![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cdmsn | Structured version Visualization version GIF version |
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
f1cdmsn | ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6796 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1→{𝐵} → 𝐹:𝐴⟶{𝐵}) | |
2 | fvconst 7177 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) | |
3 | 2 | 3adant3 1129 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = 𝐵) |
4 | fvconst 7177 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) | |
5 | 4 | 3adant2 1128 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = 𝐵) |
6 | 3, 5 | eqtr4d 2770 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
7 | 1, 6 | syl3an1 1160 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑧)) |
8 | f1veqaeq 7271 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) | |
9 | 8 | 3impb 1112 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
10 | 7, 9 | mpd 15 | . . . . 5 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → 𝑦 = 𝑧) |
11 | 10 | 3expia 1118 | . . . 4 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → (𝑧 ∈ 𝐴 → 𝑦 = 𝑧)) |
12 | 11 | ralrimiv 3141 | . . 3 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
13 | 12 | reximdva0 4353 | . 2 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
14 | issn 4836 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧 → ∃𝑥 𝐴 = {𝑥}) | |
15 | 13, 14 | syl 17 | 1 ⊢ ((𝐹:𝐴–1-1→{𝐵} ∧ 𝐴 ≠ ∅) → ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2936 ∀wral 3057 ∃wrex 3066 ∅c0 4324 {csn 4630 ⟶wf 6547 –1-1→wf1 6548 ‘cfv 6551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fv 6559 |
This theorem is referenced by: snnen2o 9266 sdom1 9271 1sdom2dom 9276 |
Copyright terms: Public domain | W3C validator |