Step | Hyp | Ref
| Expression |
1 | | elin 3899 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 })) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ (◡𝐹 “ { 0 }))) |
2 | 1 | biimpi 215 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 })) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ (◡𝐹 “ { 0 }))) |
3 | 2 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ (◡𝐹 “ { 0 }))) |
4 | 3 | simpld 494 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑥 ∈ 𝑈) |
5 | | rhmrcl1 19878 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
6 | | kerunit.1 |
. . . . . . . 8
⊢ 𝑈 = (Unit‘𝑅) |
7 | | eqid 2738 |
. . . . . . . 8
⊢
(invr‘𝑅) = (invr‘𝑅) |
8 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
9 | | eqid 2738 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
10 | 6, 7, 8, 9 | unitlinv 19834 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) |
11 | 10 | fveq2d 6760 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = (𝐹‘(1r‘𝑅))) |
12 | 5, 11 | sylan 579 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ 𝑈) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = (𝐹‘(1r‘𝑅))) |
13 | 4, 12 | syldan 590 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = (𝐹‘(1r‘𝑅))) |
14 | | simpl 482 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
15 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑅 ∈ Ring) |
16 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | 6, 7, 16 | ringinvcl 19833 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
18 | 15, 4, 17 | syl2anc 583 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) →
((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) |
19 | 16, 6 | unitcl 19816 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑅)) |
20 | 4, 19 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑥 ∈ (Base‘𝑅)) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝑆) = (.r‘𝑆) |
22 | 16, 8, 21 | rhmmul 19886 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆)(𝐹‘𝑥))) |
23 | 14, 18, 20, 22 | syl3anc 1369 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆)(𝐹‘𝑥))) |
24 | 3 | simprd 495 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑥 ∈ (◡𝐹 “ { 0 })) |
25 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) |
26 | 16, 25 | rhmf 19885 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
27 | | ffn 6584 |
. . . . . . . . . 10
⊢ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅)) |
28 | | elpreima 6917 |
. . . . . . . . . 10
⊢ (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹‘𝑥) ∈ { 0 }))) |
29 | 26, 27, 28 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹‘𝑥) ∈ { 0 }))) |
30 | 29 | simplbda 499 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑥) ∈ { 0 }) |
31 | 24, 30 | syldan 590 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘𝑥) ∈ { 0 }) |
32 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐹‘𝑥) ∈ V |
33 | 32 | elsn 4573 |
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ { 0 } ↔ (𝐹‘𝑥) = 0 ) |
34 | 31, 33 | sylib 217 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘𝑥) = 0 ) |
35 | 34 | oveq2d 7271 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆)(𝐹‘𝑥)) = ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆) 0 )) |
36 | | rhmrcl2 19879 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
37 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑆 ∈ Ring) |
38 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
39 | 38, 18 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘((invr‘𝑅)‘𝑥)) ∈ (Base‘𝑆)) |
40 | | kerunit.2 |
. . . . . . 7
⊢ 0 =
(0g‘𝑆) |
41 | 25, 21, 40 | ringrz 19742 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ (𝐹‘((invr‘𝑅)‘𝑥)) ∈ (Base‘𝑆)) → ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆) 0 ) = 0 ) |
42 | 37, 39, 41 | syl2anc 583 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆) 0 ) = 0 ) |
43 | 23, 35, 42 | 3eqtrd 2782 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = 0 ) |
44 | | kerunit.3 |
. . . . . 6
⊢ 1 =
(1r‘𝑆) |
45 | 9, 44 | rhm1 19889 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = 1 ) |
46 | 45 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘(1r‘𝑅)) = 1 ) |
47 | 13, 43, 46 | 3eqtr3rd 2787 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 1 = 0
) |
48 | 47 | reximdva0 4282 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) →
∃𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 })) 1 = 0 ) |
49 | | id 22 |
. . 3
⊢ ( 1 = 0 → 1 = 0
) |
50 | 49 | rexlimivw 3210 |
. 2
⊢
(∃𝑥 ∈
(𝑈 ∩ (◡𝐹 “ { 0 })) 1 = 0 → 1 = 0 ) |
51 | 48, 50 | syl 17 |
1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) →
1 = 0
) |