Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmxidllem Structured version   Visualization version   GIF version

Theorem ssmxidllem 31543
Description: The set 𝑃 used in the proof of ssmxidl 31544 satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Hypotheses
Ref Expression
ssmxidl.1 𝐵 = (Base‘𝑅)
ssmxidllem.1 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}
ssmxidllem.2 (𝜑𝑅 ∈ Ring)
ssmxidllem.3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
ssmxidllem.4 (𝜑𝐼𝐵)
ssmxidllem2.1 (𝜑𝑍𝑃)
ssmxidllem2.2 (𝜑𝑍 ≠ ∅)
ssmxidllem2.3 (𝜑 → [] Or 𝑍)
Assertion
Ref Expression
ssmxidllem (𝜑 𝑍𝑃)
Distinct variable groups:   𝐵,𝑝   𝐼,𝑝   𝑅,𝑝   𝑍,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)

Proof of Theorem ssmxidllem
Dummy variables 𝑎 𝑏 𝑖 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 3005 . . . 4 (𝑝 = 𝑍 → (𝑝𝐵 𝑍𝐵))
2 sseq2 3943 . . . 4 (𝑝 = 𝑍 → (𝐼𝑝𝐼 𝑍))
31, 2anbi12d 630 . . 3 (𝑝 = 𝑍 → ((𝑝𝐵𝐼𝑝) ↔ ( 𝑍𝐵𝐼 𝑍)))
4 ssmxidllem2.1 . . . . . . . . 9 (𝜑𝑍𝑃)
5 ssmxidllem.1 . . . . . . . . . 10 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}
65ssrab3 4011 . . . . . . . . 9 𝑃 ⊆ (LIdeal‘𝑅)
74, 6sstrdi 3929 . . . . . . . 8 (𝜑𝑍 ⊆ (LIdeal‘𝑅))
87sselda 3917 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗 ∈ (LIdeal‘𝑅))
9 ssmxidl.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
10 eqid 2738 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
119, 10lidlss 20394 . . . . . . 7 (𝑗 ∈ (LIdeal‘𝑅) → 𝑗𝐵)
128, 11syl 17 . . . . . 6 ((𝜑𝑗𝑍) → 𝑗𝐵)
1312ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑗𝑍 𝑗𝐵)
14 unissb 4870 . . . . 5 ( 𝑍𝐵 ↔ ∀𝑗𝑍 𝑗𝐵)
1513, 14sylibr 233 . . . 4 (𝜑 𝑍𝐵)
16 ssmxidllem2.2 . . . . . . 7 (𝜑𝑍 ≠ ∅)
17 ssmxidllem.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
1817adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑅 ∈ Ring)
19 eqid 2738 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
2010, 19lidl0cl 20396 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑗)
2118, 8, 20syl2anc 583 . . . . . . . . 9 ((𝜑𝑗𝑍) → (0g𝑅) ∈ 𝑗)
22 n0i 4264 . . . . . . . . 9 ((0g𝑅) ∈ 𝑗 → ¬ 𝑗 = ∅)
2321, 22syl 17 . . . . . . . 8 ((𝜑𝑗𝑍) → ¬ 𝑗 = ∅)
2423reximdva0 4282 . . . . . . 7 ((𝜑𝑍 ≠ ∅) → ∃𝑗𝑍 ¬ 𝑗 = ∅)
2516, 24mpdan 683 . . . . . 6 (𝜑 → ∃𝑗𝑍 ¬ 𝑗 = ∅)
26 rexnal 3165 . . . . . 6 (∃𝑗𝑍 ¬ 𝑗 = ∅ ↔ ¬ ∀𝑗𝑍 𝑗 = ∅)
2725, 26sylib 217 . . . . 5 (𝜑 → ¬ ∀𝑗𝑍 𝑗 = ∅)
28 uni0c 4865 . . . . . 6 ( 𝑍 = ∅ ↔ ∀𝑗𝑍 𝑗 = ∅)
2928necon3abii 2989 . . . . 5 ( 𝑍 ≠ ∅ ↔ ¬ ∀𝑗𝑍 𝑗 = ∅)
3027, 29sylibr 233 . . . 4 (𝜑 𝑍 ≠ ∅)
31 eluni2 4840 . . . . . . . 8 (𝑎 𝑍 ↔ ∃𝑖𝑍 𝑎𝑖)
32 eluni2 4840 . . . . . . . 8 (𝑏 𝑍 ↔ ∃𝑗𝑍 𝑏𝑗)
3331, 32anbi12i 626 . . . . . . 7 ((𝑎 𝑍𝑏 𝑍) ↔ (∃𝑖𝑍 𝑎𝑖 ∧ ∃𝑗𝑍 𝑏𝑗))
34 an32 642 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ ∃𝑖𝑍 𝑎𝑖) ∧ 𝑗𝑍) ↔ (((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ ∃𝑖𝑍 𝑎𝑖))
3517ad6antr 732 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑅 ∈ Ring)
367ad5antr 730 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → 𝑍 ⊆ (LIdeal‘𝑅))
37 simp-4r 780 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → 𝑗𝑍)
3836, 37sseldd 3918 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → 𝑗 ∈ (LIdeal‘𝑅))
3938adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑗 ∈ (LIdeal‘𝑅))
40 simp-6r 784 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑥𝐵)
41 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑖𝑗)
42 simplr 765 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑎𝑖)
4341, 42sseldd 3918 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑎𝑗)
44 eqid 2738 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
4510, 9, 44lidlmcl 20401 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ (𝑥𝐵𝑎𝑗)) → (𝑥(.r𝑅)𝑎) ∈ 𝑗)
4635, 39, 40, 43, 45syl22anc 835 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → (𝑥(.r𝑅)𝑎) ∈ 𝑗)
47 simp-4r 780 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑏𝑗)
48 eqid 2738 . . . . . . . . . . . . . . . 16 (+g𝑅) = (+g𝑅)
4910, 48lidlacl 20397 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑗𝑏𝑗)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑗)
5035, 39, 46, 47, 49syl22anc 835 . . . . . . . . . . . . . 14 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑗)
5137adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑗𝑍)
52 elunii 4841 . . . . . . . . . . . . . 14 ((((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑗𝑗𝑍) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
5350, 51, 52syl2anc 583 . . . . . . . . . . . . 13 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
5417ad6antr 732 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑅 ∈ Ring)
5536adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑍 ⊆ (LIdeal‘𝑅))
56 simplr 765 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → 𝑖𝑍)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑖𝑍)
5855, 57sseldd 3918 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑖 ∈ (LIdeal‘𝑅))
59 simp-6r 784 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑥𝐵)
60 simplr 765 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑎𝑖)
6110, 9, 44lidlmcl 20401 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ (𝑥𝐵𝑎𝑖)) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
6254, 58, 59, 60, 61syl22anc 835 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
63 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑗𝑖)
64 simp-4r 780 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑏𝑗)
6563, 64sseldd 3918 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑏𝑖)
6610, 48lidlacl 20397 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑖𝑏𝑖)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
6754, 58, 62, 65, 66syl22anc 835 . . . . . . . . . . . . . 14 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
68 elunii 4841 . . . . . . . . . . . . . 14 ((((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖𝑖𝑍) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
6967, 57, 68syl2anc 583 . . . . . . . . . . . . 13 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
70 ssmxidllem2.3 . . . . . . . . . . . . . . 15 (𝜑 → [] Or 𝑍)
7170ad5antr 730 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → [] Or 𝑍)
72 sorpssi 7560 . . . . . . . . . . . . . 14 (( [] Or 𝑍 ∧ (𝑖𝑍𝑗𝑍)) → (𝑖𝑗𝑗𝑖))
7371, 56, 37, 72syl12anc 833 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → (𝑖𝑗𝑗𝑖))
7453, 69, 73mpjaodan 955 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7574r19.29an 3216 . . . . . . . . . . 11 (((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ ∃𝑖𝑍 𝑎𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7675an32s 648 . . . . . . . . . 10 (((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ ∃𝑖𝑍 𝑎𝑖) ∧ 𝑏𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7734, 76sylanb 580 . . . . . . . . 9 (((((𝜑𝑥𝐵) ∧ ∃𝑖𝑍 𝑎𝑖) ∧ 𝑗𝑍) ∧ 𝑏𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7877r19.29an 3216 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ ∃𝑖𝑍 𝑎𝑖) ∧ ∃𝑗𝑍 𝑏𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7978anasss 466 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (∃𝑖𝑍 𝑎𝑖 ∧ ∃𝑗𝑍 𝑏𝑗)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
8033, 79sylan2b 593 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑎 𝑍𝑏 𝑍)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
8180ralrimivva 3114 . . . . 5 ((𝜑𝑥𝐵) → ∀𝑎 𝑍𝑏 𝑍((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
8281ralrimiva 3107 . . . 4 (𝜑 → ∀𝑥𝐵𝑎 𝑍𝑏 𝑍((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
8310, 9, 48, 44islidl 20395 . . . 4 ( 𝑍 ∈ (LIdeal‘𝑅) ↔ ( 𝑍𝐵 𝑍 ≠ ∅ ∧ ∀𝑥𝐵𝑎 𝑍𝑏 𝑍((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍))
8415, 30, 82, 83syl3anbrc 1341 . . 3 (𝜑 𝑍 ∈ (LIdeal‘𝑅))
854sselda 3917 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑃)
86 neeq1 3005 . . . . . . . . . . . 12 (𝑝 = 𝑗 → (𝑝𝐵𝑗𝐵))
87 sseq2 3943 . . . . . . . . . . . 12 (𝑝 = 𝑗 → (𝐼𝑝𝐼𝑗))
8886, 87anbi12d 630 . . . . . . . . . . 11 (𝑝 = 𝑗 → ((𝑝𝐵𝐼𝑝) ↔ (𝑗𝐵𝐼𝑗)))
8988, 5elrab2 3620 . . . . . . . . . 10 (𝑗𝑃 ↔ (𝑗 ∈ (LIdeal‘𝑅) ∧ (𝑗𝐵𝐼𝑗)))
9085, 89sylib 217 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑗 ∈ (LIdeal‘𝑅) ∧ (𝑗𝐵𝐼𝑗)))
9190simprld 768 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝑗𝐵)
92 eqid 2738 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
939, 92pridln1 31520 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑗𝐵) → ¬ (1r𝑅) ∈ 𝑗)
9418, 8, 91, 93syl3anc 1369 . . . . . . 7 ((𝜑𝑗𝑍) → ¬ (1r𝑅) ∈ 𝑗)
9594nrexdv 3197 . . . . . 6 (𝜑 → ¬ ∃𝑗𝑍 (1r𝑅) ∈ 𝑗)
96 eluni2 4840 . . . . . 6 ((1r𝑅) ∈ 𝑍 ↔ ∃𝑗𝑍 (1r𝑅) ∈ 𝑗)
9795, 96sylnibr 328 . . . . 5 (𝜑 → ¬ (1r𝑅) ∈ 𝑍)
9810, 9, 92lidl1el 20402 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (LIdeal‘𝑅)) → ((1r𝑅) ∈ 𝑍 𝑍 = 𝐵))
9917, 84, 98syl2anc 583 . . . . . 6 (𝜑 → ((1r𝑅) ∈ 𝑍 𝑍 = 𝐵))
10099necon3bbid 2980 . . . . 5 (𝜑 → (¬ (1r𝑅) ∈ 𝑍 𝑍𝐵))
10197, 100mpbid 231 . . . 4 (𝜑 𝑍𝐵)
10290simprrd 770 . . . . . . 7 ((𝜑𝑗𝑍) → 𝐼𝑗)
103102ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑗𝑍 𝐼𝑗)
104 ssint 4892 . . . . . 6 (𝐼 𝑍 ↔ ∀𝑗𝑍 𝐼𝑗)
105103, 104sylibr 233 . . . . 5 (𝜑𝐼 𝑍)
106 intssuni 4898 . . . . . 6 (𝑍 ≠ ∅ → 𝑍 𝑍)
10716, 106syl 17 . . . . 5 (𝜑 𝑍 𝑍)
108105, 107sstrd 3927 . . . 4 (𝜑𝐼 𝑍)
109101, 108jca 511 . . 3 (𝜑 → ( 𝑍𝐵𝐼 𝑍))
1103, 84, 109elrabd 3619 . 2 (𝜑 𝑍 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
111110, 5eleqtrrdi 2850 1 (𝜑 𝑍𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883  c0 4253   cuni 4836   cint 4876   Or wor 5493  cfv 6418  (class class class)co 7255   [] crpss 7553  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  1rcur 19652  Ringcrg 19698  LIdealclidl 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rpss 7554  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-lidl 20351
This theorem is referenced by:  ssmxidl  31544
  Copyright terms: Public domain W3C validator