![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cdmsn | Structured version Visualization version GIF version |
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
f1cdmsn | ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6817 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→{𝐵} → 𝐹:𝐴⟶{𝐵}) | |
2 | fvconst 7198 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) | |
3 | 2 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) |
4 | fvconst 7198 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) | |
5 | 4 | 3adant2 1131 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) |
6 | 3, 5 | eqtr4d 2783 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
7 | 1, 6 | syl3an1 1163 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
8 | f1veqaeq 7294 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) | |
9 | 8 | 3impb 1115 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
10 | 7, 9 | mpd 15 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑦 = 𝑧) |
11 | 10 | 3expia 1121 | . . . 4 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝐴 → 𝑦 = 𝑧)) |
12 | 11 | ralrimiv 3151 | . . 3 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
13 | 12 | reximdva0 4378 | . 2 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
14 | issn 4857 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧 → ∃𝑥 𝐴 = {𝑥}) | |
15 | 13, 14 | syl 17 | 1 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∅c0 4352 {csn 4648 ⟶wf 6569 –1-1→wf1 6570 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fv 6581 |
This theorem is referenced by: snnen2o 9300 sdom1 9305 1sdom2dom 9310 |
Copyright terms: Public domain | W3C validator |