MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cstucnd Structured version   Visualization version   GIF version

Theorem cstucnd 23344
Description: A constant function is uniformly continuous. Deduction form. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Hypotheses
Ref Expression
cstucnd.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
cstucnd.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
cstucnd.3 (𝜑𝐴𝑌)
Assertion
Ref Expression
cstucnd (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉))

Proof of Theorem cstucnd
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cstucnd.3 . . 3 (𝜑𝐴𝑌)
2 fconst6g 6647 . . 3 (𝐴𝑌 → (𝑋 × {𝐴}):𝑋𝑌)
31, 2syl 17 . 2 (𝜑 → (𝑋 × {𝐴}):𝑋𝑌)
4 cstucnd.1 . . . . . 6 (𝜑𝑈 ∈ (UnifOn‘𝑋))
54adantr 480 . . . . 5 ((𝜑𝑠𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
6 ustne0 23273 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)
75, 6syl 17 . . . 4 ((𝜑𝑠𝑉) → 𝑈 ≠ ∅)
8 cstucnd.2 . . . . . . . . . 10 (𝜑𝑉 ∈ (UnifOn‘𝑌))
98ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑉 ∈ (UnifOn‘𝑌))
10 simpllr 772 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑠𝑉)
111ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑌)
12 ustref 23278 . . . . . . . . 9 ((𝑉 ∈ (UnifOn‘𝑌) ∧ 𝑠𝑉𝐴𝑌) → 𝐴𝑠𝐴)
139, 10, 11, 12syl3anc 1369 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑠𝐴)
14 simprl 767 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
15 fvconst2g 7059 . . . . . . . . 9 ((𝐴𝑌𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
1611, 14, 15syl2anc 583 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
17 simprr 769 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
18 fvconst2g 7059 . . . . . . . . 9 ((𝐴𝑌𝑦𝑋) → ((𝑋 × {𝐴})‘𝑦) = 𝐴)
1911, 17, 18syl2anc 583 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑦) = 𝐴)
2013, 16, 193brtr4d 5102 . . . . . . 7 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))
2120a1d 25 . . . . . 6 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2221ralrimivva 3114 . . . . 5 (((𝜑𝑠𝑉) ∧ 𝑟𝑈) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2322reximdva0 4282 . . . 4 (((𝜑𝑠𝑉) ∧ 𝑈 ≠ ∅) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
247, 23mpdan 683 . . 3 ((𝜑𝑠𝑉) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2524ralrimiva 3107 . 2 (𝜑 → ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
26 isucn 23338 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉) ↔ ((𝑋 × {𝐴}):𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))))
274, 8, 26syl2anc 583 . 2 (𝜑 → ((𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉) ↔ ((𝑋 × {𝐴}):𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))))
283, 25, 27mpbir2and 709 1 (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  UnifOncust 23259   Cnucucn 23335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ust 23260  df-ucn 23336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator