Step | Hyp | Ref
| Expression |
1 | | cstucnd.3 |
. . 3
β’ (π β π΄ β π) |
2 | | fconst6g 6780 |
. . 3
β’ (π΄ β π β (π Γ {π΄}):πβΆπ) |
3 | 1, 2 | syl 17 |
. 2
β’ (π β (π Γ {π΄}):πβΆπ) |
4 | | cstucnd.1 |
. . . . . 6
β’ (π β π β (UnifOnβπ)) |
5 | 4 | adantr 480 |
. . . . 5
β’ ((π β§ π β π) β π β (UnifOnβπ)) |
6 | | ustne0 24038 |
. . . . 5
β’ (π β (UnifOnβπ) β π β β
) |
7 | 5, 6 | syl 17 |
. . . 4
β’ ((π β§ π β π) β π β β
) |
8 | | cstucnd.2 |
. . . . . . . . . 10
β’ (π β π β (UnifOnβπ)) |
9 | 8 | ad3antrrr 727 |
. . . . . . . . 9
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π β (UnifOnβπ)) |
10 | | simpllr 773 |
. . . . . . . . 9
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π β π) |
11 | 1 | ad3antrrr 727 |
. . . . . . . . 9
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π΄ β π) |
12 | | ustref 24043 |
. . . . . . . . 9
β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄π π΄) |
13 | 9, 10, 11, 12 | syl3anc 1370 |
. . . . . . . 8
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π΄π π΄) |
14 | | simprl 768 |
. . . . . . . . 9
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π₯ β π) |
15 | | fvconst2g 7205 |
. . . . . . . . 9
β’ ((π΄ β π β§ π₯ β π) β ((π Γ {π΄})βπ₯) = π΄) |
16 | 11, 14, 15 | syl2anc 583 |
. . . . . . . 8
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β ((π Γ {π΄})βπ₯) = π΄) |
17 | | simprr 770 |
. . . . . . . . 9
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β π¦ β π) |
18 | | fvconst2g 7205 |
. . . . . . . . 9
β’ ((π΄ β π β§ π¦ β π) β ((π Γ {π΄})βπ¦) = π΄) |
19 | 11, 17, 18 | syl2anc 583 |
. . . . . . . 8
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β ((π Γ {π΄})βπ¦) = π΄) |
20 | 13, 16, 19 | 3brtr4d 5180 |
. . . . . . 7
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β ((π Γ {π΄})βπ₯)π ((π Γ {π΄})βπ¦)) |
21 | 20 | a1d 25 |
. . . . . 6
β’ ((((π β§ π β π) β§ π β π) β§ (π₯ β π β§ π¦ β π)) β (π₯ππ¦ β ((π Γ {π΄})βπ₯)π ((π Γ {π΄})βπ¦))) |
22 | 21 | ralrimivva 3199 |
. . . . 5
β’ (((π β§ π β π) β§ π β π) β βπ₯ β π βπ¦ β π (π₯ππ¦ β ((π Γ {π΄})βπ₯)π ((π Γ {π΄})βπ¦))) |
23 | 22 | reximdva0 4351 |
. . . 4
β’ (((π β§ π β π) β§ π β β
) β βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β ((π Γ {π΄})βπ₯)π ((π Γ {π΄})βπ¦))) |
24 | 7, 23 | mpdan 684 |
. . 3
β’ ((π β§ π β π) β βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β ((π Γ {π΄})βπ₯)π ((π Γ {π΄})βπ¦))) |
25 | 24 | ralrimiva 3145 |
. 2
β’ (π β βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β ((π Γ {π΄})βπ₯)π ((π Γ {π΄})βπ¦))) |
26 | | isucn 24103 |
. . 3
β’ ((π β (UnifOnβπ) β§ π β (UnifOnβπ)) β ((π Γ {π΄}) β (π Cnuπ) β ((π Γ {π΄}):πβΆπ β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β ((π Γ {π΄})βπ₯)π ((π Γ {π΄})βπ¦))))) |
27 | 4, 8, 26 | syl2anc 583 |
. 2
β’ (π β ((π Γ {π΄}) β (π Cnuπ) β ((π Γ {π΄}):πβΆπ β§ βπ β π βπ β π βπ₯ β π βπ¦ β π (π₯ππ¦ β ((π Γ {π΄})βπ₯)π ((π Γ {π΄})βπ¦))))) |
28 | 3, 25, 27 | mpbir2and 710 |
1
β’ (π β (π Γ {π΄}) β (π Cnuπ)) |