Step | Hyp | Ref
| Expression |
1 | | issn 4743 |
. . . 4
⊢
(∃𝑤 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝑤 = 𝑦 → ∃𝑧 𝐴 = {𝑧}) |
2 | 1 | olcd 874 |
. . 3
⊢
(∃𝑤 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝑤 = 𝑦 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑧 𝐴 = {𝑧})) |
3 | 2 | a1d 25 |
. 2
⊢
(∃𝑤 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝑤 = 𝑦 → (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))) |
4 | | df-ne 2941 |
. . . . . . 7
⊢ (𝑤 ≠ 𝑦 ↔ ¬ 𝑤 = 𝑦) |
5 | 4 | rexbii 3170 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 𝑤 ≠ 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑤 = 𝑦) |
6 | | rexnal 3160 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 ¬ 𝑤 = 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑤 = 𝑦) |
7 | 5, 6 | bitri 278 |
. . . . 5
⊢
(∃𝑦 ∈
𝐴 𝑤 ≠ 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑤 = 𝑦) |
8 | 7 | ralbii 3088 |
. . . 4
⊢
(∀𝑤 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ∀𝑤 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 𝑤 = 𝑦) |
9 | | ralnex 3158 |
. . . 4
⊢
(∀𝑤 ∈
𝐴 ¬ ∀𝑦 ∈ 𝐴 𝑤 = 𝑦 ↔ ¬ ∃𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑤 = 𝑦) |
10 | 8, 9 | bitri 278 |
. . 3
⊢
(∀𝑤 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ¬ ∃𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑤 = 𝑦) |
11 | | neeq1 3003 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤 ≠ 𝑦 ↔ 𝑥 ≠ 𝑦)) |
12 | 11 | rexbidv 3216 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (∃𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦)) |
13 | 12 | rspccva 3536 |
. . . . . 6
⊢
((∀𝑤 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) |
14 | 13 | reximdva0 4266 |
. . . . 5
⊢
((∀𝑤 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) |
15 | 14 | orcd 873 |
. . . 4
⊢
((∀𝑤 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑧 𝐴 = {𝑧})) |
16 | 15 | ex 416 |
. . 3
⊢
(∀𝑤 ∈
𝐴 ∃𝑦 ∈ 𝐴 𝑤 ≠ 𝑦 → (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))) |
17 | 10, 16 | sylbir 238 |
. 2
⊢ (¬
∃𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑤 = 𝑦 → (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))) |
18 | 3, 17 | pm2.61i 185 |
1
⊢ (𝐴 ≠ ∅ →
(∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃𝑧 𝐴 = {𝑧})) |