MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el Structured version   Visualization version   GIF version

Theorem hashgt12el 14363
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el
StepHypRef Expression
1 hash0 14308 . . . 4 (♯‘∅) = 0
2 fveq2 6840 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2eqtr3id 2778 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 5106 . . . . . . . 8 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 229 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2737 . . . . . 6 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 11677 . . . . . . 7 0 ≤ 1
8 0re 11152 . . . . . . . . 9 0 ∈ ℝ
9 1re 11150 . . . . . . . . 9 1 ∈ ℝ
108, 9lenlti 11270 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 123 . . . . . . . 8 (¬ 1 < 0 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1210, 11sylbi 217 . . . . . . 7 (0 ≤ 1 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
137, 12ax-mp 5 . . . . . 6 (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
146, 13syl6com 37 . . . . 5 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1514adantl 481 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1615com12 32 . . 3 (0 = (♯‘𝑉) → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
173, 16syl 17 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
18 df-ne 2926 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
19 necom 2978 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
2018, 19bitr3i 277 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
21 ralnex 3055 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
22 ralnex 3055 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ¬ ∃𝑏𝑉 𝑎𝑏)
23 nne 2929 . . . . . . . . . . . 12 𝑎𝑏𝑎 = 𝑏)
24 equcom 2018 . . . . . . . . . . . 12 (𝑎 = 𝑏𝑏 = 𝑎)
2523, 24bitri 275 . . . . . . . . . . 11 𝑎𝑏𝑏 = 𝑎)
2625ralbii 3075 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2722, 26bitr3i 277 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2827ralbii 3075 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
2921, 28bitr3i 277 . . . . . . 7 (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
30 eqsn 4789 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3130adantl 481 . . . . . . . . . . 11 ((𝑉𝑊𝑉 ≠ ∅) → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3231bicomd 223 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝑎𝑉 = {𝑎}))
3332ralbidv 3156 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 ↔ ∀𝑎𝑉 𝑉 = {𝑎}))
34 fveq2 6840 . . . . . . . . . . . . 13 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
35 hashsnle1 14358 . . . . . . . . . . . . 13 (♯‘{𝑎}) ≤ 1
3634, 35eqbrtrdi 5141 . . . . . . . . . . . 12 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)
3736a1i 11 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉) → (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
3837reximdva0 4314 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → ∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
39 r19.36v 3161 . . . . . . . . . 10 (∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4038, 39syl 17 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4133, 40sylbid 240 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → (♯‘𝑉) ≤ 1))
42 hashxrcl 14298 . . . . . . . . . 10 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
4342adantr 480 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
44 1xr 11209 . . . . . . . . 9 1 ∈ ℝ*
45 xrlenlt 11215 . . . . . . . . 9 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4643, 44, 45sylancl 586 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4741, 46sylibd 239 . . . . . . 7 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → ¬ 1 < (♯‘𝑉)))
4829, 47biimtrid 242 . . . . . 6 ((𝑉𝑊𝑉 ≠ ∅) → (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 → ¬ 1 < (♯‘𝑉)))
4948con4d 115 . . . . 5 ((𝑉𝑊𝑉 ≠ ∅) → (1 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5049impancom 451 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (𝑉 ≠ ∅ → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5150com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5220, 51sylbi 217 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5317, 52pm2.61i 182 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4292  {csn 4585   class class class wbr 5102  cfv 6499  0cc0 11044  1c1 11045  *cxr 11183   < clt 11184  cle 11185  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  hashgt23el  14365  symgpssefmnd  19310  ring1ne0  20219  frgrwopreglem5  30300  frgrwopreglem5ALT  30301
  Copyright terms: Public domain W3C validator