MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cstucnd Structured version   Visualization version   GIF version

Theorem cstucnd 24187
Description: A constant function is uniformly continuous. Deduction form. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Hypotheses
Ref Expression
cstucnd.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
cstucnd.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
cstucnd.3 (𝜑𝐴𝑌)
Assertion
Ref Expression
cstucnd (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉))

Proof of Theorem cstucnd
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cstucnd.3 . . 3 (𝜑𝐴𝑌)
2 fconst6g 6717 . . 3 (𝐴𝑌 → (𝑋 × {𝐴}):𝑋𝑌)
31, 2syl 17 . 2 (𝜑 → (𝑋 × {𝐴}):𝑋𝑌)
4 cstucnd.1 . . . . . 6 (𝜑𝑈 ∈ (UnifOn‘𝑋))
54adantr 480 . . . . 5 ((𝜑𝑠𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
6 ustne0 24117 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)
75, 6syl 17 . . . 4 ((𝜑𝑠𝑉) → 𝑈 ≠ ∅)
8 cstucnd.2 . . . . . . . . . 10 (𝜑𝑉 ∈ (UnifOn‘𝑌))
98ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑉 ∈ (UnifOn‘𝑌))
10 simpllr 775 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑠𝑉)
111ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑌)
12 ustref 24122 . . . . . . . . 9 ((𝑉 ∈ (UnifOn‘𝑌) ∧ 𝑠𝑉𝐴𝑌) → 𝐴𝑠𝐴)
139, 10, 11, 12syl3anc 1373 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑠𝐴)
14 simprl 770 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
15 fvconst2g 7142 . . . . . . . . 9 ((𝐴𝑌𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
1611, 14, 15syl2anc 584 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
17 simprr 772 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
18 fvconst2g 7142 . . . . . . . . 9 ((𝐴𝑌𝑦𝑋) → ((𝑋 × {𝐴})‘𝑦) = 𝐴)
1911, 17, 18syl2anc 584 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑦) = 𝐴)
2013, 16, 193brtr4d 5127 . . . . . . 7 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))
2120a1d 25 . . . . . 6 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2221ralrimivva 3172 . . . . 5 (((𝜑𝑠𝑉) ∧ 𝑟𝑈) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2322reximdva0 4308 . . . 4 (((𝜑𝑠𝑉) ∧ 𝑈 ≠ ∅) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
247, 23mpdan 687 . . 3 ((𝜑𝑠𝑉) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2524ralrimiva 3121 . 2 (𝜑 → ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
26 isucn 24181 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉) ↔ ((𝑋 × {𝐴}):𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))))
274, 8, 26syl2anc 584 . 2 (𝜑 → ((𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉) ↔ ((𝑋 × {𝐴}):𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))))
283, 25, 27mpbir2and 713 1 (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4286  {csn 4579   class class class wbr 5095   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  UnifOncust 24103   Cnucucn 24178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-ust 24104  df-ucn 24179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator