MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cstucnd Structured version   Visualization version   GIF version

Theorem cstucnd 23436
Description: A constant function is uniformly continuous. Deduction form. Example 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Hypotheses
Ref Expression
cstucnd.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
cstucnd.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
cstucnd.3 (𝜑𝐴𝑌)
Assertion
Ref Expression
cstucnd (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉))

Proof of Theorem cstucnd
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cstucnd.3 . . 3 (𝜑𝐴𝑌)
2 fconst6g 6663 . . 3 (𝐴𝑌 → (𝑋 × {𝐴}):𝑋𝑌)
31, 2syl 17 . 2 (𝜑 → (𝑋 × {𝐴}):𝑋𝑌)
4 cstucnd.1 . . . . . 6 (𝜑𝑈 ∈ (UnifOn‘𝑋))
54adantr 481 . . . . 5 ((𝜑𝑠𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
6 ustne0 23365 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ≠ ∅)
75, 6syl 17 . . . 4 ((𝜑𝑠𝑉) → 𝑈 ≠ ∅)
8 cstucnd.2 . . . . . . . . . 10 (𝜑𝑉 ∈ (UnifOn‘𝑌))
98ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑉 ∈ (UnifOn‘𝑌))
10 simpllr 773 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑠𝑉)
111ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑌)
12 ustref 23370 . . . . . . . . 9 ((𝑉 ∈ (UnifOn‘𝑌) ∧ 𝑠𝑉𝐴𝑌) → 𝐴𝑠𝐴)
139, 10, 11, 12syl3anc 1370 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑠𝐴)
14 simprl 768 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
15 fvconst2g 7077 . . . . . . . . 9 ((𝐴𝑌𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
1611, 14, 15syl2anc 584 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
17 simprr 770 . . . . . . . . 9 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
18 fvconst2g 7077 . . . . . . . . 9 ((𝐴𝑌𝑦𝑋) → ((𝑋 × {𝐴})‘𝑦) = 𝐴)
1911, 17, 18syl2anc 584 . . . . . . . 8 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑦) = 𝐴)
2013, 16, 193brtr4d 5106 . . . . . . 7 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦))
2120a1d 25 . . . . . 6 ((((𝜑𝑠𝑉) ∧ 𝑟𝑈) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2221ralrimivva 3123 . . . . 5 (((𝜑𝑠𝑉) ∧ 𝑟𝑈) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2322reximdva0 4285 . . . 4 (((𝜑𝑠𝑉) ∧ 𝑈 ≠ ∅) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
247, 23mpdan 684 . . 3 ((𝜑𝑠𝑉) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
2524ralrimiva 3103 . 2 (𝜑 → ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))
26 isucn 23430 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉) ↔ ((𝑋 × {𝐴}):𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))))
274, 8, 26syl2anc 584 . 2 (𝜑 → ((𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉) ↔ ((𝑋 × {𝐴}):𝑋𝑌 ∧ ∀𝑠𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → ((𝑋 × {𝐴})‘𝑥)𝑠((𝑋 × {𝐴})‘𝑦)))))
283, 25, 27mpbir2and 710 1 (𝜑 → (𝑋 × {𝐴}) ∈ (𝑈 Cnu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  c0 4256  {csn 4561   class class class wbr 5074   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  UnifOncust 23351   Cnucucn 23427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-ust 23352  df-ucn 23428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator