MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt12el Structured version   Visualization version   GIF version

Theorem hashgt12el 14387
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017.)
Assertion
Ref Expression
hashgt12el ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏
Allowed substitution hint:   𝑊(𝑏)

Proof of Theorem hashgt12el
StepHypRef Expression
1 hash0 14332 . . . 4 (♯‘∅) = 0
2 fveq2 6885 . . . 4 (∅ = 𝑉 → (♯‘∅) = (♯‘𝑉))
31, 2eqtr3id 2780 . . 3 (∅ = 𝑉 → 0 = (♯‘𝑉))
4 breq2 5145 . . . . . . . 8 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) ↔ 1 < 0))
54biimpd 228 . . . . . . 7 ((♯‘𝑉) = 0 → (1 < (♯‘𝑉) → 1 < 0))
65eqcoms 2734 . . . . . 6 (0 = (♯‘𝑉) → (1 < (♯‘𝑉) → 1 < 0))
7 0le1 11741 . . . . . . 7 0 ≤ 1
8 0re 11220 . . . . . . . . 9 0 ∈ ℝ
9 1re 11218 . . . . . . . . 9 1 ∈ ℝ
108, 9lenlti 11338 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
11 pm2.21 123 . . . . . . . 8 (¬ 1 < 0 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1210, 11sylbi 216 . . . . . . 7 (0 ≤ 1 → (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
137, 12ax-mp 5 . . . . . 6 (1 < 0 → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
146, 13syl6com 37 . . . . 5 (1 < (♯‘𝑉) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1514adantl 481 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (0 = (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
1615com12 32 . . 3 (0 = (♯‘𝑉) → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
173, 16syl 17 . 2 (∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
18 df-ne 2935 . . . 4 (∅ ≠ 𝑉 ↔ ¬ ∅ = 𝑉)
19 necom 2988 . . . 4 (∅ ≠ 𝑉𝑉 ≠ ∅)
2018, 19bitr3i 277 . . 3 (¬ ∅ = 𝑉𝑉 ≠ ∅)
21 ralnex 3066 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
22 ralnex 3066 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ¬ ∃𝑏𝑉 𝑎𝑏)
23 nne 2938 . . . . . . . . . . . 12 𝑎𝑏𝑎 = 𝑏)
24 equcom 2013 . . . . . . . . . . . 12 (𝑎 = 𝑏𝑏 = 𝑎)
2523, 24bitri 275 . . . . . . . . . . 11 𝑎𝑏𝑏 = 𝑎)
2625ralbii 3087 . . . . . . . . . 10 (∀𝑏𝑉 ¬ 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2722, 26bitr3i 277 . . . . . . . . 9 (¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑏𝑉 𝑏 = 𝑎)
2827ralbii 3087 . . . . . . . 8 (∀𝑎𝑉 ¬ ∃𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
2921, 28bitr3i 277 . . . . . . 7 (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 ↔ ∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎)
30 eqsn 4827 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3130adantl 481 . . . . . . . . . . 11 ((𝑉𝑊𝑉 ≠ ∅) → (𝑉 = {𝑎} ↔ ∀𝑏𝑉 𝑏 = 𝑎))
3231bicomd 222 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑏𝑉 𝑏 = 𝑎𝑉 = {𝑎}))
3332ralbidv 3171 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 ↔ ∀𝑎𝑉 𝑉 = {𝑎}))
34 fveq2 6885 . . . . . . . . . . . . 13 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
35 hashsnle1 14382 . . . . . . . . . . . . 13 (♯‘{𝑎}) ≤ 1
3634, 35eqbrtrdi 5180 . . . . . . . . . . . 12 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1)
3736a1i 11 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉) → (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
3837reximdva0 4346 . . . . . . . . . 10 ((𝑉𝑊𝑉 ≠ ∅) → ∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
39 r19.36v 3177 . . . . . . . . . 10 (∃𝑎𝑉 (𝑉 = {𝑎} → (♯‘𝑉) ≤ 1) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4038, 39syl 17 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉 𝑉 = {𝑎} → (♯‘𝑉) ≤ 1))
4133, 40sylbid 239 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → (♯‘𝑉) ≤ 1))
42 hashxrcl 14322 . . . . . . . . . 10 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
4342adantr 480 . . . . . . . . 9 ((𝑉𝑊𝑉 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
44 1xr 11277 . . . . . . . . 9 1 ∈ ℝ*
45 xrlenlt 11283 . . . . . . . . 9 (((♯‘𝑉) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4643, 44, 45sylancl 585 . . . . . . . 8 ((𝑉𝑊𝑉 ≠ ∅) → ((♯‘𝑉) ≤ 1 ↔ ¬ 1 < (♯‘𝑉)))
4741, 46sylibd 238 . . . . . . 7 ((𝑉𝑊𝑉 ≠ ∅) → (∀𝑎𝑉𝑏𝑉 𝑏 = 𝑎 → ¬ 1 < (♯‘𝑉)))
4829, 47biimtrid 241 . . . . . 6 ((𝑉𝑊𝑉 ≠ ∅) → (¬ ∃𝑎𝑉𝑏𝑉 𝑎𝑏 → ¬ 1 < (♯‘𝑉)))
4948con4d 115 . . . . 5 ((𝑉𝑊𝑉 ≠ ∅) → (1 < (♯‘𝑉) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5049impancom 451 . . . 4 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → (𝑉 ≠ ∅ → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5150com12 32 . . 3 (𝑉 ≠ ∅ → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5220, 51sylbi 216 . 2 (¬ ∅ = 𝑉 → ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏))
5317, 52pm2.61i 182 1 ((𝑉𝑊 ∧ 1 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉 𝑎𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  c0 4317  {csn 4623   class class class wbr 5141  cfv 6537  0cc0 11112  1c1 11113  *cxr 11251   < clt 11252  cle 11253  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296
This theorem is referenced by:  hashgt23el  14389  symgpssefmnd  19315  ring1ne0  20198  frgrwopreglem5  30083  frgrwopreglem5ALT  30084
  Copyright terms: Public domain W3C validator