Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kerunit Structured version   Visualization version   GIF version

Theorem kerunit 33297
Description: If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.)
Hypotheses
Ref Expression
kerunit.1 𝑈 = (Unit‘𝑅)
kerunit.2 0 = (0g𝑆)
kerunit.3 1 = (1r𝑆)
Assertion
Ref Expression
kerunit ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )

Proof of Theorem kerunit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3930 . . . . . . . 8 (𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) ↔ (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
21biimpi 216 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) → (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
32adantl 481 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝑥𝑈𝑥 ∈ (𝐹 “ { 0 })))
43simpld 494 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥𝑈)
5 rhmrcl1 20385 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
6 kerunit.1 . . . . . . . 8 𝑈 = (Unit‘𝑅)
7 eqid 2729 . . . . . . . 8 (invr𝑅) = (invr𝑅)
8 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
9 eqid 2729 . . . . . . . 8 (1r𝑅) = (1r𝑅)
106, 7, 8, 9unitlinv 20302 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (((invr𝑅)‘𝑥)(.r𝑅)𝑥) = (1r𝑅))
1110fveq2d 6862 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
125, 11sylan 580 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥𝑈) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
134, 12syldan 591 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = (𝐹‘(1r𝑅)))
14 simpl 482 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
155adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑅 ∈ Ring)
16 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
176, 7, 16ringinvcl 20301 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥𝑈) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1815, 4, 17syl2anc 584 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((invr𝑅)‘𝑥) ∈ (Base‘𝑅))
1916, 6unitcl 20284 . . . . . . 7 (𝑥𝑈𝑥 ∈ (Base‘𝑅))
204, 19syl 17 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥 ∈ (Base‘𝑅))
21 eqid 2729 . . . . . . 7 (.r𝑆) = (.r𝑆)
2216, 8, 21rhmmul 20395 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)))
2314, 18, 20, 22syl3anc 1373 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)))
243simprd 495 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑥 ∈ (𝐹 “ { 0 }))
25 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2616, 25rhmf 20394 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
27 ffn 6688 . . . . . . . . . 10 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
28 elpreima 7030 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ { 0 })))
2926, 27, 283syl 18 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ { 0 })))
3029simplbda 499 . . . . . . . 8 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝐹 “ { 0 })) → (𝐹𝑥) ∈ { 0 })
3124, 30syldan 591 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹𝑥) ∈ { 0 })
32 fvex 6871 . . . . . . . 8 (𝐹𝑥) ∈ V
3332elsn 4604 . . . . . . 7 ((𝐹𝑥) ∈ { 0 } ↔ (𝐹𝑥) = 0 )
3431, 33sylib 218 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹𝑥) = 0 )
3534oveq2d 7403 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆)(𝐹𝑥)) = ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ))
36 rhmrcl2 20386 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
3736adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝑆 ∈ Ring)
3826adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
3938, 18ffvelcdmd 7057 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘((invr𝑅)‘𝑥)) ∈ (Base‘𝑆))
40 kerunit.2 . . . . . . 7 0 = (0g𝑆)
4125, 21, 40ringrz 20203 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘((invr𝑅)‘𝑥)) ∈ (Base‘𝑆)) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ) = 0 )
4237, 39, 41syl2anc 584 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → ((𝐹‘((invr𝑅)‘𝑥))(.r𝑆) 0 ) = 0 )
4323, 35, 423eqtrd 2768 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(((invr𝑅)‘𝑥)(.r𝑅)𝑥)) = 0 )
44 kerunit.3 . . . . . 6 1 = (1r𝑆)
459, 44rhm1 20398 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = 1 )
4645adantr 480 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → (𝐹‘(1r𝑅)) = 1 )
4713, 43, 463eqtr3rd 2773 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 }))) → 1 = 0 )
4847reximdva0 4318 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → ∃𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) 1 = 0 )
49 id 22 . . 3 ( 1 = 01 = 0 )
5049rexlimivw 3130 . 2 (∃𝑥 ∈ (𝑈 ∩ (𝐹 “ { 0 })) 1 = 01 = 0 )
5148, 50syl 17 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cin 3913  c0 4296  {csn 4589  ccnv 5637  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  1rcur 20090  Ringcrg 20142  Unitcui 20264  invrcinvr 20296   RingHom crh 20378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator