Proof of Theorem hashgt12el
Step | Hyp | Ref
| Expression |
1 | | hash0 14010 |
. . . 4
⊢
(♯‘∅) = 0 |
2 | | fveq2 6756 |
. . . 4
⊢ (∅
= 𝑉 →
(♯‘∅) = (♯‘𝑉)) |
3 | 1, 2 | eqtr3id 2793 |
. . 3
⊢ (∅
= 𝑉 → 0 =
(♯‘𝑉)) |
4 | | breq2 5074 |
. . . . . . . 8
⊢
((♯‘𝑉) =
0 → (1 < (♯‘𝑉) ↔ 1 < 0)) |
5 | 4 | biimpd 228 |
. . . . . . 7
⊢
((♯‘𝑉) =
0 → (1 < (♯‘𝑉) → 1 < 0)) |
6 | 5 | eqcoms 2746 |
. . . . . 6
⊢ (0 =
(♯‘𝑉) → (1
< (♯‘𝑉)
→ 1 < 0)) |
7 | | 0le1 11428 |
. . . . . . 7
⊢ 0 ≤
1 |
8 | | 0re 10908 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
9 | | 1re 10906 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
10 | 8, 9 | lenlti 11025 |
. . . . . . . 8
⊢ (0 ≤ 1
↔ ¬ 1 < 0) |
11 | | pm2.21 123 |
. . . . . . . 8
⊢ (¬ 1
< 0 → (1 < 0 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
12 | 10, 11 | sylbi 216 |
. . . . . . 7
⊢ (0 ≤ 1
→ (1 < 0 → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
13 | 7, 12 | ax-mp 5 |
. . . . . 6
⊢ (1 < 0
→ ∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏) |
14 | 6, 13 | syl6com 37 |
. . . . 5
⊢ (1 <
(♯‘𝑉) → (0
= (♯‘𝑉) →
∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
15 | 14 | adantl 481 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → (0 =
(♯‘𝑉) →
∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
16 | 15 | com12 32 |
. . 3
⊢ (0 =
(♯‘𝑉) →
((𝑉 ∈ 𝑊 ∧ 1 <
(♯‘𝑉)) →
∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
17 | 3, 16 | syl 17 |
. 2
⊢ (∅
= 𝑉 → ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
18 | | df-ne 2943 |
. . . 4
⊢ (∅
≠ 𝑉 ↔ ¬ ∅
= 𝑉) |
19 | | necom 2996 |
. . . 4
⊢ (∅
≠ 𝑉 ↔ 𝑉 ≠ ∅) |
20 | 18, 19 | bitr3i 276 |
. . 3
⊢ (¬
∅ = 𝑉 ↔ 𝑉 ≠ ∅) |
21 | | ralnex 3163 |
. . . . . . . 8
⊢
(∀𝑎 ∈
𝑉 ¬ ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ¬ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏) |
22 | | ralnex 3163 |
. . . . . . . . . 10
⊢
(∀𝑏 ∈
𝑉 ¬ 𝑎 ≠ 𝑏 ↔ ¬ ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏) |
23 | | nne 2946 |
. . . . . . . . . . . 12
⊢ (¬
𝑎 ≠ 𝑏 ↔ 𝑎 = 𝑏) |
24 | | equcom 2022 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 ↔ 𝑏 = 𝑎) |
25 | 23, 24 | bitri 274 |
. . . . . . . . . . 11
⊢ (¬
𝑎 ≠ 𝑏 ↔ 𝑏 = 𝑎) |
26 | 25 | ralbii 3090 |
. . . . . . . . . 10
⊢
(∀𝑏 ∈
𝑉 ¬ 𝑎 ≠ 𝑏 ↔ ∀𝑏 ∈ 𝑉 𝑏 = 𝑎) |
27 | 22, 26 | bitr3i 276 |
. . . . . . . . 9
⊢ (¬
∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀𝑏 ∈ 𝑉 𝑏 = 𝑎) |
28 | 27 | ralbii 3090 |
. . . . . . . 8
⊢
(∀𝑎 ∈
𝑉 ¬ ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 𝑏 = 𝑎) |
29 | 21, 28 | bitr3i 276 |
. . . . . . 7
⊢ (¬
∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 ↔ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 𝑏 = 𝑎) |
30 | | eqsn 4759 |
. . . . . . . . . . . 12
⊢ (𝑉 ≠ ∅ → (𝑉 = {𝑎} ↔ ∀𝑏 ∈ 𝑉 𝑏 = 𝑎)) |
31 | 30 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (𝑉 = {𝑎} ↔ ∀𝑏 ∈ 𝑉 𝑏 = 𝑎)) |
32 | 31 | bicomd 222 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (∀𝑏 ∈ 𝑉 𝑏 = 𝑎 ↔ 𝑉 = {𝑎})) |
33 | 32 | ralbidv 3120 |
. . . . . . . . 9
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 𝑏 = 𝑎 ↔ ∀𝑎 ∈ 𝑉 𝑉 = {𝑎})) |
34 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎})) |
35 | | hashsnle1 14060 |
. . . . . . . . . . . . 13
⊢
(♯‘{𝑎})
≤ 1 |
36 | 34, 35 | eqbrtrdi 5109 |
. . . . . . . . . . . 12
⊢ (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1) |
37 | 36 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑎 ∈ 𝑉) → (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)) |
38 | 37 | reximdva0 4282 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → ∃𝑎 ∈ 𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)) |
39 | | r19.36v 3269 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1) → (∀𝑎 ∈ 𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (∀𝑎 ∈ 𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)) |
41 | 33, 40 | sylbid 239 |
. . . . . . . 8
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 𝑏 = 𝑎 → (♯‘𝑉) ≤ 1)) |
42 | | hashxrcl 14000 |
. . . . . . . . . 10
⊢ (𝑉 ∈ 𝑊 → (♯‘𝑉) ∈
ℝ*) |
43 | 42 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (♯‘𝑉) ∈
ℝ*) |
44 | | 1xr 10965 |
. . . . . . . . 9
⊢ 1 ∈
ℝ* |
45 | | xrlenlt 10971 |
. . . . . . . . 9
⊢
(((♯‘𝑉)
∈ ℝ* ∧ 1 ∈ ℝ*) →
((♯‘𝑉) ≤ 1
↔ ¬ 1 < (♯‘𝑉))) |
46 | 43, 44, 45 | sylancl 585 |
. . . . . . . 8
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 <
(♯‘𝑉))) |
47 | 41, 46 | sylibd 238 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 𝑏 = 𝑎 → ¬ 1 < (♯‘𝑉))) |
48 | 29, 47 | syl5bi 241 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (¬ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏 → ¬ 1 < (♯‘𝑉))) |
49 | 48 | con4d 115 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅) → (1 <
(♯‘𝑉) →
∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
50 | 49 | impancom 451 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → (𝑉 ≠ ∅ → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
51 | 50 | com12 32 |
. . 3
⊢ (𝑉 ≠ ∅ → ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
52 | 20, 51 | sylbi 216 |
. 2
⊢ (¬
∅ = 𝑉 → ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏)) |
53 | 17, 52 | pm2.61i 182 |
1
⊢ ((𝑉 ∈ 𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑎 ≠ 𝑏) |