Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmxidllem Structured version   Visualization version   GIF version

Theorem ssmxidllem 31049
Description: The set 𝑃 used in the proof of ssmxidl 31050 satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Hypotheses
Ref Expression
ssmxidl.1 𝐵 = (Base‘𝑅)
ssmxidllem.1 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}
ssmxidllem.2 (𝜑𝑅 ∈ Ring)
ssmxidllem.3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
ssmxidllem.4 (𝜑𝐼𝐵)
ssmxidllem2.1 (𝜑𝑍𝑃)
ssmxidllem2.2 (𝜑𝑍 ≠ ∅)
ssmxidllem2.3 (𝜑 → [] Or 𝑍)
Assertion
Ref Expression
ssmxidllem (𝜑 𝑍𝑃)
Distinct variable groups:   𝐵,𝑝   𝐼,𝑝   𝑅,𝑝   𝑍,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑃(𝑝)

Proof of Theorem ssmxidllem
Dummy variables 𝑎 𝑏 𝑖 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neeq1 3049 . . . 4 (𝑝 = 𝑍 → (𝑝𝐵 𝑍𝐵))
2 sseq2 3941 . . . 4 (𝑝 = 𝑍 → (𝐼𝑝𝐼 𝑍))
31, 2anbi12d 633 . . 3 (𝑝 = 𝑍 → ((𝑝𝐵𝐼𝑝) ↔ ( 𝑍𝐵𝐼 𝑍)))
4 ssmxidllem2.1 . . . . . . . . 9 (𝜑𝑍𝑃)
5 ssmxidllem.1 . . . . . . . . . 10 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)}
65ssrab3 4008 . . . . . . . . 9 𝑃 ⊆ (LIdeal‘𝑅)
74, 6sstrdi 3927 . . . . . . . 8 (𝜑𝑍 ⊆ (LIdeal‘𝑅))
87sselda 3915 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗 ∈ (LIdeal‘𝑅))
9 ssmxidl.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
10 eqid 2798 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
119, 10lidlss 19976 . . . . . . 7 (𝑗 ∈ (LIdeal‘𝑅) → 𝑗𝐵)
128, 11syl 17 . . . . . 6 ((𝜑𝑗𝑍) → 𝑗𝐵)
1312ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑗𝑍 𝑗𝐵)
14 unissb 4832 . . . . 5 ( 𝑍𝐵 ↔ ∀𝑗𝑍 𝑗𝐵)
1513, 14sylibr 237 . . . 4 (𝜑 𝑍𝐵)
16 ssmxidllem2.2 . . . . . . 7 (𝜑𝑍 ≠ ∅)
17 ssmxidllem.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
1817adantr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑅 ∈ Ring)
19 eqid 2798 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
2010, 19lidl0cl 19978 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑗)
2118, 8, 20syl2anc 587 . . . . . . . . 9 ((𝜑𝑗𝑍) → (0g𝑅) ∈ 𝑗)
22 n0i 4249 . . . . . . . . 9 ((0g𝑅) ∈ 𝑗 → ¬ 𝑗 = ∅)
2321, 22syl 17 . . . . . . . 8 ((𝜑𝑗𝑍) → ¬ 𝑗 = ∅)
2423reximdva0 4265 . . . . . . 7 ((𝜑𝑍 ≠ ∅) → ∃𝑗𝑍 ¬ 𝑗 = ∅)
2516, 24mpdan 686 . . . . . 6 (𝜑 → ∃𝑗𝑍 ¬ 𝑗 = ∅)
26 rexnal 3201 . . . . . 6 (∃𝑗𝑍 ¬ 𝑗 = ∅ ↔ ¬ ∀𝑗𝑍 𝑗 = ∅)
2725, 26sylib 221 . . . . 5 (𝜑 → ¬ ∀𝑗𝑍 𝑗 = ∅)
28 uni0c 4827 . . . . . 6 ( 𝑍 = ∅ ↔ ∀𝑗𝑍 𝑗 = ∅)
2928necon3abii 3033 . . . . 5 ( 𝑍 ≠ ∅ ↔ ¬ ∀𝑗𝑍 𝑗 = ∅)
3027, 29sylibr 237 . . . 4 (𝜑 𝑍 ≠ ∅)
31 eluni2 4804 . . . . . . . 8 (𝑎 𝑍 ↔ ∃𝑖𝑍 𝑎𝑖)
32 eluni2 4804 . . . . . . . 8 (𝑏 𝑍 ↔ ∃𝑗𝑍 𝑏𝑗)
3331, 32anbi12i 629 . . . . . . 7 ((𝑎 𝑍𝑏 𝑍) ↔ (∃𝑖𝑍 𝑎𝑖 ∧ ∃𝑗𝑍 𝑏𝑗))
34 an32 645 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ ∃𝑖𝑍 𝑎𝑖) ∧ 𝑗𝑍) ↔ (((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ ∃𝑖𝑍 𝑎𝑖))
3517ad6antr 735 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑅 ∈ Ring)
367ad5antr 733 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → 𝑍 ⊆ (LIdeal‘𝑅))
37 simp-4r 783 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → 𝑗𝑍)
3836, 37sseldd 3916 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → 𝑗 ∈ (LIdeal‘𝑅))
3938adantr 484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑗 ∈ (LIdeal‘𝑅))
40 simp-6r 787 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑥𝐵)
41 simpr 488 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑖𝑗)
42 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑎𝑖)
4341, 42sseldd 3916 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑎𝑗)
44 eqid 2798 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
4510, 9, 44lidlmcl 19983 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ (𝑥𝐵𝑎𝑗)) → (𝑥(.r𝑅)𝑎) ∈ 𝑗)
4635, 39, 40, 43, 45syl22anc 837 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → (𝑥(.r𝑅)𝑎) ∈ 𝑗)
47 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑏𝑗)
48 eqid 2798 . . . . . . . . . . . . . . . 16 (+g𝑅) = (+g𝑅)
4910, 48lidlacl 19979 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑗𝑏𝑗)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑗)
5035, 39, 46, 47, 49syl22anc 837 . . . . . . . . . . . . . 14 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑗)
5137adantr 484 . . . . . . . . . . . . . 14 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → 𝑗𝑍)
52 elunii 4805 . . . . . . . . . . . . . 14 ((((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑗𝑗𝑍) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
5350, 51, 52syl2anc 587 . . . . . . . . . . . . 13 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑖𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
5417ad6antr 735 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑅 ∈ Ring)
5536adantr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑍 ⊆ (LIdeal‘𝑅))
56 simplr 768 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → 𝑖𝑍)
5756adantr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑖𝑍)
5855, 57sseldd 3916 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑖 ∈ (LIdeal‘𝑅))
59 simp-6r 787 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑥𝐵)
60 simplr 768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑎𝑖)
6110, 9, 44lidlmcl 19983 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ (𝑥𝐵𝑎𝑖)) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
6254, 58, 59, 60, 61syl22anc 837 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
63 simpr 488 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑗𝑖)
64 simp-4r 783 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑏𝑗)
6563, 64sseldd 3916 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → 𝑏𝑖)
6610, 48lidlacl 19979 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑖𝑏𝑖)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
6754, 58, 62, 65, 66syl22anc 837 . . . . . . . . . . . . . 14 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
68 elunii 4805 . . . . . . . . . . . . . 14 ((((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖𝑖𝑍) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
6967, 57, 68syl2anc 587 . . . . . . . . . . . . 13 (((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) ∧ 𝑗𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
70 ssmxidllem2.3 . . . . . . . . . . . . . . 15 (𝜑 → [] Or 𝑍)
7170ad5antr 733 . . . . . . . . . . . . . 14 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → [] Or 𝑍)
72 sorpssi 7435 . . . . . . . . . . . . . 14 (( [] Or 𝑍 ∧ (𝑖𝑍𝑗𝑍)) → (𝑖𝑗𝑗𝑖))
7371, 56, 37, 72syl12anc 835 . . . . . . . . . . . . 13 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → (𝑖𝑗𝑗𝑖))
7453, 69, 73mpjaodan 956 . . . . . . . . . . . 12 ((((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ 𝑖𝑍) ∧ 𝑎𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7574r19.29an 3247 . . . . . . . . . . 11 (((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ 𝑏𝑗) ∧ ∃𝑖𝑍 𝑎𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7675an32s 651 . . . . . . . . . 10 (((((𝜑𝑥𝐵) ∧ 𝑗𝑍) ∧ ∃𝑖𝑍 𝑎𝑖) ∧ 𝑏𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7734, 76sylanb 584 . . . . . . . . 9 (((((𝜑𝑥𝐵) ∧ ∃𝑖𝑍 𝑎𝑖) ∧ 𝑗𝑍) ∧ 𝑏𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7877r19.29an 3247 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ ∃𝑖𝑍 𝑎𝑖) ∧ ∃𝑗𝑍 𝑏𝑗) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
7978anasss 470 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (∃𝑖𝑍 𝑎𝑖 ∧ ∃𝑗𝑍 𝑏𝑗)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
8033, 79sylan2b 596 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑎 𝑍𝑏 𝑍)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
8180ralrimivva 3156 . . . . 5 ((𝜑𝑥𝐵) → ∀𝑎 𝑍𝑏 𝑍((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
8281ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥𝐵𝑎 𝑍𝑏 𝑍((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍)
8310, 9, 48, 44islidl 19977 . . . 4 ( 𝑍 ∈ (LIdeal‘𝑅) ↔ ( 𝑍𝐵 𝑍 ≠ ∅ ∧ ∀𝑥𝐵𝑎 𝑍𝑏 𝑍((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑍))
8415, 30, 82, 83syl3anbrc 1340 . . 3 (𝜑 𝑍 ∈ (LIdeal‘𝑅))
854sselda 3915 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑃)
86 neeq1 3049 . . . . . . . . . . . 12 (𝑝 = 𝑗 → (𝑝𝐵𝑗𝐵))
87 sseq2 3941 . . . . . . . . . . . 12 (𝑝 = 𝑗 → (𝐼𝑝𝐼𝑗))
8886, 87anbi12d 633 . . . . . . . . . . 11 (𝑝 = 𝑗 → ((𝑝𝐵𝐼𝑝) ↔ (𝑗𝐵𝐼𝑗)))
8988, 5elrab2 3631 . . . . . . . . . 10 (𝑗𝑃 ↔ (𝑗 ∈ (LIdeal‘𝑅) ∧ (𝑗𝐵𝐼𝑗)))
9085, 89sylib 221 . . . . . . . . 9 ((𝜑𝑗𝑍) → (𝑗 ∈ (LIdeal‘𝑅) ∧ (𝑗𝐵𝐼𝑗)))
9190simprld 771 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝑗𝐵)
92 eqid 2798 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
939, 92pridln1 31026 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅) ∧ 𝑗𝐵) → ¬ (1r𝑅) ∈ 𝑗)
9418, 8, 91, 93syl3anc 1368 . . . . . . 7 ((𝜑𝑗𝑍) → ¬ (1r𝑅) ∈ 𝑗)
9594nrexdv 3229 . . . . . 6 (𝜑 → ¬ ∃𝑗𝑍 (1r𝑅) ∈ 𝑗)
96 eluni2 4804 . . . . . 6 ((1r𝑅) ∈ 𝑍 ↔ ∃𝑗𝑍 (1r𝑅) ∈ 𝑗)
9795, 96sylnibr 332 . . . . 5 (𝜑 → ¬ (1r𝑅) ∈ 𝑍)
9810, 9, 92lidl1el 19984 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (LIdeal‘𝑅)) → ((1r𝑅) ∈ 𝑍 𝑍 = 𝐵))
9917, 84, 98syl2anc 587 . . . . . 6 (𝜑 → ((1r𝑅) ∈ 𝑍 𝑍 = 𝐵))
10099necon3bbid 3024 . . . . 5 (𝜑 → (¬ (1r𝑅) ∈ 𝑍 𝑍𝐵))
10197, 100mpbid 235 . . . 4 (𝜑 𝑍𝐵)
10290simprrd 773 . . . . . . 7 ((𝜑𝑗𝑍) → 𝐼𝑗)
103102ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑗𝑍 𝐼𝑗)
104 ssint 4854 . . . . . 6 (𝐼 𝑍 ↔ ∀𝑗𝑍 𝐼𝑗)
105103, 104sylibr 237 . . . . 5 (𝜑𝐼 𝑍)
106 intssuni 4860 . . . . . 6 (𝑍 ≠ ∅ → 𝑍 𝑍)
10716, 106syl 17 . . . . 5 (𝜑 𝑍 𝑍)
108105, 107sstrd 3925 . . . 4 (𝜑𝐼 𝑍)
109101, 108jca 515 . . 3 (𝜑 → ( 𝑍𝐵𝐼 𝑍))
1103, 84, 109elrabd 3630 . 2 (𝜑 𝑍 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ (𝑝𝐵𝐼𝑝)})
111110, 5eleqtrrdi 2901 1 (𝜑 𝑍𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   cuni 4800   cint 4838   Or wor 5437  cfv 6324  (class class class)co 7135   [] crpss 7428  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  1rcur 19244  Ringcrg 19290  LIdealclidl 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-lidl 19939
This theorem is referenced by:  ssmxidl  31050
  Copyright terms: Public domain W3C validator