| Step | Hyp | Ref
| Expression |
| 1 | | rphalfcl 13063 |
. . 3
⊢ (𝑌 ∈ ℝ+
→ (𝑌 / 2) ∈
ℝ+) |
| 2 | | ftc1anc.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| 3 | | ftc1anc.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | | ftc1anc.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 5 | | ftc1anc.le |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 6 | | ftc1anc.s |
. . . 4
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
| 7 | | ftc1anc.d |
. . . 4
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 8 | | ftc1anc.i |
. . . 4
⊢ (𝜑 → 𝐹 ∈
𝐿1) |
| 9 | | ftc1anc.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | ftc1anclem5 37705 |
. . 3
⊢ ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) →
∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2)) |
| 11 | 1, 10 | sylan2 593 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2)) |
| 12 | | eqid 2736 |
. . . . 5
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) d𝑡) |
| 13 | | ax-icn 11215 |
. . . . . . . 8
⊢ i ∈
ℂ |
| 14 | | ine0 11699 |
. . . . . . . 8
⊢ i ≠
0 |
| 15 | 13, 14 | reccli 11998 |
. . . . . . 7
⊢ (1 / i)
∈ ℂ |
| 16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (1 / i) ∈
ℂ) |
| 17 | 9 | ffvelcdmda 7103 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℂ) |
| 18 | 9 | feqmptd 6976 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦))) |
| 19 | 18, 8 | eqeltrrd 2841 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈
𝐿1) |
| 20 | | divrec2 11940 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
| 21 | 13, 14, 20 | mp3an23 1454 |
. . . . . . . . 9
⊢ ((𝐹‘𝑦) ∈ ℂ → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
| 22 | 17, 21 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
| 23 | 22 | mpteq2dva 5241 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) = (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))) |
| 24 | | iblmbf 25803 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ 𝐿1 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn) |
| 25 | 19, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn) |
| 26 | | 2fveq3 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (ℜ‘(𝐹‘𝑦)) = (ℜ‘(𝐹‘𝑥))) |
| 27 | 26 | cbvmptv 5254 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) = (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) |
| 28 | 27 | eleq1i 2831 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 29 | 17 | recld 15234 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℝ) |
| 30 | 29 | recnd 11290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℂ) |
| 31 | 30 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℂ) |
| 32 | 28 | biimpri 228 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 34 | 31, 33 | mbfneg 25686 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 35 | 28, 34 | sylan2b 594 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 36 | 9 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℂ) |
| 37 | 36 | recld 15234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (ℜ‘(𝐹‘𝑥)) ∈ ℝ) |
| 38 | 37 | recnd 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (ℜ‘(𝐹‘𝑥)) ∈ ℂ) |
| 39 | 38 | negnegd 11612 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → --(ℜ‘(𝐹‘𝑥)) = (ℜ‘(𝐹‘𝑥))) |
| 40 | 39 | mpteq2dva 5241 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥)))) |
| 41 | 40, 27 | eqtr4di 2794 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦)))) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦)))) |
| 43 | | negex 11507 |
. . . . . . . . . . . . . . . 16
⊢
-(ℜ‘(𝐹‘𝑥)) ∈ V |
| 44 | 43 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) ∧ 𝑥 ∈ 𝐷) → -(ℜ‘(𝐹‘𝑥)) ∈ V) |
| 45 | 26 | negeqd 11503 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → -(ℜ‘(𝐹‘𝑦)) = -(ℜ‘(𝐹‘𝑥))) |
| 46 | 45 | cbvmptv 5254 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) = (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) |
| 47 | 46 | eleq1i 2831 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 48 | 47 | biimpi 216 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn → (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 49 | 48 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 50 | 44, 49 | mbfneg 25686 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
| 51 | 42, 50 | eqeltrrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
| 52 | 35, 51 | impbida 800 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn)) |
| 53 | | divcl 11929 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑦) / i) ∈ ℂ) |
| 54 | | imre 15148 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑦) / i) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → (ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
| 56 | 13, 14, 55 | mp3an23 1454 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
| 57 | 13, 14, 53 | mp3an23 1454 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑦) ∈ ℂ → ((𝐹‘𝑦) / i) ∈ ℂ) |
| 58 | | mulneg1 11700 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((i
∈ ℂ ∧ ((𝐹‘𝑦) / i) ∈ ℂ) → (-i ·
((𝐹‘𝑦) / i)) = -(i · ((𝐹‘𝑦) / i))) |
| 59 | 13, 57, 58 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) ∈ ℂ → (-i · ((𝐹‘𝑦) / i)) = -(i · ((𝐹‘𝑦) / i))) |
| 60 | | divcan2 11931 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → (i · ((𝐹‘𝑦) / i)) = (𝐹‘𝑦)) |
| 61 | 13, 14, 60 | mp3an23 1454 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑦) ∈ ℂ → (i · ((𝐹‘𝑦) / i)) = (𝐹‘𝑦)) |
| 62 | 61 | negeqd 11503 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) ∈ ℂ → -(i · ((𝐹‘𝑦) / i)) = -(𝐹‘𝑦)) |
| 63 | 59, 62 | eqtrd 2776 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑦) ∈ ℂ → (-i · ((𝐹‘𝑦) / i)) = -(𝐹‘𝑦)) |
| 64 | 63 | fveq2d 6909 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℜ‘(-i
· ((𝐹‘𝑦) / i))) = (ℜ‘-(𝐹‘𝑦))) |
| 65 | | reneg 15165 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℜ‘-(𝐹‘𝑦)) = -(ℜ‘(𝐹‘𝑦))) |
| 66 | 56, 64, 65 | 3eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑦) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = -(ℜ‘(𝐹‘𝑦))) |
| 67 | 17, 66 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℑ‘((𝐹‘𝑦) / i)) = -(ℜ‘(𝐹‘𝑦))) |
| 68 | 67 | mpteq2dva 5241 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) = (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦)))) |
| 69 | 68 | eleq1d 2825 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn)) |
| 70 | 52, 69 | bitr4d 282 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
| 71 | | imval 15147 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℑ‘(𝐹‘𝑦)) = (ℜ‘((𝐹‘𝑦) / i))) |
| 72 | 17, 71 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℑ‘(𝐹‘𝑦)) = (ℜ‘((𝐹‘𝑦) / i))) |
| 73 | 72 | mpteq2dva 5241 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i)))) |
| 74 | 73 | eleq1d 2825 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
| 75 | 70, 74 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
| 76 | | ancom 460 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
| 77 | 75, 76 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
| 78 | 17 | ismbfcn2 25674 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn))) |
| 79 | 17, 57 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑦) / i) ∈ ℂ) |
| 80 | 79 | ismbfcn2 25674 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
| 81 | 77, 78, 80 | 3bitr4d 311 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn)) |
| 82 | 25, 81 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn) |
| 83 | 23, 82 | eqeltrrd 2841 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) ∈ MblFn) |
| 84 | 16, 17, 19, 83 | iblmulc2nc 37693 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) ∈
𝐿1) |
| 85 | | mulcl 11240 |
. . . . . . 7
⊢ (((1 / i)
∈ ℂ ∧ (𝐹‘𝑦) ∈ ℂ) → ((1 / i) ·
(𝐹‘𝑦)) ∈ ℂ) |
| 86 | 15, 17, 85 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1 / i) · (𝐹‘𝑦)) ∈ ℂ) |
| 87 | 86 | fmpttd 7134 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))):𝐷⟶ℂ) |
| 88 | 12, 3, 4, 5, 6, 7, 84, 87 | ftc1anclem5 37705 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
| 89 | 1, 88 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
| 90 | 9 | ffvelcdmda 7103 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
| 91 | | 0cnd 11255 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) |
| 92 | 90, 91 | ifclda 4560 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
| 93 | | imval 15147 |
. . . . . . . . . . 11
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ →
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
| 94 | 92, 93 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
| 95 | | fveq2 6905 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑡 → (𝐹‘𝑦) = (𝐹‘𝑡)) |
| 96 | 95 | oveq2d 7448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑡 → ((1 / i) · (𝐹‘𝑦)) = ((1 / i) · (𝐹‘𝑡))) |
| 97 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) = (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) |
| 98 | | ovex 7465 |
. . . . . . . . . . . . . . . 16
⊢ ((1 / i)
· (𝐹‘𝑡)) ∈ V |
| 99 | 96, 97, 98 | fvmpt 7015 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((1 / i) · (𝐹‘𝑡))) |
| 100 | 99 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((1 / i) · (𝐹‘𝑡))) |
| 101 | | divrec2 11940 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑡) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
| 102 | 13, 14, 101 | mp3an23 1454 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑡) ∈ ℂ → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
| 103 | 90, 102 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
| 104 | 100, 103 | eqtr4d 2779 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((𝐹‘𝑡) / i)) |
| 105 | 104 | ifeq1da 4556 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0)) |
| 106 | | ovif 7532 |
. . . . . . . . . . . . 13
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), (0 / i)) |
| 107 | 13, 14 | div0i 12002 |
. . . . . . . . . . . . . 14
⊢ (0 / i) =
0 |
| 108 | | ifeq2 4529 |
. . . . . . . . . . . . . 14
⊢ ((0 / i)
= 0 → if(𝑡 ∈
𝐷, ((𝐹‘𝑡) / i), (0 / i)) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0)) |
| 109 | 107, 108 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), (0 / i)) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0) |
| 110 | 106, 109 | eqtri 2764 |
. . . . . . . . . . . 12
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0) |
| 111 | 105, 110 | eqtr4di 2794 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0) = (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i)) |
| 112 | 111 | fveq2d 6909 |
. . . . . . . . . 10
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
| 113 | 94, 112 | eqtr4d 2779 |
. . . . . . . . 9
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0))) |
| 114 | 113 | fvoveq1d 7454 |
. . . . . . . 8
⊢ (𝜑 →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 115 | 114 | mpteq2dv 5243 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 116 | 115 | fveq2d 6909 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 117 | 116 | breq1d 5152 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
| 118 | 117 | rexbidv 3178 |
. . . 4
⊢ (𝜑 → (∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
| 119 | 118 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
| 120 | 89, 119 | mpbird 257 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
| 121 | | reeanv 3228 |
. . 3
⊢
(∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) ↔ (∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
| 122 | | eleq1w 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑡 → (𝑥 ∈ 𝐷 ↔ 𝑡 ∈ 𝐷)) |
| 123 | | fveq2 6905 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑡 → (𝐹‘𝑥) = (𝐹‘𝑡)) |
| 124 | 122, 123 | ifbieq1d 4549 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑡 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) |
| 125 | 124 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 126 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) = (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) |
| 127 | | fvex 6918 |
. . . . . . . . . . . . . 14
⊢
(ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ V |
| 128 | 125, 126,
127 | fvmpt 7015 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 129 | 128 | fvoveq1d 7454 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ →
(abs‘(((𝑥 ∈
ℝ ↦ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
| 130 | 129 | mpteq2ia 5244 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ ↦
(abs‘(((𝑥 ∈
ℝ ↦ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
| 131 | 130 | fveq2i 6908 |
. . . . . . . . . 10
⊢
(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
| 132 | | rembl 25576 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
∈ dom vol |
| 133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℝ ∈ dom
vol) |
| 134 | | 0cnd 11255 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐷) → 0 ∈ ℂ) |
| 135 | 36, 134 | ifclda 4560 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
| 136 | 135 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
| 137 | | eldifn 4131 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (ℝ ∖ 𝐷) → ¬ 𝑥 ∈ 𝐷) |
| 138 | 137 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑥 ∈ 𝐷) |
| 139 | 138 | iffalsed 4535 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐷)) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = 0) |
| 140 | 9 | feqmptd 6976 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 141 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐷 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
| 142 | 141 | mpteq2ia 5244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) |
| 143 | 140, 142 | eqtr4di 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0))) |
| 144 | 143, 8 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈
𝐿1) |
| 145 | 7, 133, 136, 139, 144 | iblss2 25842 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈
𝐿1) |
| 146 | 135 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
| 147 | 146 | iblcn 25835 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈ 𝐿1 ↔
((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1))) |
| 148 | 145, 147 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1)) |
| 149 | 148 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1) |
| 150 | 146 | recld 15234 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
| 151 | 150 | fmpttd 7134 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ) |
| 152 | 149, 151 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ)) |
| 153 | | ftc1anclem4 37704 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
↦ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
| 154 | 153 | 3expb 1120 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ ((𝑥 ∈ ℝ
↦ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
| 155 | 152, 154 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝜑) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
| 156 | 155 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
| 157 | 131, 156 | eqeltrrid 2845 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ) |
| 158 | 124 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 159 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) = (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) |
| 160 | | fvex 6918 |
. . . . . . . . . . . . . 14
⊢
(ℑ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ V |
| 161 | 158, 159,
160 | fvmpt 7015 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) = (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 162 | 161 | fvoveq1d 7454 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ →
(abs‘(((𝑥 ∈
ℝ ↦ (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 163 | 162 | mpteq2ia 5244 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ ↦
(abs‘(((𝑥 ∈
ℝ ↦ (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 164 | 163 | fveq2i 6908 |
. . . . . . . . . 10
⊢
(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 165 | 148 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1) |
| 166 | 135 | imcld 15235 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
| 167 | 166 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
| 168 | 167 | fmpttd 7134 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ) |
| 169 | 165, 168 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ)) |
| 170 | | ftc1anclem4 37704 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
↦ (ℑ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
| 171 | 170 | 3expb 1120 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ dom ∫1
∧ ((𝑥 ∈ ℝ
↦ (ℑ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
| 172 | 169, 171 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ dom ∫1
∧ 𝜑) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
| 173 | 172 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
| 174 | 164, 173 | eqeltrrid 2845 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
| 175 | 157, 174 | anim12dan 619 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ)) |
| 176 | 1 | rpred 13078 |
. . . . . . . . 9
⊢ (𝑌 ∈ ℝ+
→ (𝑌 / 2) ∈
ℝ) |
| 177 | 176, 176 | jca 511 |
. . . . . . . 8
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) ∈
ℝ ∧ (𝑌 / 2)
∈ ℝ)) |
| 178 | | lt2add 11749 |
. . . . . . . 8
⊢
((((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) ∧ ((𝑌 / 2) ∈ ℝ ∧
(𝑌 / 2) ∈ ℝ))
→ (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 179 | 175, 177,
178 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑌 ∈
ℝ+) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 180 | 179 | an32s 652 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 181 | 92 | recld 15234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 182 | 181 | recnd 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) |
| 183 | | i1ff 25712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
| 184 | 183 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℝ) |
| 185 | 184 | recnd 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℂ) |
| 186 | | subcl 11508 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑓‘𝑡) ∈ ℂ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
| 187 | 182, 185,
186 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
| 188 | 187 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
| 189 | 188 | adantlrr 721 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
| 190 | 92 | imcld 15235 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 191 | 190 | recnd 11290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) |
| 192 | | i1ff 25712 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
| 193 | 192 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) |
| 194 | 193 | recnd 11290 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℂ) |
| 195 | | subcl 11508 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
| 196 | 191, 194,
195 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
| 197 | 196 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
| 198 | | mulcl 11240 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) → (i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
| 199 | 13, 197, 198 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
| 200 | 199 | adantlrl 720 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
| 201 | 189, 200 | addcld 11281 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) ∈ ℂ) |
| 202 | 201 | abscld 15476 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
| 203 | 202 | rexrd 11312 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈
ℝ*) |
| 204 | 201 | absge0d 15484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 205 | | elxrge0 13498 |
. . . . . . . . . . . 12
⊢
((abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 206 | 203, 204,
205 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
| 207 | 206 | fmpttd 7134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞)) |
| 208 | | icossicc 13477 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 209 | | ge0addcl 13501 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
| 210 | 208, 209 | sselid 3980 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,]+∞)) |
| 211 | 210 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑥 ∈
(0[,)+∞) ∧ 𝑦
∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞)) |
| 212 | 188 | abscld 15476 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ ℝ) |
| 213 | 188 | absge0d 15484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
| 214 | | elrege0 13495 |
. . . . . . . . . . . . . 14
⊢
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
| 215 | 212, 213,
214 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ (0[,)+∞)) |
| 216 | 215 | fmpttd 7134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 217 | 216 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 218 | 197 | abscld 15476 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℝ) |
| 219 | 197 | absge0d 15484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 220 | | elrege0 13495 |
. . . . . . . . . . . . . 14
⊢
((abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 221 | 218, 219,
220 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ (0[,)+∞)) |
| 222 | 221 | fmpttd 7134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 223 | 222 | adantrl 716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 224 | | reex 11247 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
| 225 | 224 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ V) |
| 226 | | inidm 4226 |
. . . . . . . . . . 11
⊢ (ℝ
∩ ℝ) = ℝ |
| 227 | 211, 217,
223, 225, 225, 226 | off 7716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))):ℝ⟶(0[,]+∞)) |
| 228 | 189, 200 | abstrid 15496 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 229 | 228 | ralrimiva 3145 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ∀𝑡 ∈
ℝ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 230 | | ovexd 7467 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ V) |
| 231 | | eqidd 2737 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 232 | | fvexd 6920 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ V) |
| 233 | | fvexd 6920 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) ∈ V) |
| 234 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
| 235 | | absmul 15334 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) → (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = ((abs‘i) ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 236 | 13, 197, 235 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘(i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = ((abs‘i) ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 237 | | absi 15326 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs‘i) = 1 |
| 238 | 237 | oveq1i 7442 |
. . . . . . . . . . . . . . . . 17
⊢
((abs‘i) · (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (1 ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 239 | 218 | recnd 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
| 240 | 239 | mullidd 11280 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (1
· (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 241 | 238, 240 | eqtrid 2788 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((abs‘i) · (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
| 242 | 236, 241 | eqtr2d 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
| 243 | 242 | mpteq2dva 5241 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 244 | 243 | adantrl 716 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 245 | 225, 232,
233, 234, 244 | offval2 7718 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (𝑡 ∈ ℝ ↦
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 246 | 225, 202,
230, 231, 245 | ofrfval2 7719 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ↔ ∀𝑡 ∈ ℝ
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 247 | 229, 246 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
| 248 | | itg2le 25775 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) ∧
((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 249 | 207, 227,
247, 248 | syl3anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 250 | | absf 15377 |
. . . . . . . . . . . . . 14
⊢
abs:ℂ⟶ℝ |
| 251 | 250 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
abs:ℂ⟶ℝ) |
| 252 | 251, 188 | cofmpt 7151 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (abs
∘ (𝑡 ∈ ℝ
↦ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
| 253 | | resubcl 11574 |
. . . . . . . . . . . . . . . 16
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑓‘𝑡) ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
| 254 | 181, 184,
253 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
| 255 | 254 | anassrs 467 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
| 256 | 255 | fmpttd 7134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))):ℝ⟶ℝ) |
| 257 | 132 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ℝ
∈ dom vol) |
| 258 | | iunin2 5070 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) |
| 259 | | imaiun 7266 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ∪
𝑦 ∈ ran 𝑓{𝑦}) = ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦}) |
| 260 | | iunid 5059 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ 𝑦 ∈ ran 𝑓{𝑦} = ran 𝑓 |
| 261 | 260 | imaeq2i 6075 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ∪
𝑦 ∈ ran 𝑓{𝑦}) = (◡𝑓 “ ran 𝑓) |
| 262 | 259, 261 | eqtr3i 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦}) = (◡𝑓 “ ran 𝑓) |
| 263 | 262 | ineq2i 4216 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) |
| 264 | 258, 263 | eqtri 2764 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) |
| 265 | | cnvimass 6099 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ dom (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
| 266 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ V |
| 267 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) = (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
| 268 | 266, 267 | dmmpti 6711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) = ℝ |
| 269 | 265, 268 | sseqtri 4031 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆
ℝ |
| 270 | | cnvimarndm 6100 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ran 𝑓) = dom 𝑓 |
| 271 | 183 | fdmd 6745 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ dom ∫1
→ dom 𝑓 =
ℝ) |
| 272 | 270, 271 | eqtrid 2788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ ran 𝑓) = ℝ) |
| 273 | 269, 272 | sseqtrrid 4026 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ (◡𝑓 “ ran 𝑓)) |
| 274 | | dfss2 3968 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ (◡𝑓 “ ran 𝑓) ↔ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
| 275 | 273, 274 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
| 276 | 264, 275 | eqtrid 2788 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
| 277 | 276 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
| 278 | 183 | frnd 6743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ⊆
ℝ) |
| 279 | 278 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ran
𝑓 ⊆
ℝ) |
| 280 | 279 | sselda 3982 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → 𝑦 ∈ ℝ) |
| 281 | 181 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 282 | | resubcl 11574 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
| 283 | 181, 282 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
| 284 | 283 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
| 285 | 281, 284 | 2thd 265 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ↔
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ)) |
| 286 | | ltaddsub 11738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
| 287 | 181, 286 | syl3an3 1165 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝜑) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
| 288 | 287 | 3comr 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
| 289 | 288 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
| 290 | 285, 289 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
| 291 | | readdcl 11239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
| 292 | 291 | rexrd 11312 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈
ℝ*) |
| 293 | 292 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈
ℝ*) |
| 294 | | elioopnf 13484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 + 𝑦) ∈ ℝ* →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 295 | 293, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 296 | | rexr 11308 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
| 297 | 296 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*) |
| 298 | | elioopnf 13484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ*
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
| 299 | 297, 298 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
| 300 | 290, 295,
299 | 3bitr4rd 312 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))) |
| 301 | | oveq2 7440 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓‘𝑡) = 𝑦 → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)) |
| 302 | 301 | eleq1d 2825 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞))) |
| 303 | 302 | bibi1d 343 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑡) = 𝑦 → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)) ↔
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))) |
| 304 | 300, 303 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))) |
| 305 | 304 | pm5.32rd 578 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
| 306 | 305 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
| 307 | 280, 306 | syldan 591 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
| 308 | 307 | rabbidv 3443 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 309 | 183 | feqmptd 6976 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
| 310 | 309 | cnveqd 5885 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ dom ∫1
→ ◡𝑓 = ◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
| 311 | 310 | imaeq1d 6076 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ {𝑦}) = (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) |
| 312 | 311 | ineq2d 4219 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
| 313 | 267 | mptpreima 6257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} |
| 314 | | vex 3483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V |
| 315 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) |
| 316 | 315 | mptiniseg 6258 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ V → (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 317 | 314, 316 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦} |
| 318 | 313, 317 | ineq12i 4217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 319 | | inrab 4315 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
| 320 | 318, 319 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
| 321 | 312, 320 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 322 | 321 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 323 | 311 | ineq2d 4219 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
| 324 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) = (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) |
| 325 | 324 | mptpreima 6257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) = {𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} |
| 326 | 325, 317 | ineq12i 4217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 327 | | inrab 4315 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
| 328 | 326, 327 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
| 329 | 323, 328 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 330 | 329 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 331 | 308, 322,
330 | 3eqtr4d 2786 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
| 332 | 331 | iuneq2dv 5015 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
| 333 | 277, 332 | eqtr3d 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) = ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
| 334 | | i1frn 25713 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ∈
Fin) |
| 335 | 334 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ran
𝑓 ∈
Fin) |
| 336 | 92 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
| 337 | | eldifn 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡 ∈ 𝐷) |
| 338 | 337 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡 ∈ 𝐷) |
| 339 | 338 | iffalsed 4535 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = 0) |
| 340 | 9 | feqmptd 6976 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
| 341 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = (𝐹‘𝑡)) |
| 342 | 341 | mpteq2ia 5244 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) |
| 343 | 340, 342 | eqtr4di 2794 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 344 | | iblmbf 25803 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) |
| 345 | 8, 344 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 346 | 343, 345 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn) |
| 347 | 7, 133, 336, 339, 346 | mbfss 25682 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn) |
| 348 | 92 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
| 349 | 348 | ismbfcn2 25674 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn ↔ ((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn))) |
| 350 | 347, 349 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn)) |
| 351 | 350 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn) |
| 352 | 181 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 353 | 352 | fmpttd 7134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡),
0))):ℝ⟶ℝ) |
| 354 | | mbfima 25666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))):ℝ⟶ℝ) → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom
vol) |
| 355 | 351, 353,
354 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom
vol) |
| 356 | | i1fima 25714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ {𝑦}) ∈ dom vol) |
| 357 | | inmbl 25578 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol ∧ (◡𝑓 “ {𝑦}) ∈ dom vol) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 358 | 355, 356,
357 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 359 | 358 | ralrimivw 3149 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 360 | | finiunmbl 25580 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑓 ∈ Fin ∧
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 361 | 335, 359,
360 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 362 | 361 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 363 | 333, 362 | eqeltrd 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∈ dom
vol) |
| 364 | | iunin2 5070 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) |
| 365 | 262 | ineq2i 4216 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) |
| 366 | 364, 365 | eqtri 2764 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) |
| 367 | | cnvimass 6099 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ dom (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
| 368 | 367, 268 | sseqtri 4031 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ ℝ |
| 369 | 368, 272 | sseqtrrid 4026 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ (◡𝑓 “ ran 𝑓)) |
| 370 | | dfss2 3968 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ (◡𝑓 “ ran 𝑓) ↔ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
| 371 | 369, 370 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
| 372 | 366, 371 | eqtrid 2788 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
| 373 | 372 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
| 374 | 284, 281 | 2thd 265 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ↔
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ)) |
| 375 | | ltsubadd 11734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
| 376 | 181, 375 | syl3an1 1163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
| 377 | 376 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
| 378 | 377 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
| 379 | 374, 378 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
| 380 | | elioomnf 13485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ*
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥))) |
| 381 | 297, 380 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥))) |
| 382 | | elioomnf 13485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 + 𝑦) ∈ ℝ* →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
| 383 | 293, 382 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
| 384 | 379, 381,
383 | 3bitr4d 311 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))) |
| 385 | 301 | eleq1d 2825 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥))) |
| 386 | 385 | bibi1d 343 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑡) = 𝑦 → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))) |
| 387 | 384, 386 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))) |
| 388 | 387 | pm5.32rd 578 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
| 389 | 388 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
| 390 | 280, 389 | syldan 591 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
| 391 | 390 | rabbidv 3443 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 392 | 311 | ineq2d 4219 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
| 393 | 267 | mptpreima 6257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} |
| 394 | 393, 317 | ineq12i 4217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 395 | | inrab 4315 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} |
| 396 | 394, 395 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} |
| 397 | 392, 396 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 398 | 397 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 399 | 311 | ineq2d 4219 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
| 400 | 324 | mptpreima 6257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) = {𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} |
| 401 | 400, 317 | ineq12i 4217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
| 402 | | inrab 4315 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)} |
| 403 | 401, 402 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)} |
| 404 | 399, 403 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 405 | 404 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
| 406 | 391, 398,
405 | 3eqtr4d 2786 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
| 407 | 406 | iuneq2dv 5015 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
| 408 | 373, 407 | eqtr3d 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
| 409 | | mbfima 25666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))):ℝ⟶ℝ) → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol) |
| 410 | 351, 353,
409 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol) |
| 411 | | inmbl 25578 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol ∧ (◡𝑓 “ {𝑦}) ∈ dom vol) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 412 | 410, 356,
411 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 413 | 412 | ralrimivw 3149 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 414 | | finiunmbl 25580 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑓 ∈ Fin ∧
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 415 | 335, 413,
414 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 416 | 415 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
| 417 | 408, 416 | eqeltrd 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∈ dom vol) |
| 418 | 256, 257,
363, 417 | ismbf2d 25676 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ MblFn) |
| 419 | | ftc1anclem1 37701 |
. . . . . . . . . . . . 13
⊢ (((𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
| 420 | 256, 418,
419 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (abs
∘ (𝑡 ∈ ℝ
↦ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
| 421 | 252, 420 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
| 422 | 421 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
| 423 | 157 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ) |
| 424 | 174 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
| 425 | 422, 217,
423, 223, 424 | itg2addnc 37682 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 426 | 249, 425 | breqtrd 5168 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 427 | 426 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
| 428 | | itg2cl 25768 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
| 429 | 207, 428 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
| 430 | 429 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
| 431 | | readdcl 11239 |
. . . . . . . . . . . 12
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
| 432 | 157, 174,
431 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ (𝜑 ∧ 𝑔 ∈ dom ∫1)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
| 433 | 432 | anandis 678 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
| 434 | 433 | rexrd 11312 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈
ℝ*) |
| 435 | 434 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈
ℝ*) |
| 436 | 1, 1 | rpaddcld 13093 |
. . . . . . . . . 10
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ+) |
| 437 | 436 | rpxrd 13079 |
. . . . . . . . 9
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) |
| 438 | 437 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) |
| 439 | | xrlelttr 13199 |
. . . . . . . 8
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈ ℝ* ∧
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ* ∧
((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 440 | 430, 435,
438, 439 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 441 | 427, 440 | mpand 695 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 442 | 180, 441 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
| 443 | | mulcl 11240 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) → (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) |
| 444 | 13, 191, 443 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) |
| 445 | 182, 444 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ)) |
| 446 | | mulcl 11240 |
. . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
| 447 | 13, 194, 446 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (i · (𝑔‘𝑡)) ∈ ℂ) |
| 448 | 185, 447 | anim12i 613 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) |
| 449 | 448 | anandirs 679 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) |
| 450 | | addsub4 11553 |
. . . . . . . . . . . . 13
⊢
((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) ∧ ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
| 451 | 445, 449,
450 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑡 ∈ ℝ))
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
| 452 | 451 | anassrs 467 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
| 453 | 92 | replimd 15237 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 454 | 453 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 455 | 454 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 456 | 194 | adantll 714 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑔‘𝑡) ∈ ℂ) |
| 457 | | subdi 11697 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
| 458 | 13, 191, 456, 457 | mp3an3an 1468 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑡 ∈ ℝ))
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
| 459 | 458 | anassrs 467 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
| 460 | 459 | oveq2d 7448 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
| 461 | 452, 455,
460 | 3eqtr4rd 2787 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 462 | 461 | fveq2d 6909 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 463 | 462 | mpteq2dva 5241 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
| 464 | 463 | fveq2d 6909 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
| 465 | 464 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
| 466 | | rpcn 13046 |
. . . . . . . 8
⊢ (𝑌 ∈ ℝ+
→ 𝑌 ∈
ℂ) |
| 467 | 466 | 2halvesd 12514 |
. . . . . . 7
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) = 𝑌) |
| 468 | 467 | ad2antlr 727 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌) |
| 469 | 465, 468 | breq12d 5155 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)) ↔
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
| 470 | 442, 469 | sylibd 239 |
. . . 4
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
| 471 | 470 | reximdvva 3206 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
| 472 | 121, 471 | biimtrrid 243 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
((∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
| 473 | 11, 120, 472 | mp2and 699 |
1
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌) |