MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cdmsn Structured version   Visualization version   GIF version

Theorem f1cdmsn 7275
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
f1cdmsn ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem f1cdmsn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6780 . . . . . . 7 (𝐹:𝐴1-1→{𝐵} → 𝐹:𝐴⟶{𝐵})
2 fvconst 7157 . . . . . . . . 9 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴) → (𝐹𝑦) = 𝐵)
323adant3 1129 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = 𝐵)
4 fvconst 7157 . . . . . . . . 9 ((𝐹:𝐴⟶{𝐵} ∧ 𝑧𝐴) → (𝐹𝑧) = 𝐵)
543adant2 1128 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑧) = 𝐵)
63, 5eqtr4d 2769 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = (𝐹𝑧))
71, 6syl3an1 1160 . . . . . 6 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = (𝐹𝑧))
8 f1veqaeq 7251 . . . . . . 7 ((𝐹:𝐴1-1→{𝐵} ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
983impb 1112 . . . . . 6 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
107, 9mpd 15 . . . . 5 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → 𝑦 = 𝑧)
11103expia 1118 . . . 4 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴) → (𝑧𝐴𝑦 = 𝑧))
1211ralrimiv 3139 . . 3 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴) → ∀𝑧𝐴 𝑦 = 𝑧)
1312reximdva0 4346 . 2 ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
14 issn 4828 . 2 (∃𝑦𝐴𝑧𝐴 𝑦 = 𝑧 → ∃𝑥 𝐴 = {𝑥})
1513, 14syl 17 1 ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2934  wral 3055  wrex 3064  c0 4317  {csn 4623  wf 6532  1-1wf1 6533  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fv 6544
This theorem is referenced by:  snnen2o  9236  sdom1  9241  1sdom2dom  9246
  Copyright terms: Public domain W3C validator