| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elin 3967 | . . . . . . . 8
⊢ (𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 })) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ (◡𝐹 “ { 0 }))) | 
| 2 | 1 | biimpi 216 | . . . . . . 7
⊢ (𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 })) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ (◡𝐹 “ { 0 }))) | 
| 3 | 2 | adantl 481 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ (◡𝐹 “ { 0 }))) | 
| 4 | 3 | simpld 494 | . . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑥 ∈ 𝑈) | 
| 5 |  | rhmrcl1 20476 | . . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | 
| 6 |  | kerunit.1 | . . . . . . . 8
⊢ 𝑈 = (Unit‘𝑅) | 
| 7 |  | eqid 2737 | . . . . . . . 8
⊢
(invr‘𝑅) = (invr‘𝑅) | 
| 8 |  | eqid 2737 | . . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 9 |  | eqid 2737 | . . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 10 | 6, 7, 8, 9 | unitlinv 20393 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥) = (1r‘𝑅)) | 
| 11 | 10 | fveq2d 6910 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = (𝐹‘(1r‘𝑅))) | 
| 12 | 5, 11 | sylan 580 | . . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ 𝑈) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = (𝐹‘(1r‘𝑅))) | 
| 13 | 4, 12 | syldan 591 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = (𝐹‘(1r‘𝑅))) | 
| 14 |  | simpl 482 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | 
| 15 | 5 | adantr 480 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑅 ∈ Ring) | 
| 16 |  | eqid 2737 | . . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 17 | 6, 7, 16 | ringinvcl 20392 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈) → ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) | 
| 18 | 15, 4, 17 | syl2anc 584 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) →
((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅)) | 
| 19 | 16, 6 | unitcl 20375 | . . . . . . 7
⊢ (𝑥 ∈ 𝑈 → 𝑥 ∈ (Base‘𝑅)) | 
| 20 | 4, 19 | syl 17 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑥 ∈ (Base‘𝑅)) | 
| 21 |  | eqid 2737 | . . . . . . 7
⊢
(.r‘𝑆) = (.r‘𝑆) | 
| 22 | 16, 8, 21 | rhmmul 20486 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ((invr‘𝑅)‘𝑥) ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆)(𝐹‘𝑥))) | 
| 23 | 14, 18, 20, 22 | syl3anc 1373 | . . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆)(𝐹‘𝑥))) | 
| 24 | 3 | simprd 495 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑥 ∈ (◡𝐹 “ { 0 })) | 
| 25 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 26 | 16, 25 | rhmf 20485 | . . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) | 
| 27 |  | ffn 6736 | . . . . . . . . . 10
⊢ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅)) | 
| 28 |  | elpreima 7078 | . . . . . . . . . 10
⊢ (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹‘𝑥) ∈ { 0 }))) | 
| 29 | 26, 27, 28 | 3syl 18 | . . . . . . . . 9
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹‘𝑥) ∈ { 0 }))) | 
| 30 | 29 | simplbda 499 | . . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (◡𝐹 “ { 0 })) → (𝐹‘𝑥) ∈ { 0 }) | 
| 31 | 24, 30 | syldan 591 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘𝑥) ∈ { 0 }) | 
| 32 |  | fvex 6919 | . . . . . . . 8
⊢ (𝐹‘𝑥) ∈ V | 
| 33 | 32 | elsn 4641 | . . . . . . 7
⊢ ((𝐹‘𝑥) ∈ { 0 } ↔ (𝐹‘𝑥) = 0 ) | 
| 34 | 31, 33 | sylib 218 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘𝑥) = 0 ) | 
| 35 | 34 | oveq2d 7447 | . . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆)(𝐹‘𝑥)) = ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆) 0 )) | 
| 36 |  | rhmrcl2 20477 | . . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | 
| 37 | 36 | adantr 480 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝑆 ∈ Ring) | 
| 38 | 26 | adantr 480 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) | 
| 39 | 38, 18 | ffvelcdmd 7105 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘((invr‘𝑅)‘𝑥)) ∈ (Base‘𝑆)) | 
| 40 |  | kerunit.2 | . . . . . . 7
⊢  0 =
(0g‘𝑆) | 
| 41 | 25, 21, 40 | ringrz 20291 | . . . . . 6
⊢ ((𝑆 ∈ Ring ∧ (𝐹‘((invr‘𝑅)‘𝑥)) ∈ (Base‘𝑆)) → ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆) 0 ) = 0 ) | 
| 42 | 37, 39, 41 | syl2anc 584 | . . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → ((𝐹‘((invr‘𝑅)‘𝑥))(.r‘𝑆) 0 ) = 0 ) | 
| 43 | 23, 35, 42 | 3eqtrd 2781 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘(((invr‘𝑅)‘𝑥)(.r‘𝑅)𝑥)) = 0 ) | 
| 44 |  | kerunit.3 | . . . . . 6
⊢  1 =
(1r‘𝑆) | 
| 45 | 9, 44 | rhm1 20489 | . . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = 1 ) | 
| 46 | 45 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → (𝐹‘(1r‘𝑅)) = 1 ) | 
| 47 | 13, 43, 46 | 3eqtr3rd 2786 | . . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 }))) → 1 = 0
) | 
| 48 | 47 | reximdva0 4355 | . 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) →
∃𝑥 ∈ (𝑈 ∩ (◡𝐹 “ { 0 })) 1 = 0 ) | 
| 49 |  | id 22 | . . 3
⊢ ( 1 = 0 → 1 = 0
) | 
| 50 | 49 | rexlimivw 3151 | . 2
⊢
(∃𝑥 ∈
(𝑈 ∩ (◡𝐹 “ { 0 })) 1 = 0 → 1 = 0 ) | 
| 51 | 48, 50 | syl 17 | 1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (◡𝐹 “ { 0 })) ≠ ∅) →
1 = 0
) |