Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kerunit Structured version   Visualization version   GIF version

Theorem kerunit 30146
Description: If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.)
Hypotheses
Ref Expression
kerunit.1 𝑈 = (Unit‘𝑅)
kerunit.2 0 = (0g𝑆)
kerunit.3 1 = (1r𝑆)
Assertion
Ref Expression
kerunit ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )

Proof of Theorem kerunit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3993 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) ↔ (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
21biimpi 207 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
32adantl 469 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
43simpld 484 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥𝑈)
5 rhmrcl1 18921 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
6 kerunit.1 . . . . . . . 8 𝑈 = (Unit‘𝑅)
7 eqid 2804 . . . . . . . 8 (invr𝑅) = (invr𝑅)
8 eqid 2804 . . . . . . . 8 (.r𝑅) = (.r𝑅)
9 eqid 2804 . . . . . . . 8 (1r𝑅) = (1r𝑅)
106, 7, 8, 9unitlinv 18877 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (((invr𝑅)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
1110fveq2d 6410 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
125, 11sylan 571 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥𝑈) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
134, 12syldan 581 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
14 simpl 470 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
155adantr 468 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑅 ∈ Ring)
16 eqid 2804 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
176, 7, 16ringinvcl 18876 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1815, 4, 17syl2anc 575 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1916, 6unitcl 18859 . . . . . . 7 (𝑥𝑈𝑥 ∈ (Base‘𝑅))
204, 19syl 17 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥 ∈ (Base‘𝑅))
21 eqid 2804 . . . . . . 7 (.r𝑆) = (.r𝑆)
2216, 8, 21rhmmul 18929 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)))
2314, 18, 20, 22syl3anc 1483 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)))
243simprd 485 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥 ∈ (𝐹 “ { 0 }))
25 eqid 2804 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2616, 25rhmf 18928 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
27 ffn 6254 . . . . . . . . . 10 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
28 elpreima 6557 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ { 0 })))
2926, 27, 283syl 18 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ { 0 })))
3029simplbda 489 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) ∈ { 0 })
3124, 30syldan 581 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹𝑥) ∈ { 0 })
32 fvex 6419 . . . . . . . 8 (𝐹𝑥) ∈ V
3332elsn 4383 . . . . . . 7 ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 )
3431, 33sylib 209 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹𝑥) = 0 )
3534oveq2d 6888 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ))
36 rhmrcl2 18922 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
3736adantr 468 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑆 ∈ Ring)
3826adantr 468 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
3938, 18ffvelrnd 6580 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘((invr𝑅)‘𝑥)) ∈ (Base‘𝑆))
40 kerunit.2 . . . . . . 7 0 = (0g𝑆)
4125, 21, 40ringrz 18788 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘((invr𝑅)‘𝑥)) ∈ (Base‘𝑆)) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ) = 0 )
4237, 39, 41syl2anc 575 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ) = 0 )
4323, 35, 423eqtrd 2842 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = 0 )
44 kerunit.3 . . . . . 6 1 = (1r𝑆)
459, 44rhm1 18932 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = 1 )
4645adantr 468 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(1r𝑅)) = 1 )
4713, 43, 463eqtr3rd 2847 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 1 = 0 )
4847reximdva0 4132 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → ∃𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) 1 = 0 )
49 id 22 . . 3 ( 1 = 01 = 0 )
5049rexlimivw 3215 . 2 (∃𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) 1 = 01 = 0 )
5148, 50syl 17 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wne 2976  wrex 3095  cin 3766  c0 4114  {csn 4368  ccnv 5308  cima 5312   Fn wfn 6094  wf 6095  cfv 6099  (class class class)co 6872  Basecbs 16066  .rcmulr 16152  0gc0g 16303  1rcur 18701  Ringcrg 18747  Unitcui 18839  invrcinvr 18871   RingHom crh 18914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-cnex 10275  ax-resscn 10276  ax-1cn 10277  ax-icn 10278  ax-addcl 10279  ax-addrcl 10280  ax-mulcl 10281  ax-mulrcl 10282  ax-mulcom 10283  ax-addass 10284  ax-mulass 10285  ax-distr 10286  ax-i2m1 10287  ax-1ne0 10288  ax-1rid 10289  ax-rnegex 10290  ax-rrecex 10291  ax-cnre 10292  ax-pre-lttri 10293  ax-pre-lttrn 10294  ax-pre-ltadd 10295  ax-pre-mulgt0 10296
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-nel 3080  df-ral 3099  df-rex 3100  df-reu 3101  df-rmo 3102  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5217  df-eprel 5222  df-po 5230  df-so 5231  df-fr 5268  df-we 5270  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-pred 5891  df-ord 5937  df-on 5938  df-lim 5939  df-suc 5940  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6833  df-ov 6875  df-oprab 6876  df-mpt2 6877  df-om 7294  df-tpos 7585  df-wrecs 7640  df-recs 7702  df-rdg 7740  df-er 7977  df-map 8092  df-en 8191  df-dom 8192  df-sdom 8193  df-pnf 10359  df-mnf 10360  df-xr 10361  df-ltxr 10362  df-le 10363  df-sub 10551  df-neg 10552  df-nn 11304  df-2 11362  df-3 11363  df-ndx 16069  df-slot 16070  df-base 16072  df-sets 16073  df-ress 16074  df-plusg 16164  df-mulr 16165  df-0g 16305  df-mgm 17445  df-sgrp 17487  df-mnd 17498  df-mhm 17538  df-grp 17628  df-minusg 17629  df-ghm 17858  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-rnghom 18917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator