Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrnemnf Structured version   Visualization version   GIF version

Theorem supxrnemnf 32730
Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Assertion
Ref Expression
supxrnemnf ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)

Proof of Theorem supxrnemnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 11191 . . 3 -∞ ∈ ℝ*
21a1i 11 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ ∈ ℝ*)
3 supxrcl 13236 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
433ad2ant1 1133 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 simp1 1136 . . . 4 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
65, 1jctir 520 . . 3 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → (𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*))
7 simpl 482 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ*)
87sselda 3937 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
9 simpr 484 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
10 simplr 768 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → ¬ -∞ ∈ 𝐴)
11 nelneq 2852 . . . . . . . 8 ((𝑥𝐴 ∧ ¬ -∞ ∈ 𝐴) → ¬ 𝑥 = -∞)
129, 10, 11syl2anc 584 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → ¬ 𝑥 = -∞)
13 ngtmnft 13087 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑥 = -∞ ↔ ¬ -∞ < 𝑥))
1413biimprd 248 . . . . . . . 8 (𝑥 ∈ ℝ* → (¬ -∞ < 𝑥𝑥 = -∞))
1514con1d 145 . . . . . . 7 (𝑥 ∈ ℝ* → (¬ 𝑥 = -∞ → -∞ < 𝑥))
168, 12, 15sylc 65 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝑥𝐴) → -∞ < 𝑥)
1716reximdva0 4308 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 -∞ < 𝑥)
18173impa 1109 . . . 4 ((𝐴 ⊆ ℝ* ∧ ¬ -∞ ∈ 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 -∞ < 𝑥)
19183com23 1126 . . 3 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → ∃𝑥𝐴 -∞ < 𝑥)
20 supxrlub 13246 . . . 4 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 -∞ < 𝑥))
2120biimprd 248 . . 3 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ ℝ*) → (∃𝑥𝐴 -∞ < 𝑥 → -∞ < sup(𝐴, ℝ*, < )))
226, 19, 21sylc 65 . 2 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → -∞ < sup(𝐴, ℝ*, < ))
23 xrltne 13084 . 2 ((-∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ -∞ < sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ≠ -∞)
242, 4, 22, 23syl3anc 1373 1 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3905  c0 4286   class class class wbr 5095  supcsup 9349  -∞cmnf 11166  *cxr 11167   < clt 11168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator