Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kerunit Structured version   Visualization version   GIF version

Theorem kerunit 33346
Description: If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.)
Hypotheses
Ref Expression
kerunit.1 𝑈 = (Unit‘𝑅)
kerunit.2 0 = (0g𝑆)
kerunit.3 1 = (1r𝑆)
Assertion
Ref Expression
kerunit ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )

Proof of Theorem kerunit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3947 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) ↔ (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
21biimpi 216 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
32adantl 481 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
43simpld 494 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥𝑈)
5 rhmrcl1 20441 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
6 kerunit.1 . . . . . . . 8 𝑈 = (Unit‘𝑅)
7 eqid 2736 . . . . . . . 8 (invr𝑅) = (invr𝑅)
8 eqid 2736 . . . . . . . 8 (.r𝑅) = (.r𝑅)
9 eqid 2736 . . . . . . . 8 (1r𝑅) = (1r𝑅)
106, 7, 8, 9unitlinv 20358 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (((invr𝑅)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
1110fveq2d 6885 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
125, 11sylan 580 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥𝑈) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
134, 12syldan 591 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
14 simpl 482 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
155adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑅 ∈ Ring)
16 eqid 2736 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
176, 7, 16ringinvcl 20357 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1815, 4, 17syl2anc 584 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1916, 6unitcl 20340 . . . . . . 7 (𝑥𝑈𝑥 ∈ (Base‘𝑅))
204, 19syl 17 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥 ∈ (Base‘𝑅))
21 eqid 2736 . . . . . . 7 (.r𝑆) = (.r𝑆)
2216, 8, 21rhmmul 20451 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)))
2314, 18, 20, 22syl3anc 1373 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)))
243simprd 495 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥 ∈ (𝐹 “ { 0 }))
25 eqid 2736 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2616, 25rhmf 20450 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
27 ffn 6711 . . . . . . . . . 10 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
28 elpreima 7053 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ { 0 })))
2926, 27, 283syl 18 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ { 0 })))
3029simplbda 499 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) ∈ { 0 })
3124, 30syldan 591 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹𝑥) ∈ { 0 })
32 fvex 6894 . . . . . . . 8 (𝐹𝑥) ∈ V
3332elsn 4621 . . . . . . 7 ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 )
3431, 33sylib 218 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹𝑥) = 0 )
3534oveq2d 7426 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ))
36 rhmrcl2 20442 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
3736adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑆 ∈ Ring)
3826adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
3938, 18ffvelcdmd 7080 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘((invr𝑅)‘𝑥)) ∈ (Base‘𝑆))
40 kerunit.2 . . . . . . 7 0 = (0g𝑆)
4125, 21, 40ringrz 20259 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘((invr𝑅)‘𝑥)) ∈ (Base‘𝑆)) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ) = 0 )
4237, 39, 41syl2anc 584 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ) = 0 )
4323, 35, 423eqtrd 2775 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = 0 )
44 kerunit.3 . . . . . 6 1 = (1r𝑆)
459, 44rhm1 20454 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = 1 )
4645adantr 480 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(1r𝑅)) = 1 )
4713, 43, 463eqtr3rd 2780 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 1 = 0 )
4847reximdva0 4335 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → ∃𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) 1 = 0 )
49 id 22 . . 3 ( 1 = 01 = 0 )
5049rexlimivw 3138 . 2 (∃𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) 1 = 01 = 0 )
5148, 50syl 17 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  cin 3930  c0 4313  {csn 4606  ccnv 5658  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  0gc0g 17458  1rcur 20146  Ringcrg 20198  Unitcui 20320  invrcinvr 20352   RingHom crh 20434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-rhm 20437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator