Step | Hyp | Ref
| Expression |
1 | | elin 3963 |
. . . . . . . 8
β’ (π₯ β (π β© (β‘πΉ β { 0 })) β (π₯ β π β§ π₯ β (β‘πΉ β { 0 }))) |
2 | 1 | biimpi 215 |
. . . . . . 7
β’ (π₯ β (π β© (β‘πΉ β { 0 })) β (π₯ β π β§ π₯ β (β‘πΉ β { 0 }))) |
3 | 2 | adantl 482 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β (π₯ β π β§ π₯ β (β‘πΉ β { 0 }))) |
4 | 3 | simpld 495 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β π₯ β π) |
5 | | rhmrcl1 20247 |
. . . . . 6
β’ (πΉ β (π
RingHom π) β π
β Ring) |
6 | | kerunit.1 |
. . . . . . . 8
β’ π = (Unitβπ
) |
7 | | eqid 2732 |
. . . . . . . 8
β’
(invrβπ
) = (invrβπ
) |
8 | | eqid 2732 |
. . . . . . . 8
β’
(.rβπ
) = (.rβπ
) |
9 | | eqid 2732 |
. . . . . . . 8
β’
(1rβπ
) = (1rβπ
) |
10 | 6, 7, 8, 9 | unitlinv 20199 |
. . . . . . 7
β’ ((π
β Ring β§ π₯ β π) β (((invrβπ
)βπ₯)(.rβπ
)π₯) = (1rβπ
)) |
11 | 10 | fveq2d 6892 |
. . . . . 6
β’ ((π
β Ring β§ π₯ β π) β (πΉβ(((invrβπ
)βπ₯)(.rβπ
)π₯)) = (πΉβ(1rβπ
))) |
12 | 5, 11 | sylan 580 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π₯ β π) β (πΉβ(((invrβπ
)βπ₯)(.rβπ
)π₯)) = (πΉβ(1rβπ
))) |
13 | 4, 12 | syldan 591 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β (πΉβ(((invrβπ
)βπ₯)(.rβπ
)π₯)) = (πΉβ(1rβπ
))) |
14 | | simpl 483 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β πΉ β (π
RingHom π)) |
15 | 5 | adantr 481 |
. . . . . . 7
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β π
β Ring) |
16 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
17 | 6, 7, 16 | ringinvcl 20198 |
. . . . . . 7
β’ ((π
β Ring β§ π₯ β π) β ((invrβπ
)βπ₯) β (Baseβπ
)) |
18 | 15, 4, 17 | syl2anc 584 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β
((invrβπ
)βπ₯) β (Baseβπ
)) |
19 | 16, 6 | unitcl 20181 |
. . . . . . 7
β’ (π₯ β π β π₯ β (Baseβπ
)) |
20 | 4, 19 | syl 17 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β π₯ β (Baseβπ
)) |
21 | | eqid 2732 |
. . . . . . 7
β’
(.rβπ) = (.rβπ) |
22 | 16, 8, 21 | rhmmul 20256 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ ((invrβπ
)βπ₯) β (Baseβπ
) β§ π₯ β (Baseβπ
)) β (πΉβ(((invrβπ
)βπ₯)(.rβπ
)π₯)) = ((πΉβ((invrβπ
)βπ₯))(.rβπ)(πΉβπ₯))) |
23 | 14, 18, 20, 22 | syl3anc 1371 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β (πΉβ(((invrβπ
)βπ₯)(.rβπ
)π₯)) = ((πΉβ((invrβπ
)βπ₯))(.rβπ)(πΉβπ₯))) |
24 | 3 | simprd 496 |
. . . . . . . 8
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β π₯ β (β‘πΉ β { 0 })) |
25 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Baseβπ) =
(Baseβπ) |
26 | 16, 25 | rhmf 20255 |
. . . . . . . . . 10
β’ (πΉ β (π
RingHom π) β πΉ:(Baseβπ
)βΆ(Baseβπ)) |
27 | | ffn 6714 |
. . . . . . . . . 10
β’ (πΉ:(Baseβπ
)βΆ(Baseβπ) β πΉ Fn (Baseβπ
)) |
28 | | elpreima 7056 |
. . . . . . . . . 10
β’ (πΉ Fn (Baseβπ
) β (π₯ β (β‘πΉ β { 0 }) β (π₯ β (Baseβπ
) β§ (πΉβπ₯) β { 0 }))) |
29 | 26, 27, 28 | 3syl 18 |
. . . . . . . . 9
β’ (πΉ β (π
RingHom π) β (π₯ β (β‘πΉ β { 0 }) β (π₯ β (Baseβπ
) β§ (πΉβπ₯) β { 0 }))) |
30 | 29 | simplbda 500 |
. . . . . . . 8
β’ ((πΉ β (π
RingHom π) β§ π₯ β (β‘πΉ β { 0 })) β (πΉβπ₯) β { 0 }) |
31 | 24, 30 | syldan 591 |
. . . . . . 7
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β (πΉβπ₯) β { 0 }) |
32 | | fvex 6901 |
. . . . . . . 8
β’ (πΉβπ₯) β V |
33 | 32 | elsn 4642 |
. . . . . . 7
β’ ((πΉβπ₯) β { 0 } β (πΉβπ₯) = 0 ) |
34 | 31, 33 | sylib 217 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β (πΉβπ₯) = 0 ) |
35 | 34 | oveq2d 7421 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β ((πΉβ((invrβπ
)βπ₯))(.rβπ)(πΉβπ₯)) = ((πΉβ((invrβπ
)βπ₯))(.rβπ) 0 )) |
36 | | rhmrcl2 20248 |
. . . . . . 7
β’ (πΉ β (π
RingHom π) β π β Ring) |
37 | 36 | adantr 481 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β π β Ring) |
38 | 26 | adantr 481 |
. . . . . . 7
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β πΉ:(Baseβπ
)βΆ(Baseβπ)) |
39 | 38, 18 | ffvelcdmd 7084 |
. . . . . 6
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β (πΉβ((invrβπ
)βπ₯)) β (Baseβπ)) |
40 | | kerunit.2 |
. . . . . . 7
β’ 0 =
(0gβπ) |
41 | 25, 21, 40 | ringrz 20101 |
. . . . . 6
β’ ((π β Ring β§ (πΉβ((invrβπ
)βπ₯)) β (Baseβπ)) β ((πΉβ((invrβπ
)βπ₯))(.rβπ) 0 ) = 0 ) |
42 | 37, 39, 41 | syl2anc 584 |
. . . . 5
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β ((πΉβ((invrβπ
)βπ₯))(.rβπ) 0 ) = 0 ) |
43 | 23, 35, 42 | 3eqtrd 2776 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β (πΉβ(((invrβπ
)βπ₯)(.rβπ
)π₯)) = 0 ) |
44 | | kerunit.3 |
. . . . . 6
β’ 1 =
(1rβπ) |
45 | 9, 44 | rhm1 20259 |
. . . . 5
β’ (πΉ β (π
RingHom π) β (πΉβ(1rβπ
)) = 1 ) |
46 | 45 | adantr 481 |
. . . 4
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β (πΉβ(1rβπ
)) = 1 ) |
47 | 13, 43, 46 | 3eqtr3rd 2781 |
. . 3
β’ ((πΉ β (π
RingHom π) β§ π₯ β (π β© (β‘πΉ β { 0 }))) β 1 = 0
) |
48 | 47 | reximdva0 4350 |
. 2
β’ ((πΉ β (π
RingHom π) β§ (π β© (β‘πΉ β { 0 })) β β
) β
βπ₯ β (π β© (β‘πΉ β { 0 })) 1 = 0 ) |
49 | | id 22 |
. . 3
β’ ( 1 = 0 β 1 = 0
) |
50 | 49 | rexlimivw 3151 |
. 2
β’
(βπ₯ β
(π β© (β‘πΉ β { 0 })) 1 = 0 β 1 = 0 ) |
51 | 48, 50 | syl 17 |
1
β’ ((πΉ β (π
RingHom π) β§ (π β© (β‘πΉ β { 0 })) β β
) β
1 = 0
) |