MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0snor2el Structured version   Visualization version   GIF version

Theorem n0snor2el 4858
Description: A nonempty set is either a singleton or contains at least two different elements. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
n0snor2el (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑧,𝐴

Proof of Theorem n0snor2el
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 issn 4857 . . . 4 (∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦 → ∃𝑧 𝐴 = {𝑧})
21olcd 873 . . 3 (∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦 → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
32a1d 25 . 2 (∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦 → (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧})))
4 df-ne 2947 . . . . . . 7 (𝑤𝑦 ↔ ¬ 𝑤 = 𝑦)
54rexbii 3100 . . . . . 6 (∃𝑦𝐴 𝑤𝑦 ↔ ∃𝑦𝐴 ¬ 𝑤 = 𝑦)
6 rexnal 3106 . . . . . 6 (∃𝑦𝐴 ¬ 𝑤 = 𝑦 ↔ ¬ ∀𝑦𝐴 𝑤 = 𝑦)
75, 6bitri 275 . . . . 5 (∃𝑦𝐴 𝑤𝑦 ↔ ¬ ∀𝑦𝐴 𝑤 = 𝑦)
87ralbii 3099 . . . 4 (∀𝑤𝐴𝑦𝐴 𝑤𝑦 ↔ ∀𝑤𝐴 ¬ ∀𝑦𝐴 𝑤 = 𝑦)
9 ralnex 3078 . . . 4 (∀𝑤𝐴 ¬ ∀𝑦𝐴 𝑤 = 𝑦 ↔ ¬ ∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦)
108, 9bitri 275 . . 3 (∀𝑤𝐴𝑦𝐴 𝑤𝑦 ↔ ¬ ∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦)
11 neeq1 3009 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝑦𝑥𝑦))
1211rexbidv 3185 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑤𝑦 ↔ ∃𝑦𝐴 𝑥𝑦))
1312rspccva 3634 . . . . . 6 ((∀𝑤𝐴𝑦𝐴 𝑤𝑦𝑥𝐴) → ∃𝑦𝐴 𝑥𝑦)
1413reximdva0 4378 . . . . 5 ((∀𝑤𝐴𝑦𝐴 𝑤𝑦𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
1514orcd 872 . . . 4 ((∀𝑤𝐴𝑦𝐴 𝑤𝑦𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
1615ex 412 . . 3 (∀𝑤𝐴𝑦𝐴 𝑤𝑦 → (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧})))
1710, 16sylbir 235 . 2 (¬ ∃𝑤𝐴𝑦𝐴 𝑤 = 𝑦 → (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧})))
183, 17pm2.61i 182 1 (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wne 2946  wral 3067  wrex 3076  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649
This theorem is referenced by:  iunopeqop  5540  1sdom2dom  9310
  Copyright terms: Public domain W3C validator