Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrnemnf Structured version   Visualization version   GIF version

Theorem supxrnemnf 32664
Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Assertion
Ref Expression
supxrnemnf ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)

Proof of Theorem supxrnemnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 11207 . . 3 -∞ ∈ ℝ*
21a1i 11 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ ∈ ℝ*)
3 supxrcl 13251 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
433ad2ant1 1133 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 simp1 1136 . . . 4 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
65, 1jctir 520 . . 3 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → (𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*))
7 simpl 482 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
87sselda 3943 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
9 simpr 484 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
10 simplr 768 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → ¬ -∞ ∈ 𝐴)
11 nelneq 2852 . . . . . . . 8 ((𝑥𝐴 ∧ ¬ -∞ ∈ 𝐴) → ¬ 𝑥 = -∞)
129, 10, 11syl2anc 584 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → ¬ 𝑥 = -∞)
13 ngtmnft 13102 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 = -∞ ↔ ¬ -∞ < 𝑥))
1413biimprd 248 . . . . . . . 8 (𝑥 ∈ ℝ* → (¬ -∞ < 𝑥𝑥 = -∞))
1514con1d 145 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝑥 = -∞ → -∞ < 𝑥))
168, 12, 15sylc 65 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → -∞ < 𝑥)
1716reximdva0 4314 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 -∞ < 𝑥)
18173impa 1109 . . . 4 ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 -∞ < 𝑥)
19183com23 1126 . . 3 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → ∃𝑥𝐴 -∞ < 𝑥)
20 supxrlub 13261 . . . 4 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 -∞ < 𝑥))
2120biimprd 248 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (∃𝑥𝐴 -∞ < 𝑥 → -∞ < sup(𝐴, ℝ*, < )))
226, 19, 21sylc 65 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ < sup(𝐴, ℝ*, < ))
23 xrltne 13099 . 2 ((-∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ -∞ < sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ≠ -∞)
242, 4, 22, 23syl3anc 1373 1 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3911  c0 4292   class class class wbr 5102  supcsup 9367  -∞cmnf 11182  *cxr 11183   < clt 11184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator