MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el Structured version   Visualization version   GIF version

Theorem hashgt12el 13777
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el
StepHypRef Expression
1 hash0 13722 . . . 4 (♯‘∅) = 0
2 fveq2 6664 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2syl5eqr 2870 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 5062 . . . . . . . 8 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 231 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2829 . . . . . 6 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 11157 . . . . . . 7 0 ≤ 1
8 0re 10637 . . . . . . . . 9 0 ∈ ℝ
9 1re 10635 . . . . . . . . 9 1 ∈ ℝ
108, 9lenlti 10754 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 123 . . . . . . . 8 (¬ 1 < 0 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1210, 11sylbi 219 . . . . . . 7 (0 ≤ 1 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
137, 12ax-mp 5 . . . . . 6 (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
146, 13syl6com 37 . . . . 5 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1514adantl 484 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1615com12 32 . . 3 (0 = (♯‘𝑉) → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
173, 16syl 17 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
18 df-ne 3017 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
19 necom 3069 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
2018, 19bitr3i 279 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
21 ralnex 3236 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
22 ralnex 3236 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ¬ ∃𝑏𝑉 𝑎𝑏)
23 nne 3020 . . . . . . . . . . . 12 𝑎𝑏𝑎 = 𝑏)
24 equcom 2021 . . . . . . . . . . . 12 (𝑎 = 𝑏𝑏 = 𝑎)
2523, 24bitri 277 . . . . . . . . . . 11 𝑎𝑏𝑏 = 𝑎)
2625ralbii 3165 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2722, 26bitr3i 279 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2827ralbii 3165 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
2921, 28bitr3i 279 . . . . . . 7 (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
30 eqsn 4755 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3130adantl 484 . . . . . . . . . . 11 ((𝑉𝑊𝑉 ≠ ∅) → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3231bicomd 225 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝑎𝑉 = {𝑎}))
3332ralbidv 3197 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 ↔ ∀𝑎𝑉 𝑉 = {𝑎}))
34 fveq2 6664 . . . . . . . . . . . . 13 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
35 hashsnle1 13772 . . . . . . . . . . . . 13 (♯‘{𝑎}) ≤ 1
3634, 35eqbrtrdi 5097 . . . . . . . . . . . 12 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)
3736a1i 11 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉) → (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
3837reximdva0 4311 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → ∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
39 r19.36v 3342 . . . . . . . . . 10 (∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4038, 39syl 17 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4133, 40sylbid 242 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → (♯‘𝑉) ≤ 1))
42 hashxrcl 13712 . . . . . . . . . 10 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
4342adantr 483 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
44 1xr 10694 . . . . . . . . 9 1 ∈ ℝ*
45 xrlenlt 10700 . . . . . . . . 9 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4643, 44, 45sylancl 588 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4741, 46sylibd 241 . . . . . . 7 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → ¬ 1 < (♯‘𝑉)))
4829, 47syl5bi 244 . . . . . 6 ((𝑉𝑊𝑉 ≠ ∅) → (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 → ¬ 1 < (♯‘𝑉)))
4948con4d 115 . . . . 5 ((𝑉𝑊𝑉 ≠ ∅) → (1 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5049impancom 454 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (𝑉 ≠ ∅ → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5150com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5220, 51sylbi 219 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5317, 52pm2.61i 184 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  c0 4290  {csn 4560   class class class wbr 5058  cfv 6349  0cc0 10531  1c1 10532  *cxr 10668   < clt 10669  cle 10670  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685
This theorem is referenced by:  hashgt23el  13779  symgpssefmnd  18518  ring1ne0  19335  frgrwopreglem5  28094  frgrwopreglem5ALT  28095
  Copyright terms: Public domain W3C validator