Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrnemnf Structured version   Visualization version   GIF version

Theorem supxrnemnf 32486
Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Assertion
Ref Expression
supxrnemnf ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)

Proof of Theorem supxrnemnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 11272 . . 3 -∞ ∈ ℝ*
21a1i 11 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ ∈ ℝ*)
3 supxrcl 13297 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
433ad2ant1 1130 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 simp1 1133 . . . 4 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
65, 1jctir 520 . . 3 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → (𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*))
7 simpl 482 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
87sselda 3977 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
9 simpr 484 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
10 simplr 766 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → ¬ -∞ ∈ 𝐴)
11 nelneq 2851 . . . . . . . 8 ((𝑥𝐴 ∧ ¬ -∞ ∈ 𝐴) → ¬ 𝑥 = -∞)
129, 10, 11syl2anc 583 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → ¬ 𝑥 = -∞)
13 ngtmnft 13148 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 = -∞ ↔ ¬ -∞ < 𝑥))
1413biimprd 247 . . . . . . . 8 (𝑥 ∈ ℝ* → (¬ -∞ < 𝑥𝑥 = -∞))
1514con1d 145 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝑥 = -∞ → -∞ < 𝑥))
168, 12, 15sylc 65 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → -∞ < 𝑥)
1716reximdva0 4346 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 -∞ < 𝑥)
18173impa 1107 . . . 4 ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 -∞ < 𝑥)
19183com23 1123 . . 3 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → ∃𝑥𝐴 -∞ < 𝑥)
20 supxrlub 13307 . . . 4 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 -∞ < 𝑥))
2120biimprd 247 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (∃𝑥𝐴 -∞ < 𝑥 → -∞ < sup(𝐴, ℝ*, < )))
226, 19, 21sylc 65 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ < sup(𝐴, ℝ*, < ))
23 xrltne 13145 . 2 ((-∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ -∞ < sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ≠ -∞)
242, 4, 22, 23syl3anc 1368 1 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wrex 3064  wss 3943  c0 4317   class class class wbr 5141  supcsup 9434  -∞cmnf 11247  *cxr 11248   < clt 11249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator