MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0snor2el Structured version   Visualization version   GIF version

Theorem n0snor2el 4774
Description: A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
n0snor2el (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑧,𝐴

Proof of Theorem n0snor2el
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 issn 4773 . . . 4 (∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦 → ∃𝑧 𝐴 = {𝑧})
21olcd 871 . . 3 (∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦 → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
32a1d 25 . 2 (∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦 → (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧})))
4 df-ne 2942 . . . . . . 7 (𝑤𝑦 ↔ ¬ 𝑤 = 𝑦)
54rexbii 3094 . . . . . 6 (∃𝑦𝐴 𝑤𝑦 ↔ ∃𝑦𝐴 ¬ 𝑤 = 𝑦)
6 rexnal 3100 . . . . . 6 (∃𝑦𝐴 ¬ 𝑤 = 𝑦 ↔ ¬ ∀𝑦𝐴 𝑤 = 𝑦)
75, 6bitri 274 . . . . 5 (∃𝑦𝐴 𝑤𝑦 ↔ ¬ ∀𝑦𝐴 𝑤 = 𝑦)
87ralbii 3093 . . . 4 (∀𝑤𝐴𝑦𝐴 𝑤𝑦 ↔ ∀𝑤𝐴 ¬ ∀𝑦𝐴 𝑤 = 𝑦)
9 ralnex 3073 . . . 4 (∀𝑤𝐴 ¬ ∀𝑦𝐴 𝑤 = 𝑦 ↔ ¬ ∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦)
108, 9bitri 274 . . 3 (∀𝑤𝐴𝑦𝐴 𝑤𝑦 ↔ ¬ ∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦)
11 neeq1 3004 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝑦𝑥𝑦))
1211rexbidv 3172 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑤𝑦 ↔ ∃𝑦𝐴 𝑥𝑦))
1312rspccva 3569 . . . . . 6 ((∀𝑤𝐴𝑦𝐴 𝑤𝑦𝑥𝐴) → ∃𝑦𝐴 𝑥𝑦)
1413reximdva0 4295 . . . . 5 ((∀𝑤𝐴𝑦𝐴 𝑤𝑦𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
1514orcd 870 . . . 4 ((∀𝑤𝐴𝑦𝐴 𝑤𝑦𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
1615ex 413 . . 3 (∀𝑤𝐴𝑦𝐴 𝑤𝑦 → (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧})))
1710, 16sylbir 234 . 2 (¬ ∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦 → (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧})))
183, 17pm2.61i 182 1 (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1540  wex 1780  wne 2941  wral 3062  wrex 3071  c0 4266  {csn 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-v 3443  df-dif 3899  df-in 3903  df-ss 3913  df-nul 4267  df-sn 4570
This theorem is referenced by:  iunopeqop  5452  1sdom2dom  9087
  Copyright terms: Public domain W3C validator