MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cdmsn Structured version   Visualization version   GIF version

Theorem f1cdmsn 7257
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
f1cdmsn ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem f1cdmsn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6756 . . . . . . 7 (𝐹:𝐴1-1→{𝐵} → 𝐹:𝐴⟶{𝐵})
2 fvconst 7136 . . . . . . . . 9 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴) → (𝐹𝑦) = 𝐵)
323adant3 1132 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = 𝐵)
4 fvconst 7136 . . . . . . . . 9 ((𝐹:𝐴⟶{𝐵} ∧ 𝑧𝐴) → (𝐹𝑧) = 𝐵)
543adant2 1131 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑧) = 𝐵)
63, 5eqtr4d 2767 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = (𝐹𝑧))
71, 6syl3an1 1163 . . . . . 6 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = (𝐹𝑧))
8 f1veqaeq 7231 . . . . . . 7 ((𝐹:𝐴1-1→{𝐵} ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
983impb 1114 . . . . . 6 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
107, 9mpd 15 . . . . 5 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → 𝑦 = 𝑧)
11103expia 1121 . . . 4 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴) → (𝑧𝐴𝑦 = 𝑧))
1211ralrimiv 3124 . . 3 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴) → ∀𝑧𝐴 𝑦 = 𝑧)
1312reximdva0 4318 . 2 ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
14 issn 4796 . 2 (∃𝑦𝐴𝑧𝐴 𝑦 = 𝑧 → ∃𝑥 𝐴 = {𝑥})
1513, 14syl 17 1 ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4296  {csn 4589  wf 6507  1-1wf1 6508  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fv 6519
This theorem is referenced by:  snnen2o  9184  sdom1  9189  1sdom2dom  9194
  Copyright terms: Public domain W3C validator