧 → ∃𝑥 𝐴 = {𝑥}) | |
15 | 13, 14 | syl 17 | 1 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4283 {csn 4587 ⟶wf 6493 –1-1→wf1 6494 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fv 6505 |
This theorem is referenced by: snnen2o 9184 sdom1 9189 1sdom2dom 9194 |
Copyright terms: Public domain | W3C validator |