| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrnemnf | Structured version Visualization version GIF version | ||
| Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| Ref | Expression |
|---|---|
| supxrnemnf | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11318 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ ∈ ℝ*) |
| 3 | supxrcl 13357 | . . 3 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
| 4 | 3 | 3ad2ant1 1134 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| 5 | simp1 1137 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*) | |
| 6 | 5, 1 | jctir 520 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → (𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*)) |
| 7 | simpl 482 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*) | |
| 8 | 7 | sselda 3983 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
| 9 | simpr 484 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 10 | simplr 769 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ¬ -∞ ∈ 𝐴) | |
| 11 | nelneq 2865 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴) → ¬ 𝑥 = -∞) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = -∞) |
| 13 | ngtmnft 13208 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ* → (𝑥 = -∞ ↔ ¬ -∞ < 𝑥)) | |
| 14 | 13 | biimprd 248 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ* → (¬ -∞ < 𝑥 → 𝑥 = -∞)) |
| 15 | 14 | con1d 145 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ* → (¬ 𝑥 = -∞ → -∞ < 𝑥)) |
| 16 | 8, 12, 15 | sylc 65 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → -∞ < 𝑥) |
| 17 | 16 | reximdva0 4355 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 -∞ < 𝑥) |
| 18 | 17 | 3impa 1110 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 -∞ < 𝑥) |
| 19 | 18 | 3com23 1127 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → ∃𝑥 ∈ 𝐴 -∞ < 𝑥) |
| 20 | supxrlub 13367 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < sup(𝐴, ℝ*, < ) ↔ ∃𝑥 ∈ 𝐴 -∞ < 𝑥)) | |
| 21 | 20 | biimprd 248 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (∃𝑥 ∈ 𝐴 -∞ < 𝑥 → -∞ < sup(𝐴, ℝ*, < ))) |
| 22 | 6, 19, 21 | sylc 65 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ < sup(𝐴, ℝ*, < )) |
| 23 | xrltne 13205 | . 2 ⊢ ((-∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ -∞ < sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ≠ -∞) | |
| 24 | 2, 4, 22, 23 | syl3anc 1373 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 supcsup 9480 -∞cmnf 11293 ℝ*cxr 11294 < clt 11295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |