Step | Hyp | Ref
| Expression |
1 | | cstucnd.3 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑌) |
2 | | fconst6g 6663 |
. . 3
⊢ (𝐴 ∈ 𝑌 → (𝑋 × {𝐴}):𝑋⟶𝑌) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → (𝑋 × {𝐴}):𝑋⟶𝑌) |
4 | | cstucnd.1 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) |
5 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋)) |
6 | | ustne0 23365 |
. . . . 5
⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑉) → 𝑈 ≠ ∅) |
8 | | cstucnd.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) |
9 | 8 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑉 ∈ (UnifOn‘𝑌)) |
10 | | simpllr 773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑠 ∈ 𝑉) |
11 | 1 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈ 𝑌) |
12 | | ustref 23370 |
. . . . . . . . 9
⊢ ((𝑉 ∈ (UnifOn‘𝑌) ∧ 𝑠 ∈ 𝑉 ∧ 𝐴 ∈ 𝑌) → 𝐴𝑠𝐴) |
13 | 9, 10, 11, 12 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐴𝑠𝐴) |
14 | | simprl 768 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
15 | | fvconst2g 7077 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) |
16 | 11, 14, 15 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) |
17 | | simprr 770 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
18 | | fvconst2g 7077 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑌 ∧ 𝑦 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑦) = 𝐴) |
19 | 11, 17, 18 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑋 × {𝐴})‘𝑦) = 𝐴) |
20 | 13, 16, 19 | 3brtr4d 5106 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)) |
21 | 20 | a1d 25 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))) |
22 | 21 | ralrimivva 3123 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑟 ∈ 𝑈) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))) |
23 | 22 | reximdva0 4285 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑉) ∧ 𝑈 ≠ ∅) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))) |
24 | 7, 23 | mpdan 684 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑉) → ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))) |
25 | 24 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))) |
26 | | isucn 23430 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉) ↔ ((𝑋 × {𝐴}):𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))))) |
27 | 4, 8, 26 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉) ↔ ((𝑋 × {𝐴}):𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))))) |
28 | 3, 25, 27 | mpbir2and 710 |
1
⊢ (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉)) |