MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cdmsn Structured version   Visualization version   GIF version

Theorem f1cdmsn 7211
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
f1cdmsn ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem f1cdmsn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6714 . . . . . . 7 (𝐹:𝐴1-1→{𝐵} → 𝐹:𝐴⟶{𝐵})
2 fvconst 7091 . . . . . . . . 9 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴) → (𝐹𝑦) = 𝐵)
323adant3 1132 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = 𝐵)
4 fvconst 7091 . . . . . . . . 9 ((𝐹:𝐴⟶{𝐵} ∧ 𝑧𝐴) → (𝐹𝑧) = 𝐵)
543adant2 1131 . . . . . . . 8 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑧) = 𝐵)
63, 5eqtr4d 2769 . . . . . . 7 ((𝐹:𝐴⟶{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = (𝐹𝑧))
71, 6syl3an1 1163 . . . . . 6 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → (𝐹𝑦) = (𝐹𝑧))
8 f1veqaeq 7185 . . . . . . 7 ((𝐹:𝐴1-1→{𝐵} ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
983impb 1114 . . . . . 6 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
107, 9mpd 15 . . . . 5 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴𝑧𝐴) → 𝑦 = 𝑧)
11103expia 1121 . . . 4 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴) → (𝑧𝐴𝑦 = 𝑧))
1211ralrimiv 3123 . . 3 ((𝐹:𝐴1-1→{𝐵} ∧ 𝑦𝐴) → ∀𝑧𝐴 𝑦 = 𝑧)
1312reximdva0 4300 . 2 ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
14 issn 4779 . 2 (∃𝑦𝐴𝑧𝐴 𝑦 = 𝑧 → ∃𝑥 𝐴 = {𝑥})
1513, 14syl 17 1 ((𝐹:𝐴1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  c0 4278  {csn 4571  wf 6472  1-1wf1 6473  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fv 6484
This theorem is referenced by:  snnen2o  9124  sdom1  9129  1sdom2dom  9133
  Copyright terms: Public domain W3C validator