Step | Hyp | Ref
| Expression |
1 | | rphalfcl 12686 |
. . 3
⊢ (𝑌 ∈ ℝ+
→ (𝑌 / 2) ∈
ℝ+) |
2 | | ftc1anc.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
3 | | ftc1anc.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | | ftc1anc.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | | ftc1anc.le |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
6 | | ftc1anc.s |
. . . 4
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
7 | | ftc1anc.d |
. . . 4
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
8 | | ftc1anc.i |
. . . 4
⊢ (𝜑 → 𝐹 ∈
𝐿1) |
9 | | ftc1anc.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | ftc1anclem5 35781 |
. . 3
⊢ ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) →
∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2)) |
11 | 1, 10 | sylan2 592 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2)) |
12 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) d𝑡) |
13 | | ax-icn 10861 |
. . . . . . . 8
⊢ i ∈
ℂ |
14 | | ine0 11340 |
. . . . . . . 8
⊢ i ≠
0 |
15 | 13, 14 | reccli 11635 |
. . . . . . 7
⊢ (1 / i)
∈ ℂ |
16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (1 / i) ∈
ℂ) |
17 | 9 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐹‘𝑦) ∈ ℂ) |
18 | 9 | feqmptd 6819 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦))) |
19 | 18, 8 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈
𝐿1) |
20 | | divrec2 11580 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
21 | 13, 14, 20 | mp3an23 1451 |
. . . . . . . . 9
⊢ ((𝐹‘𝑦) ∈ ℂ → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
22 | 17, 21 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑦) / i) = ((1 / i) · (𝐹‘𝑦))) |
23 | 22 | mpteq2dva 5170 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) = (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))) |
24 | | iblmbf 24837 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ 𝐿1 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn) |
25 | 19, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn) |
26 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (ℜ‘(𝐹‘𝑦)) = (ℜ‘(𝐹‘𝑥))) |
27 | 26 | cbvmptv 5183 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) = (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) |
28 | 27 | eleq1i 2829 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
29 | 17 | recld 14833 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℝ) |
30 | 29 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℂ) |
31 | 30 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) ∧ 𝑦 ∈ 𝐷) → (ℜ‘(𝐹‘𝑦)) ∈ ℂ) |
32 | 28 | biimpri 227 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
33 | 32 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
34 | 31, 33 | mbfneg 24719 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
35 | 28, 34 | sylan2b 593 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
36 | 9 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℂ) |
37 | 36 | recld 14833 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (ℜ‘(𝐹‘𝑥)) ∈ ℝ) |
38 | 37 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (ℜ‘(𝐹‘𝑥)) ∈ ℂ) |
39 | 38 | negnegd 11253 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → --(ℜ‘(𝐹‘𝑥)) = (ℜ‘(𝐹‘𝑥))) |
40 | 39 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑥)))) |
41 | 40, 27 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦)))) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦)))) |
43 | | negex 11149 |
. . . . . . . . . . . . . . . 16
⊢
-(ℜ‘(𝐹‘𝑥)) ∈ V |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) ∧ 𝑥 ∈ 𝐷) → -(ℜ‘(𝐹‘𝑥)) ∈ V) |
45 | 26 | negeqd 11145 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → -(ℜ‘(𝐹‘𝑦)) = -(ℜ‘(𝐹‘𝑥))) |
46 | 45 | cbvmptv 5183 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) = (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) |
47 | 46 | eleq1i 2829 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
48 | 47 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn → (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
49 | 48 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
50 | 44, 49 | mbfneg 24719 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑥 ∈ 𝐷 ↦ --(ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
51 | 42, 50 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn) → (𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn) |
52 | 35, 51 | impbida 797 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn)) |
53 | | divcl 11569 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑦) / i) ∈ ℂ) |
54 | | imre 14747 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑦) / i) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → (ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
56 | 13, 14, 55 | mp3an23 1451 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = (ℜ‘(-i · ((𝐹‘𝑦) / i)))) |
57 | 13, 14, 53 | mp3an23 1451 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑦) ∈ ℂ → ((𝐹‘𝑦) / i) ∈ ℂ) |
58 | | mulneg1 11341 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((i
∈ ℂ ∧ ((𝐹‘𝑦) / i) ∈ ℂ) → (-i ·
((𝐹‘𝑦) / i)) = -(i · ((𝐹‘𝑦) / i))) |
59 | 13, 57, 58 | sylancr 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) ∈ ℂ → (-i · ((𝐹‘𝑦) / i)) = -(i · ((𝐹‘𝑦) / i))) |
60 | | divcan2 11571 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹‘𝑦) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → (i · ((𝐹‘𝑦) / i)) = (𝐹‘𝑦)) |
61 | 13, 14, 60 | mp3an23 1451 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑦) ∈ ℂ → (i · ((𝐹‘𝑦) / i)) = (𝐹‘𝑦)) |
62 | 61 | negeqd 11145 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑦) ∈ ℂ → -(i · ((𝐹‘𝑦) / i)) = -(𝐹‘𝑦)) |
63 | 59, 62 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑦) ∈ ℂ → (-i · ((𝐹‘𝑦) / i)) = -(𝐹‘𝑦)) |
64 | 63 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℜ‘(-i
· ((𝐹‘𝑦) / i))) = (ℜ‘-(𝐹‘𝑦))) |
65 | | reneg 14764 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℜ‘-(𝐹‘𝑦)) = -(ℜ‘(𝐹‘𝑦))) |
66 | 56, 64, 65 | 3eqtrd 2782 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑦) ∈ ℂ →
(ℑ‘((𝐹‘𝑦) / i)) = -(ℜ‘(𝐹‘𝑦))) |
67 | 17, 66 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℑ‘((𝐹‘𝑦) / i)) = -(ℜ‘(𝐹‘𝑦))) |
68 | 67 | mpteq2dva 5170 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) = (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦)))) |
69 | 68 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ -(ℜ‘(𝐹‘𝑦))) ∈ MblFn)) |
70 | 52, 69 | bitr4d 281 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
71 | | imval 14746 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑦) ∈ ℂ → (ℑ‘(𝐹‘𝑦)) = (ℜ‘((𝐹‘𝑦) / i))) |
72 | 17, 71 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (ℑ‘(𝐹‘𝑦)) = (ℜ‘((𝐹‘𝑦) / i))) |
73 | 72 | mpteq2dva 5170 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) = (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i)))) |
74 | 73 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
75 | 70, 74 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
76 | | ancom 460 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn)) |
77 | 75, 76 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn) ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
78 | 17 | ismbfcn2 24707 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑦))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑦))) ∈ MblFn))) |
79 | 17, 57 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐹‘𝑦) / i) ∈ ℂ) |
80 | 79 | ismbfcn2 24707 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn ↔ ((𝑦 ∈ 𝐷 ↦ (ℜ‘((𝐹‘𝑦) / i))) ∈ MblFn ∧ (𝑦 ∈ 𝐷 ↦ (ℑ‘((𝐹‘𝑦) / i))) ∈ MblFn))) |
81 | 77, 78, 80 | 3bitr4d 310 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ (𝐹‘𝑦)) ∈ MblFn ↔ (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn)) |
82 | 25, 81 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((𝐹‘𝑦) / i)) ∈ MblFn) |
83 | 23, 82 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) ∈ MblFn) |
84 | 16, 17, 19, 83 | iblmulc2nc 35769 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) ∈
𝐿1) |
85 | | mulcl 10886 |
. . . . . . 7
⊢ (((1 / i)
∈ ℂ ∧ (𝐹‘𝑦) ∈ ℂ) → ((1 / i) ·
(𝐹‘𝑦)) ∈ ℂ) |
86 | 15, 17, 85 | sylancr 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((1 / i) · (𝐹‘𝑦)) ∈ ℂ) |
87 | 86 | fmpttd 6971 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))):𝐷⟶ℂ) |
88 | 12, 3, 4, 5, 6, 7, 84, 87 | ftc1anclem5 35781 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
89 | 1, 88 | sylan2 592 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
90 | 9 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
91 | | 0cnd 10899 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) |
92 | 90, 91 | ifclda 4491 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
93 | | imval 14746 |
. . . . . . . . . . 11
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ →
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
94 | 92, 93 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
95 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑡 → (𝐹‘𝑦) = (𝐹‘𝑡)) |
96 | 95 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑡 → ((1 / i) · (𝐹‘𝑦)) = ((1 / i) · (𝐹‘𝑡))) |
97 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) = (𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦))) |
98 | | ovex 7288 |
. . . . . . . . . . . . . . . 16
⊢ ((1 / i)
· (𝐹‘𝑡)) ∈ V |
99 | 96, 97, 98 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((1 / i) · (𝐹‘𝑡))) |
100 | 99 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((1 / i) · (𝐹‘𝑡))) |
101 | | divrec2 11580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑡) ∈ ℂ ∧ i ∈ ℂ ∧
i ≠ 0) → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
102 | 13, 14, 101 | mp3an23 1451 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑡) ∈ ℂ → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
103 | 90, 102 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝐹‘𝑡) / i) = ((1 / i) · (𝐹‘𝑡))) |
104 | 100, 103 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡) = ((𝐹‘𝑡) / i)) |
105 | 104 | ifeq1da 4487 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0)) |
106 | | ovif 7350 |
. . . . . . . . . . . . 13
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), (0 / i)) |
107 | 13, 14 | div0i 11639 |
. . . . . . . . . . . . . 14
⊢ (0 / i) =
0 |
108 | | ifeq2 4461 |
. . . . . . . . . . . . . 14
⊢ ((0 / i)
= 0 → if(𝑡 ∈
𝐷, ((𝐹‘𝑡) / i), (0 / i)) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0)) |
109 | 107, 108 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), (0 / i)) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0) |
110 | 106, 109 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i) = if(𝑡 ∈ 𝐷, ((𝐹‘𝑡) / i), 0) |
111 | 105, 110 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0) = (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i)) |
112 | 111 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) = (ℜ‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) / i))) |
113 | 94, 112 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0))) |
114 | 113 | fvoveq1d 7277 |
. . . . . . . 8
⊢ (𝜑 →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡)))) |
115 | 114 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) |
116 | 115 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡)))))) |
117 | 116 | breq1d 5080 |
. . . . 5
⊢ (𝜑 →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
118 | 117 | rexbidv 3225 |
. . . 4
⊢ (𝜑 → (∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
119 | 118 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, ((𝑦 ∈ 𝐷 ↦ ((1 / i) · (𝐹‘𝑦)))‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
120 | 89, 119 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) |
121 | | reeanv 3292 |
. . 3
⊢
(∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) ↔ (∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2))) |
122 | | eleq1w 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑡 → (𝑥 ∈ 𝐷 ↔ 𝑡 ∈ 𝐷)) |
123 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑡 → (𝐹‘𝑥) = (𝐹‘𝑡)) |
124 | 122, 123 | ifbieq1d 4480 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑡 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) |
125 | 124 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
126 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) = (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) |
127 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢
(ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ V |
128 | 125, 126,
127 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
129 | 128 | fvoveq1d 7277 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ →
(abs‘(((𝑥 ∈
ℝ ↦ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
130 | 129 | mpteq2ia 5173 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ ↦
(abs‘(((𝑥 ∈
ℝ ↦ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
131 | 130 | fveq2i 6759 |
. . . . . . . . . 10
⊢
(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
132 | | rembl 24609 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
∈ dom vol |
133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ℝ ∈ dom
vol) |
134 | | 0cnd 10899 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐷) → 0 ∈ ℂ) |
135 | 36, 134 | ifclda 4491 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
136 | 135 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
137 | | eldifn 4058 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (ℝ ∖ 𝐷) → ¬ 𝑥 ∈ 𝐷) |
138 | 137 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑥 ∈ 𝐷) |
139 | 138 | iffalsed 4467 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐷)) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = 0) |
140 | 9 | feqmptd 6819 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
141 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐷 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
142 | 141 | mpteq2ia 5173 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥)) |
143 | 140, 142 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0))) |
144 | 143, 8 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈
𝐿1) |
145 | 7, 133, 136, 139, 144 | iblss2 24875 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈
𝐿1) |
146 | 135 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) ∈ ℂ) |
147 | 146 | iblcn 24868 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈ 𝐿1 ↔
((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1))) |
148 | 145, 147 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1)) |
149 | 148 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1) |
150 | 146 | recld 14833 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
151 | 150 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ) |
152 | 149, 151 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ)) |
153 | | ftc1anclem4 35780 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
↦ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
154 | 153 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ ((𝑥 ∈ ℝ
↦ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
155 | 152, 154 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝜑) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
156 | 155 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑓‘𝑡))))) ∈ ℝ) |
157 | 131, 156 | eqeltrrid 2844 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ) |
158 | 124 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
159 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) = (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) |
160 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢
(ℑ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ V |
161 | 158, 159,
160 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) = (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
162 | 161 | fvoveq1d 7277 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ →
(abs‘(((𝑥 ∈
ℝ ↦ (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
163 | 162 | mpteq2ia 5173 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℝ ↦
(abs‘(((𝑥 ∈
ℝ ↦ (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
164 | 163 | fveq2i 6759 |
. . . . . . . . . 10
⊢
(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
165 | 148 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1) |
166 | 135 | imcld 14834 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (ℑ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
167 | 166 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)) ∈ ℝ) |
168 | 167 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ) |
169 | 165, 168 | jca 511 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ)) |
170 | | ftc1anclem4 35780 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
↦ (ℑ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
171 | 170 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ dom ∫1
∧ ((𝑥 ∈ ℝ
↦ (ℑ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
172 | 169, 171 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ dom ∫1
∧ 𝜑) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
173 | 172 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℑ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − (𝑔‘𝑡))))) ∈ ℝ) |
174 | 164, 173 | eqeltrrid 2844 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
175 | 157, 174 | anim12dan 618 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ)) |
176 | 1 | rpred 12701 |
. . . . . . . . 9
⊢ (𝑌 ∈ ℝ+
→ (𝑌 / 2) ∈
ℝ) |
177 | 176, 176 | jca 511 |
. . . . . . . 8
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) ∈
ℝ ∧ (𝑌 / 2)
∈ ℝ)) |
178 | | lt2add 11390 |
. . . . . . . 8
⊢
((((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) ∧ ((𝑌 / 2) ∈ ℝ ∧
(𝑌 / 2) ∈ ℝ))
→ (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
179 | 175, 177,
178 | syl2an 595 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑌 ∈
ℝ+) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
180 | 179 | an32s 648 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
181 | 92 | recld 14833 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
182 | 181 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) |
183 | | i1ff 24745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
184 | 183 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℝ) |
185 | 184 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℂ) |
186 | | subcl 11150 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑓‘𝑡) ∈ ℂ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
187 | 182, 185,
186 | syl2an 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
188 | 187 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
189 | 188 | adantlrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℂ) |
190 | 92 | imcld 14834 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
191 | 190 | recnd 10934 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) |
192 | | i1ff 24745 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
193 | 192 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) |
194 | 193 | recnd 10934 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℂ) |
195 | | subcl 11150 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
196 | 191, 194,
195 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
197 | 196 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) |
198 | | mulcl 10886 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) → (i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
199 | 13, 197, 198 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
200 | 199 | adantlrl 716 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
201 | 189, 200 | addcld 10925 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) ∈ ℂ) |
202 | 201 | abscld 15076 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
203 | 202 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈
ℝ*) |
204 | 201 | absge0d 15084 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
205 | | elxrge0 13118 |
. . . . . . . . . . . 12
⊢
((abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
206 | 203, 204,
205 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
207 | 206 | fmpttd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞)) |
208 | | icossicc 13097 |
. . . . . . . . . . . . 13
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
209 | | ge0addcl 13121 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
210 | 208, 209 | sselid 3915 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,]+∞)) |
211 | 210 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑥 ∈
(0[,)+∞) ∧ 𝑦
∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞)) |
212 | 188 | abscld 15076 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ ℝ) |
213 | 188 | absge0d 15084 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) |
214 | | elrege0 13115 |
. . . . . . . . . . . . . 14
⊢
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
215 | 212, 213,
214 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ (0[,)+∞)) |
216 | 215 | fmpttd 6971 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))):ℝ⟶(0[,)+∞)) |
217 | 216 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))):ℝ⟶(0[,)+∞)) |
218 | 197 | abscld 15076 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℝ) |
219 | 197 | absge0d 15084 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
220 | | elrege0 13115 |
. . . . . . . . . . . . . 14
⊢
((abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
221 | 218, 219,
220 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ (0[,)+∞)) |
222 | 221 | fmpttd 6971 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) |
223 | 222 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) |
224 | | reex 10893 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
225 | 224 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ V) |
226 | | inidm 4149 |
. . . . . . . . . . 11
⊢ (ℝ
∩ ℝ) = ℝ |
227 | 211, 217,
223, 225, 225, 226 | off 7529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))):ℝ⟶(0[,]+∞)) |
228 | 189, 200 | abstrid 15096 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
229 | 228 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ∀𝑡 ∈
ℝ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
230 | | ovexd 7290 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ V) |
231 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
232 | | fvexd 6771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ V) |
233 | | fvexd 6771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) ∈ V) |
234 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
235 | | absmul 14934 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)) ∈ ℂ) → (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = ((abs‘i) ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
236 | 13, 197, 235 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘(i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = ((abs‘i) ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
237 | | absi 14926 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs‘i) = 1 |
238 | 237 | oveq1i 7265 |
. . . . . . . . . . . . . . . . 17
⊢
((abs‘i) · (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (1 ·
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
239 | 218 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) ∈ ℂ) |
240 | 239 | mulid2d 10924 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (1
· (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
241 | 238, 240 | syl5eq 2791 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((abs‘i) · (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) |
242 | 236, 241 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) |
243 | 242 | mpteq2dva 5170 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
244 | 243 | adantrl 712 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i
· ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
245 | 225, 232,
233, 234, 244 | offval2 7531 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (𝑡 ∈ ℝ ↦
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
246 | 225, 202,
230, 231, 245 | ofrfval2 7532 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ↔ ∀𝑡 ∈ ℝ
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ≤
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) + (abs‘(i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
247 | 229, 246 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) |
248 | | itg2le 24809 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) ∧
((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
249 | 207, 227,
247, 248 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
250 | | absf 14977 |
. . . . . . . . . . . . . 14
⊢
abs:ℂ⟶ℝ |
251 | 250 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
abs:ℂ⟶ℝ) |
252 | 251, 188 | cofmpt 6986 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (abs
∘ (𝑡 ∈ ℝ
↦ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) |
253 | | resubcl 11215 |
. . . . . . . . . . . . . . . 16
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑓‘𝑡) ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
254 | 181, 184,
253 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
255 | 254 | anassrs 467 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ ℝ) |
256 | 255 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))):ℝ⟶ℝ) |
257 | 132 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ℝ
∈ dom vol) |
258 | | iunin2 4996 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) |
259 | | imaiun 7100 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ∪
𝑦 ∈ ran 𝑓{𝑦}) = ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦}) |
260 | | iunid 4986 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ 𝑦 ∈ ran 𝑓{𝑦} = ran 𝑓 |
261 | 260 | imaeq2i 5956 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ∪
𝑦 ∈ ran 𝑓{𝑦}) = (◡𝑓 “ ran 𝑓) |
262 | 259, 261 | eqtr3i 2768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦}) = (◡𝑓 “ ran 𝑓) |
263 | 262 | ineq2i 4140 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ ∪ 𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) |
264 | 258, 263 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) |
265 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ dom (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
266 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ V |
267 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) = (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
268 | 266, 267 | dmmpti 6561 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) = ℝ |
269 | 265, 268 | sseqtri 3953 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆
ℝ |
270 | | cnvimarndm 5979 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑓 “ ran 𝑓) = dom 𝑓 |
271 | 183 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ dom ∫1
→ dom 𝑓 =
ℝ) |
272 | 270, 271 | syl5eq 2791 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ ran 𝑓) = ℝ) |
273 | 269, 272 | sseqtrrid 3970 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ (◡𝑓 “ ran 𝑓)) |
274 | | df-ss 3900 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ⊆ (◡𝑓 “ ran 𝑓) ↔ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
275 | 273, 274 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
276 | 264, 275 | syl5eq 2791 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
277 | 276 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞))) |
278 | 183 | frnd 6592 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ⊆
ℝ) |
279 | 278 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ran
𝑓 ⊆
ℝ) |
280 | 279 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → 𝑦 ∈ ℝ) |
281 | 181 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
282 | | resubcl 11215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
283 | 181, 282 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
284 | 283 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ) |
285 | 281, 284 | 2thd 264 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ↔
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ)) |
286 | | ltaddsub 11379 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
287 | 181, 286 | syl3an3 1163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝜑) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
288 | 287 | 3comr 1123 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
289 | 288 | 3expa 1116 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦))) |
290 | 285, 289 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
291 | | readdcl 10885 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
292 | 291 | rexrd 10956 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈
ℝ*) |
293 | 292 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈
ℝ*) |
294 | | elioopnf 13104 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 + 𝑦) ∈ ℝ* →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
295 | 293, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
296 | | rexr 10952 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
297 | 296 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*) |
298 | | elioopnf 13104 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ*
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
299 | 297, 298 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)))) |
300 | 290, 295,
299 | 3bitr4rd 311 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))) |
301 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓‘𝑡) = 𝑦 → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦)) |
302 | 301 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞))) |
303 | 302 | bibi1d 343 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑡) = 𝑦 → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)) ↔
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))) |
304 | 300, 303 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))) |
305 | 304 | pm5.32rd 577 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
306 | 305 | adantllr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
307 | 280, 306 | syldan 590 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦))) |
308 | 307 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
309 | 183 | feqmptd 6819 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
310 | 309 | cnveqd 5773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ dom ∫1
→ ◡𝑓 = ◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
311 | 310 | imaeq1d 5957 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ {𝑦}) = (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) |
312 | 311 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
313 | 267 | mptpreima 6130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} |
314 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑦 ∈ V |
315 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) |
316 | 315 | mptiniseg 6131 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ V → (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
317 | 314, 316 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦} |
318 | 313, 317 | ineq12i 4141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
319 | | inrab 4237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
320 | 318, 319 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
321 | 312, 320 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
322 | 321 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
323 | 311 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
324 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) = (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) |
325 | 324 | mptpreima 6130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) = {𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} |
326 | 325, 317 | ineq12i 4141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
327 | | inrab 4237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
328 | 326, 327 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)} |
329 | 323, 328 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
330 | 329 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓‘𝑡) = 𝑦)}) |
331 | 308, 322,
330 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
332 | 331 | iuneq2dv 4945 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∩ (◡𝑓 “ {𝑦})) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
333 | 277, 332 | eqtr3d 2780 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) = ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦}))) |
334 | | i1frn 24746 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ran 𝑓 ∈
Fin) |
335 | 334 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ran
𝑓 ∈
Fin) |
336 | 92 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
337 | | eldifn 4058 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡 ∈ 𝐷) |
338 | 337 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡 ∈ 𝐷) |
339 | 338 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = 0) |
340 | 9 | feqmptd 6819 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
341 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = (𝐹‘𝑡)) |
342 | 341 | mpteq2ia 5173 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) |
343 | 340, 342 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
344 | | iblmbf 24837 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) |
345 | 8, 344 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹 ∈ MblFn) |
346 | 343, 345 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn) |
347 | 7, 133, 336, 339, 346 | mbfss 24715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn) |
348 | 92 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
349 | 348 | ismbfcn2 24707 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ MblFn ↔ ((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn))) |
350 | 347, 349 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn)) |
351 | 350 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn) |
352 | 181 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
353 | 352 | fmpttd 6971 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡),
0))):ℝ⟶ℝ) |
354 | | mbfima 24699 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))):ℝ⟶ℝ) → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom
vol) |
355 | 351, 353,
354 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom
vol) |
356 | | i1fima 24747 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡𝑓 “ {𝑦}) ∈ dom vol) |
357 | | inmbl 24611 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol ∧ (◡𝑓 “ {𝑦}) ∈ dom vol) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
358 | 355, 356,
357 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
359 | 358 | ralrimivw 3108 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
360 | | finiunmbl 24613 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑓 ∈ Fin ∧
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
361 | 335, 359,
360 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
362 | 361 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
363 | 333, 362 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (𝑥(,)+∞)) ∈ dom
vol) |
364 | | iunin2 4996 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) |
365 | 262 | ineq2i 4140 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ ∪
𝑦 ∈ ran 𝑓(◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) |
366 | 364, 365 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) |
367 | | cnvimass 5978 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ dom (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) |
368 | 367, 268 | sseqtri 3953 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ ℝ |
369 | 368, 272 | sseqtrrid 3970 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ (◡𝑓 “ ran 𝑓)) |
370 | | df-ss 3900 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ⊆ (◡𝑓 “ ran 𝑓) ↔ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
371 | 369, 370 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ ran 𝑓)) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
372 | 366, 371 | syl5eq 2791 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
373 | 372 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥))) |
374 | 284, 281 | 2thd 264 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ↔
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ)) |
375 | | ltsubadd 11375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
376 | 181, 375 | syl3an1 1161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
377 | 376 | 3expa 1116 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
378 | 377 | an32s 648 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦))) |
379 | 374, 378 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
380 | | elioomnf 13105 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ*
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥))) |
381 | 297, 380 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ ℝ ∧
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) < 𝑥))) |
382 | | elioomnf 13105 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑥 + 𝑦) ∈ ℝ* →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
383 | 293, 382 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < (𝑥 + 𝑦)))) |
384 | 379, 381,
383 | 3bitr4d 310 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))) |
385 | 301 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥))) |
386 | 385 | bibi1d 343 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑡) = 𝑦 → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))) ↔ (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))) |
387 | 384, 386 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓‘𝑡) = 𝑦 → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))) |
388 | 387 | pm5.32rd 577 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
389 | 388 | adantllr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) →
((((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
390 | 280, 389 | syldan 590 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦))) |
391 | 390 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
392 | 311 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
393 | 267 | mptpreima 6130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} |
394 | 393, 317 | ineq12i 4141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
395 | | inrab 4237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} |
396 | 394, 395 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)} |
397 | 392, 396 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)}) |
398 | 397 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓‘𝑡) = 𝑦)}) |
399 | 311 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦}))) |
400 | 324 | mptpreima 6130 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) = {𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} |
401 | 400, 317 | ineq12i 4141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) |
402 | | inrab 4237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑡 ∈ ℝ ∣
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓‘𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)} |
403 | 401, 402 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡(𝑡 ∈ ℝ ↦ (𝑓‘𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)} |
404 | 399, 403 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
405 | 404 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓‘𝑡) = 𝑦)}) |
406 | 391, 398,
405 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
407 | 406 | iuneq2dv 4945 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∩ (◡𝑓 “ {𝑦})) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
408 | 373, 407 | eqtr3d 2780 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) = ∪
𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦}))) |
409 | | mbfima 24699 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))):ℝ⟶ℝ) → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol) |
410 | 351, 353,
409 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol) |
411 | | inmbl 24611 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol ∧ (◡𝑓 “ {𝑦}) ∈ dom vol) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
412 | 410, 356,
411 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → ((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
413 | 412 | ralrimivw 3108 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
414 | | finiunmbl 24613 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑓 ∈ Fin ∧
∀𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
415 | 335, 413,
414 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) →
∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
416 | 415 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ∪ 𝑦 ∈ ran 𝑓((◡(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (◡𝑓 “ {𝑦})) ∈ dom vol) |
417 | 408, 416 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (◡(𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) “ (-∞(,)𝑥)) ∈ dom vol) |
418 | 256, 257,
363, 417 | ismbf2d 24709 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ MblFn) |
419 | | ftc1anclem1 35777 |
. . . . . . . . . . . . 13
⊢ (((𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
420 | 256, 418,
419 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (abs
∘ (𝑡 ∈ ℝ
↦ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
421 | 252, 420 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
422 | 421 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∈ MblFn) |
423 | 157 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ) |
424 | 174 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) |
425 | 422, 217,
423, 223, 424 | itg2addnc 35758 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
426 | 249, 425 | breqtrd 5096 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
427 | 426 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) |
428 | | itg2cl 24802 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))):ℝ⟶(0[,]+∞) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
429 | 207, 428 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
430 | 429 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈
ℝ*) |
431 | | readdcl 10885 |
. . . . . . . . . . . 12
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) ∈ ℝ) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
432 | 157, 174,
431 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ dom ∫1) ∧ (𝜑 ∧ 𝑔 ∈ dom ∫1)) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
433 | 432 | anandis 674 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ) |
434 | 433 | rexrd 10956 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈
ℝ*) |
435 | 434 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈
ℝ*) |
436 | 1, 1 | rpaddcld 12716 |
. . . . . . . . . 10
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ+) |
437 | 436 | rpxrd 12702 |
. . . . . . . . 9
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) |
438 | 437 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) |
439 | | xrlelttr 12819 |
. . . . . . . 8
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ∈ ℝ* ∧
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∈ ℝ* ∧
((𝑌 / 2) + (𝑌 / 2)) ∈
ℝ*) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
440 | 430, 435,
438, 439 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
441 | 427, 440 | mpand 691 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
442 | 180, 441 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)))) |
443 | | mulcl 10886 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) → (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) |
444 | 13, 191, 443 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) |
445 | 182, 444 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ)) |
446 | | mulcl 10886 |
. . . . . . . . . . . . . . . 16
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
447 | 13, 194, 446 | sylancr 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (i · (𝑔‘𝑡)) ∈ ℂ) |
448 | 185, 447 | anim12i 612 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) |
449 | 448 | anandirs 675 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) |
450 | | addsub4 11194 |
. . . . . . . . . . . . 13
⊢
((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (i ·
(ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) ∧ ((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ)) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
451 | 445, 449,
450 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑡 ∈ ℝ))
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
452 | 451 | anassrs 467 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
453 | 92 | replimd 14836 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
454 | 453 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
455 | 454 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + (i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
456 | 194 | adantll 710 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑔‘𝑡) ∈ ℂ) |
457 | | subdi 11338 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i ·
((ℑ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
458 | 13, 191, 456, 457 | mp3an3an 1465 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1)
∧ 𝑡 ∈ ℝ))
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
459 | 458 | anassrs 467 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))) = ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡)))) |
460 | 459 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + ((i · (ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − (i · (𝑔‘𝑡))))) |
461 | 452, 455,
460 | 3eqtr4rd 2789 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))) = (if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
462 | 461 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) = (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
463 | 462 | mpteq2dva 5170 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ (abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
464 | 463 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
465 | 464 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))))) |
466 | | rpcn 12669 |
. . . . . . . 8
⊢ (𝑌 ∈ ℝ+
→ 𝑌 ∈
ℂ) |
467 | 466 | 2halvesd 12149 |
. . . . . . 7
⊢ (𝑌 ∈ ℝ+
→ ((𝑌 / 2) + (𝑌 / 2)) = 𝑌) |
468 | 467 | ad2antlr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌) |
469 | 465, 468 | breq12d 5083 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) + (i · ((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)) ↔
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
470 | 442, 469 | sylibd 238 |
. . . 4
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
471 | 470 | reximdvva 3205 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
472 | 121, 471 | syl5bir 242 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
((∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℑ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑔‘𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌)) |
473 | 11, 120, 472 | mp2and 695 |
1
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑓 ∈ dom
∫1∃𝑔
∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < 𝑌) |