Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrnemnf Structured version   Visualization version   GIF version

Theorem supxrnemnf 31976
Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Assertion
Ref Expression
supxrnemnf ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)

Proof of Theorem supxrnemnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 11270 . . 3 -∞ ∈ ℝ*
21a1i 11 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ ∈ ℝ*)
3 supxrcl 13293 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
433ad2ant1 1133 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 simp1 1136 . . . 4 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
65, 1jctir 521 . . 3 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → (𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*))
7 simpl 483 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
87sselda 3982 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
9 simpr 485 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
10 simplr 767 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → ¬ -∞ ∈ 𝐴)
11 nelneq 2857 . . . . . . . 8 ((𝑥𝐴 ∧ ¬ -∞ ∈ 𝐴) → ¬ 𝑥 = -∞)
129, 10, 11syl2anc 584 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → ¬ 𝑥 = -∞)
13 ngtmnft 13144 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 = -∞ ↔ ¬ -∞ < 𝑥))
1413biimprd 247 . . . . . . . 8 (𝑥 ∈ ℝ* → (¬ -∞ < 𝑥𝑥 = -∞))
1514con1d 145 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝑥 = -∞ → -∞ < 𝑥))
168, 12, 15sylc 65 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → -∞ < 𝑥)
1716reximdva0 4351 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 -∞ < 𝑥)
18173impa 1110 . . . 4 ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 -∞ < 𝑥)
19183com23 1126 . . 3 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → ∃𝑥𝐴 -∞ < 𝑥)
20 supxrlub 13303 . . . 4 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 -∞ < 𝑥))
2120biimprd 247 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (∃𝑥𝐴 -∞ < 𝑥 → -∞ < sup(𝐴, ℝ*, < )))
226, 19, 21sylc 65 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ < sup(𝐴, ℝ*, < ))
23 xrltne 13141 . 2 ((-∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ -∞ < sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ≠ -∞)
242, 4, 22, 23syl3anc 1371 1 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wrex 3070  wss 3948  c0 4322   class class class wbr 5148  supcsup 9434  -∞cmnf 11245  *cxr 11246   < clt 11247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator