![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrnemnf | Structured version Visualization version GIF version |
Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
Ref | Expression |
---|---|
supxrnemnf | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11272 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ ∈ ℝ*) |
3 | supxrcl 13297 | . . 3 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
4 | 3 | 3ad2ant1 1130 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
5 | simp1 1133 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*) | |
6 | 5, 1 | jctir 520 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → (𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*)) |
7 | simpl 482 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*) | |
8 | 7 | sselda 3977 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
9 | simpr 484 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
10 | simplr 766 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ¬ -∞ ∈ 𝐴) | |
11 | nelneq 2851 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴) → ¬ 𝑥 = -∞) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = -∞) |
13 | ngtmnft 13148 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ* → (𝑥 = -∞ ↔ ¬ -∞ < 𝑥)) | |
14 | 13 | biimprd 247 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ* → (¬ -∞ < 𝑥 → 𝑥 = -∞)) |
15 | 14 | con1d 145 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ* → (¬ 𝑥 = -∞ → -∞ < 𝑥)) |
16 | 8, 12, 15 | sylc 65 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → -∞ < 𝑥) |
17 | 16 | reximdva0 4346 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 -∞ < 𝑥) |
18 | 17 | 3impa 1107 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 -∞ < 𝑥) |
19 | 18 | 3com23 1123 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → ∃𝑥 ∈ 𝐴 -∞ < 𝑥) |
20 | supxrlub 13307 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < sup(𝐴, ℝ*, < ) ↔ ∃𝑥 ∈ 𝐴 -∞ < 𝑥)) | |
21 | 20 | biimprd 247 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (∃𝑥 ∈ 𝐴 -∞ < 𝑥 → -∞ < sup(𝐴, ℝ*, < ))) |
22 | 6, 19, 21 | sylc 65 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ < sup(𝐴, ℝ*, < )) |
23 | xrltne 13145 | . 2 ⊢ ((-∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ -∞ < sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ≠ -∞) | |
24 | 2, 4, 22, 23 | syl3anc 1368 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∃wrex 3064 ⊆ wss 3943 ∅c0 4317 class class class wbr 5141 supcsup 9434 -∞cmnf 11247 ℝ*cxr 11248 < clt 11249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |