Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem6 Structured version   Visualization version   GIF version

Theorem ftc1anclem6 36156
Description: Lemma for ftc1anc 36159- construction of simple functions within an arbitrary absolute distance of the given function. Similar to Lemma 565Ib of [Fremlin5] p. 218, but without Fremlin's additional step of converting the simple function into a continuous one, which is unnecessary to this lemma's use; also, two simple functions are used to allow for complex-valued 𝐹. (Contributed by Brendan Leahy, 31-May-2018.)
Hypotheses
Ref Expression
ftc1anc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1anc.a (𝜑𝐴 ∈ ℝ)
ftc1anc.b (𝜑𝐵 ∈ ℝ)
ftc1anc.le (𝜑𝐴𝐵)
ftc1anc.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1anc.d (𝜑𝐷 ⊆ ℝ)
ftc1anc.i (𝜑𝐹 ∈ 𝐿1)
ftc1anc.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1anclem6 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑥,𝐴   𝐵,𝑓,𝑔,𝑡,𝑥   𝐷,𝑓,𝑔,𝑡,𝑥   𝑓,𝐹,𝑔,𝑡,𝑥   𝜑,𝑓,𝑔,𝑡,𝑥   𝑓,𝐺,𝑔   𝑓,𝑌,𝑔,𝑡,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1anclem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rphalfcl 12942 . . 3 (𝑌 ∈ ℝ+ → (𝑌 / 2) ∈ ℝ+)
2 ftc1anc.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
3 ftc1anc.a . . . 4 (𝜑𝐴 ∈ ℝ)
4 ftc1anc.b . . . 4 (𝜑𝐵 ∈ ℝ)
5 ftc1anc.le . . . 4 (𝜑𝐴𝐵)
6 ftc1anc.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7 ftc1anc.d . . . 4 (𝜑𝐷 ⊆ ℝ)
8 ftc1anc.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
9 ftc1anc.f . . . 4 (𝜑𝐹:𝐷⟶ℂ)
102, 3, 4, 5, 6, 7, 8, 9ftc1anclem5 36155 . . 3 ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2))
111, 10sylan2 593 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2))
12 eqid 2736 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) d𝑡)
13 ax-icn 11110 . . . . . . . 8 i ∈ ℂ
14 ine0 11590 . . . . . . . 8 i ≠ 0
1513, 14reccli 11885 . . . . . . 7 (1 / i) ∈ ℂ
1615a1i 11 . . . . . 6 (𝜑 → (1 / i) ∈ ℂ)
179ffvelcdmda 7035 . . . . . 6 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
189feqmptd 6910 . . . . . . 7 (𝜑𝐹 = (𝑦𝐷 ↦ (𝐹𝑦)))
1918, 8eqeltrrd 2839 . . . . . 6 (𝜑 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ 𝐿1)
20 divrec2 11830 . . . . . . . . . 10 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2113, 14, 20mp3an23 1453 . . . . . . . . 9 ((𝐹𝑦) ∈ ℂ → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2217, 21syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2322mpteq2dva 5205 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ ((𝐹𝑦) / i)) = (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))))
24 iblmbf 25132 . . . . . . . . 9 ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ 𝐿1 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn)
2519, 24syl 17 . . . . . . . 8 (𝜑 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn)
26 2fveq3 6847 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(𝐹𝑦)) = (ℜ‘(𝐹𝑥)))
2726cbvmptv 5218 . . . . . . . . . . . . . . 15 (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) = (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥)))
2827eleq1i 2828 . . . . . . . . . . . . . 14 ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
2917recld 15079 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℝ)
3029recnd 11183 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℂ)
3130adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) ∧ 𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℂ)
3228biimpri 227 . . . . . . . . . . . . . . . 16 ((𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
3332adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
3431, 33mbfneg 25014 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) → (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn)
3528, 34sylan2b 594 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn)
369ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℂ)
3736recld 15079 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
3837recnd 11183 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (ℜ‘(𝐹𝑥)) ∈ ℂ)
3938negnegd 11503 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → --(ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑥)))
4039mpteq2dva 5205 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))))
4140, 27eqtr4di 2794 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))))
4241adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))))
43 negex 11399 . . . . . . . . . . . . . . . 16 -(ℜ‘(𝐹𝑥)) ∈ V
4443a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) ∧ 𝑥𝐷) → -(ℜ‘(𝐹𝑥)) ∈ V)
4526negeqd 11395 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → -(ℜ‘(𝐹𝑦)) = -(ℜ‘(𝐹𝑥)))
4645cbvmptv 5218 . . . . . . . . . . . . . . . . . 18 (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) = (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥)))
4746eleq1i 2828 . . . . . . . . . . . . . . . . 17 ((𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
4847biimpi 215 . . . . . . . . . . . . . . . 16 ((𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn → (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
4948adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
5044, 49mbfneg 25014 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) ∈ MblFn)
5142, 50eqeltrrd 2839 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
5235, 51impbida 799 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn))
53 divcl 11819 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑦) / i) ∈ ℂ)
54 imre 14993 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) / i) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5613, 14, 55mp3an23 1453 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5713, 14, 53mp3an23 1453 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ ℂ → ((𝐹𝑦) / i) ∈ ℂ)
58 mulneg1 11591 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ ((𝐹𝑦) / i) ∈ ℂ) → (-i · ((𝐹𝑦) / i)) = -(i · ((𝐹𝑦) / i)))
5913, 57, 58sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ ℂ → (-i · ((𝐹𝑦) / i)) = -(i · ((𝐹𝑦) / i)))
60 divcan2 11821 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐹𝑦) / i)) = (𝐹𝑦))
6113, 14, 60mp3an23 1453 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ ℂ → (i · ((𝐹𝑦) / i)) = (𝐹𝑦))
6261negeqd 11395 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ ℂ → -(i · ((𝐹𝑦) / i)) = -(𝐹𝑦))
6359, 62eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((𝐹𝑦) ∈ ℂ → (-i · ((𝐹𝑦) / i)) = -(𝐹𝑦))
6463fveq2d 6846 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℜ‘(-i · ((𝐹𝑦) / i))) = (ℜ‘-(𝐹𝑦)))
65 reneg 15010 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℜ‘-(𝐹𝑦)) = -(ℜ‘(𝐹𝑦)))
6656, 64, 653eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝐹𝑦) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = -(ℜ‘(𝐹𝑦)))
6717, 66syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐷) → (ℑ‘((𝐹𝑦) / i)) = -(ℜ‘(𝐹𝑦)))
6867mpteq2dva 5205 . . . . . . . . . . . . 13 (𝜑 → (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) = (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))))
6968eleq1d 2822 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ↔ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn))
7052, 69bitr4d 281 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn))
71 imval 14992 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ ℂ → (ℑ‘(𝐹𝑦)) = (ℜ‘((𝐹𝑦) / i)))
7217, 71syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝐷) → (ℑ‘(𝐹𝑦)) = (ℜ‘((𝐹𝑦) / i)))
7372mpteq2dva 5205 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) = (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))))
7473eleq1d 2822 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn))
7570, 74anbi12d 631 . . . . . . . . . 10 (𝜑 → (((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn)))
76 ancom 461 . . . . . . . . . 10 (((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn))
7775, 76bitrdi 286 . . . . . . . . 9 (𝜑 → (((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn)))
7817ismbfcn2 25002 . . . . . . . . 9 (𝜑 → ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn ↔ ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn)))
7917, 57syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐷) → ((𝐹𝑦) / i) ∈ ℂ)
8079ismbfcn2 25002 . . . . . . . . 9 (𝜑 → ((𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn)))
8177, 78, 803bitr4d 310 . . . . . . . 8 (𝜑 → ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn ↔ (𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn))
8225, 81mpbid 231 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn)
8323, 82eqeltrrd 2839 . . . . . 6 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) ∈ MblFn)
8416, 17, 19, 83iblmulc2nc 36143 . . . . 5 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) ∈ 𝐿1)
85 mulcl 11135 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → ((1 / i) · (𝐹𝑦)) ∈ ℂ)
8615, 17, 85sylancr 587 . . . . . 6 ((𝜑𝑦𝐷) → ((1 / i) · (𝐹𝑦)) ∈ ℂ)
8786fmpttd 7063 . . . . 5 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))):𝐷⟶ℂ)
8812, 3, 4, 5, 6, 7, 84, 87ftc1anclem5 36155 . . . 4 ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
891, 88sylan2 593 . . 3 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
909ffvelcdmda 7035 . . . . . . . . . . . 12 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
91 0cnd 11148 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ ℂ)
9290, 91ifclda 4521 . . . . . . . . . . 11 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
93 imval 14992 . . . . . . . . . . 11 (if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
9492, 93syl 17 . . . . . . . . . 10 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
95 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
9695oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → ((1 / i) · (𝐹𝑦)) = ((1 / i) · (𝐹𝑡)))
97 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) = (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))
98 ovex 7390 . . . . . . . . . . . . . . . 16 ((1 / i) · (𝐹𝑡)) ∈ V
9996, 97, 98fvmpt 6948 . . . . . . . . . . . . . . 15 (𝑡𝐷 → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((1 / i) · (𝐹𝑡)))
10099adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((1 / i) · (𝐹𝑡)))
101 divrec2 11830 . . . . . . . . . . . . . . . 16 (((𝐹𝑡) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
10213, 14, 101mp3an23 1453 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ∈ ℂ → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
10390, 102syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
104100, 103eqtr4d 2779 . . . . . . . . . . . . 13 ((𝜑𝑡𝐷) → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((𝐹𝑡) / i))
105104ifeq1da 4517 . . . . . . . . . . . 12 (𝜑 → if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0) = if(𝑡𝐷, ((𝐹𝑡) / i), 0))
106 ovif 7454 . . . . . . . . . . . . 13 (if(𝑡𝐷, (𝐹𝑡), 0) / i) = if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i))
10713, 14div0i 11889 . . . . . . . . . . . . . 14 (0 / i) = 0
108 ifeq2 4491 . . . . . . . . . . . . . 14 ((0 / i) = 0 → if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i)) = if(𝑡𝐷, ((𝐹𝑡) / i), 0))
109107, 108ax-mp 5 . . . . . . . . . . . . 13 if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i)) = if(𝑡𝐷, ((𝐹𝑡) / i), 0)
110106, 109eqtri 2764 . . . . . . . . . . . 12 (if(𝑡𝐷, (𝐹𝑡), 0) / i) = if(𝑡𝐷, ((𝐹𝑡) / i), 0)
111105, 110eqtr4di 2794 . . . . . . . . . . 11 (𝜑 → if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0) = (if(𝑡𝐷, (𝐹𝑡), 0) / i))
112111fveq2d 6846 . . . . . . . . . 10 (𝜑 → (ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
11394, 112eqtr4d 2779 . . . . . . . . 9 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)))
114113fvoveq1d 7379 . . . . . . . 8 (𝜑 → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))
115114mpteq2dv 5207 . . . . . . 7 (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡)))))
116115fveq2d 6846 . . . . . 6 (𝜑 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))))
117116breq1d 5115 . . . . 5 (𝜑 → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
118117rexbidv 3175 . . . 4 (𝜑 → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
119118adantr 481 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
12089, 119mpbird 256 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
121 reeanv 3217 . . 3 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) ↔ (∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
122 eleq1w 2820 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (𝑥𝐷𝑡𝐷))
123 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
124122, 123ifbieq1d 4510 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → if(𝑥𝐷, (𝐹𝑥), 0) = if(𝑡𝐷, (𝐹𝑡), 0))
125124fveq2d 6846 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
126 eqid 2736 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))
127 fvex 6855 . . . . . . . . . . . . . 14 (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
128125, 126, 127fvmpt 6948 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
129128fvoveq1d 7379 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
130129mpteq2ia 5208 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
131130fveq2i 6845 . . . . . . . . . 10 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
132 rembl 24904 . . . . . . . . . . . . . . . . 17 ℝ ∈ dom vol
133132a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℝ ∈ dom vol)
134 0cnd 11148 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝑥𝐷) → 0 ∈ ℂ)
13536, 134ifclda 4521 . . . . . . . . . . . . . . . . 17 (𝜑 → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
136135adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
137 eldifn 4087 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℝ ∖ 𝐷) → ¬ 𝑥𝐷)
138137adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑥𝐷)
139138iffalsed 4497 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℝ ∖ 𝐷)) → if(𝑥𝐷, (𝐹𝑥), 0) = 0)
1409feqmptd 6910 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
141 iftrue 4492 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷 → if(𝑥𝐷, (𝐹𝑥), 0) = (𝐹𝑥))
142141mpteq2ia 5208 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)) = (𝑥𝐷 ↦ (𝐹𝑥))
143140, 142eqtr4di 2794 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)))
144143, 8eqeltrrd 2839 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1)
1457, 133, 136, 139, 144iblss2 25170 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1)
146135adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
147146iblcn 25163 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1 ↔ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)))
148145, 147mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1))
149148simpld 495 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
150146recld 15079 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
151150fmpttd 7063 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
152149, 151jca 512 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
153 ftc1anclem4 36154 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
1541533expb 1120 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
155152, 154sylan2 593 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝜑) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
156155ancoms 459 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
157131, 156eqeltrrid 2843 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ)
158124fveq2d 6846 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))
159 eqid 2736 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))
160 fvex 6855 . . . . . . . . . . . . . 14 (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
161158, 159, 160fvmpt 6948 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))
162161fvoveq1d 7379 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
163162mpteq2ia 5208 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
164163fveq2i 6845 . . . . . . . . . 10 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
165148simprd 496 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
166135imcld 15080 . . . . . . . . . . . . . . 15 (𝜑 → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
167166adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
168167fmpttd 7063 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
169165, 168jca 512 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
170 ftc1anclem4 36154 . . . . . . . . . . . . 13 ((𝑔 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
1711703expb 1120 . . . . . . . . . . . 12 ((𝑔 ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
172169, 171sylan2 593 . . . . . . . . . . 11 ((𝑔 ∈ dom ∫1𝜑) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
173172ancoms 459 . . . . . . . . . 10 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
174164, 173eqeltrrid 2843 . . . . . . . . 9 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
175157, 174anim12dan 619 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ))
1761rpred 12957 . . . . . . . . 9 (𝑌 ∈ ℝ+ → (𝑌 / 2) ∈ ℝ)
177176, 176jca 512 . . . . . . . 8 (𝑌 ∈ ℝ+ → ((𝑌 / 2) ∈ ℝ ∧ (𝑌 / 2) ∈ ℝ))
178 lt2add 11640 . . . . . . . 8 ((((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ) ∧ ((𝑌 / 2) ∈ ℝ ∧ (𝑌 / 2) ∈ ℝ)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
179175, 177, 178syl2an 596 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑌 ∈ ℝ+) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
180179an32s 650 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
18192recld 15079 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
182181recnd 11183 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
183 i1ff 25040 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
184183ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℝ)
185184recnd 11183 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℂ)
186 subcl 11400 . . . . . . . . . . . . . . . . . 18 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑓𝑡) ∈ ℂ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
187182, 185, 186syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
188187anassrs 468 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
189188adantlrr 719 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
19092imcld 15080 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
191190recnd 11183 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
192 i1ff 25040 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
193192ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℝ)
194193recnd 11183 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
195 subcl 11400 . . . . . . . . . . . . . . . . . . 19 (((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
196191, 194, 195syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
197196anassrs 468 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
198 mulcl 11135 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
19913, 197, 198sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
200199adantlrl 718 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
201189, 200addcld 11174 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) ∈ ℂ)
202201abscld 15321 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
203202rexrd 11205 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ*)
204201absge0d 15329 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
205 elxrge0 13374 . . . . . . . . . . . 12 ((abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ (0[,]+∞) ↔ ((abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ* ∧ 0 ≤ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
206203, 204, 205sylanbrc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ (0[,]+∞))
207206fmpttd 7063 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞))
208 icossicc 13353 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
209 ge0addcl 13377 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
210208, 209sselid 3942 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,]+∞))
211210adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞))
212188abscld 15321 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ ℝ)
213188absge0d 15329 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
214 elrege0 13371 . . . . . . . . . . . . . 14 ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ (0[,)+∞) ↔ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
215212, 213, 214sylanbrc 583 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ (0[,)+∞))
216215fmpttd 7063 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))):ℝ⟶(0[,)+∞))
217216adantrr 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))):ℝ⟶(0[,)+∞))
218197abscld 15321 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℝ)
219197absge0d 15329 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
220 elrege0 13371 . . . . . . . . . . . . . 14 ((abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ (0[,)+∞) ↔ ((abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
221218, 219, 220sylanbrc 583 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ (0[,)+∞))
222221fmpttd 7063 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))):ℝ⟶(0[,)+∞))
223222adantrl 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))):ℝ⟶(0[,)+∞))
224 reex 11142 . . . . . . . . . . . 12 ℝ ∈ V
225224a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ℝ ∈ V)
226 inidm 4178 . . . . . . . . . . 11 (ℝ ∩ ℝ) = ℝ
227211, 217, 223, 225, 225, 226off 7635 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))):ℝ⟶(0[,]+∞))
228189, 200abstrid 15341 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
229228ralrimiva 3143 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ∀𝑡 ∈ ℝ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
230 ovexd 7392 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ V)
231 eqidd 2737 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
232 fvexd 6857 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ V)
233 fvexd 6857 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) ∈ V)
234 eqidd 2737 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
235 absmul 15179 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
23613, 197, 235sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
237 absi 15171 . . . . . . . . . . . . . . . . . 18 (abs‘i) = 1
238237oveq1i 7367 . . . . . . . . . . . . . . . . 17 ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (1 · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
239218recnd 11183 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
240239mulid2d 11173 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (1 · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
241238, 240eqtrid 2788 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
242236, 241eqtr2d 2777 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
243242mpteq2dva 5205 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
244243adantrl 714 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
245225, 232, 233, 234, 244offval2 7637 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (𝑡 ∈ ℝ ↦ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
246225, 202, 230, 231, 245ofrfval2 7638 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ↔ ∀𝑡 ∈ ℝ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
247229, 246mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
248 itg2le 25104 . . . . . . . . . 10 (((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞) ∧ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
249207, 227, 247, 248syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
250 absf 15222 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
251250a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → abs:ℂ⟶ℝ)
252251, 188cofmpt 7078 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
253 resubcl 11465 . . . . . . . . . . . . . . . 16 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑓𝑡) ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
254181, 184, 253syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
255254anassrs 468 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
256255fmpttd 7063 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))):ℝ⟶ℝ)
257132a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ dom vol)
258 iunin2 5031 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}))
259 imaiun 7192 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 𝑦 ∈ ran 𝑓{𝑦}) = 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})
260 iunid 5020 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ ran 𝑓{𝑦} = ran 𝑓
261260imaeq2i 6011 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 𝑦 ∈ ran 𝑓{𝑦}) = (𝑓 “ ran 𝑓)
262259, 261eqtr3i 2766 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}) = (𝑓 “ ran 𝑓)
263262ineq2i 4169 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓))
264258, 263eqtri 2764 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓))
265 cnvimass 6033 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
266 ovex 7390 . . . . . . . . . . . . . . . . . . . . . 22 ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ V
267 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
268266, 267dmmpti 6645 . . . . . . . . . . . . . . . . . . . . 21 dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = ℝ
269265, 268sseqtri 3980 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ ℝ
270 cnvimarndm 6034 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 “ ran 𝑓) = dom 𝑓
271183fdmd 6679 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ dom ∫1 → dom 𝑓 = ℝ)
272270, 271eqtrid 2788 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (𝑓 “ ran 𝑓) = ℝ)
273269, 272sseqtrrid 3997 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ (𝑓 “ ran 𝑓))
274 df-ss 3927 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ (𝑓 “ ran 𝑓) ↔ (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
275273, 274sylib 217 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
276264, 275eqtrid 2788 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
277276ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
278183frnd 6676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ dom ∫1 → ran 𝑓 ⊆ ℝ)
279278ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ran 𝑓 ⊆ ℝ)
280279sselda 3944 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → 𝑦 ∈ ℝ)
281181ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
282 resubcl 11465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
283181, 282sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
284283adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
285281, 2842thd 264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ))
286 ltaddsub 11629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
287181, 286syl3an3 1165 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝜑) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
2882873comr 1125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
2892883expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
290285, 289anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
291 readdcl 11134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
292291rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ*)
293292adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ*)
294 elioopnf 13360 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 + 𝑦) ∈ ℝ* → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
295293, 294syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
296 rexr 11201 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
297296ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
298 elioopnf 13360 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ* → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
299297, 298syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
300290, 295, 2993bitr4rd 311 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))
301 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑡) = 𝑦 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))
302301eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞)))
303302bibi1d 343 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑡) = 𝑦 → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))))
304300, 303syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))))
305304pm5.32rd 578 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
306305adantllr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
307280, 306syldan 591 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
308307rabbidv 3415 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
309183feqmptd 6910 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
310309cnveqd 5831 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
311310imaeq1d 6012 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ dom ∫1 → (𝑓 “ {𝑦}) = ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}))
312311ineq2d 4172 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
313267mptpreima 6190 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)}
314 vex 3449 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
315 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ ↦ (𝑓𝑡)) = (𝑡 ∈ ℝ ↦ (𝑓𝑡))
316315mptiniseg 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ V → ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
317314, 316ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}
318313, 317ineq12i 4170 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
319 inrab 4266 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
320318, 319eqtri 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
321312, 320eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
322321ad3antlr 729 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
323311ineq2d 4172 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
324 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
325324mptpreima 6190 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) = {𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)}
326325, 317ineq12i 4170 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
327 inrab 4266 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
328326, 327eqtri 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
329323, 328eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
330329ad3antlr 729 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
331308, 322, 3303eqtr4d 2786 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
332331iuneq2dv 4978 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
333277, 332eqtr3d 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
334 i1frn 25041 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → ran 𝑓 ∈ Fin)
335334adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ran 𝑓 ∈ Fin)
33692adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡𝐷) → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
337 eldifn 4087 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡𝐷)
338337adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡𝐷)
339338iffalsed 4497 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡𝐷, (𝐹𝑡), 0) = 0)
3409feqmptd 6910 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
341 iftrue 4492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝐷 → if(𝑡𝐷, (𝐹𝑡), 0) = (𝐹𝑡))
342341mpteq2ia 5208 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)) = (𝑡𝐷 ↦ (𝐹𝑡))
343340, 342eqtr4di 2794 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)))
344 iblmbf 25132 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
3458, 344syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 ∈ MblFn)
346343, 345eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn)
3477, 133, 336, 339, 346mbfss 25010 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn)
34892adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
349348ismbfcn2 25002 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn ↔ ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)))
350347, 349mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn))
351350simpld 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)
352181adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
353352fmpttd 7063 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ)
354 mbfima 24994 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol)
355351, 353, 354syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol)
356 i1fima 25042 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (𝑓 “ {𝑦}) ∈ dom vol)
357 inmbl 24906 . . . . . . . . . . . . . . . . . . 19 ((((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol ∧ (𝑓 “ {𝑦}) ∈ dom vol) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
358355, 356, 357syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
359358ralrimivw 3147 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
360 finiunmbl 24908 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
361335, 359, 360syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
362361adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
363333, 362eqeltrd 2838 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
364 iunin2 5031 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}))
365262ineq2i 4169 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓))
366364, 365eqtri 2764 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓))
367 cnvimass 6033 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
368367, 268sseqtri 3980 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ ℝ
369368, 272sseqtrrid 3997 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ (𝑓 “ ran 𝑓))
370 df-ss 3927 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ (𝑓 “ ran 𝑓) ↔ (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
371369, 370sylib 217 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
372366, 371eqtrid 2788 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
373372ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
374284, 2812thd 264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ))
375 ltsubadd 11625 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
376181, 375syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
3773763expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
378377an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
379374, 378anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
380 elioomnf 13361 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ* → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥)))
381297, 380syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥)))
382 elioomnf 13361 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 + 𝑦) ∈ ℝ* → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
383293, 382syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
384379, 381, 3833bitr4d 310 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))
385301eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥)))
386385bibi1d 343 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑡) = 𝑦 → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))))
387384, 386syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))))
388387pm5.32rd 578 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
389388adantllr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
390280, 389syldan 591 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
391390rabbidv 3415 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
392311ineq2d 4172 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
393267mptpreima 6190 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)}
394393, 317ineq12i 4170 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
395 inrab 4266 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)}
396394, 395eqtri 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)}
397392, 396eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)})
398397ad3antlr 729 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)})
399311ineq2d 4172 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
400324mptpreima 6190 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) = {𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))}
401400, 317ineq12i 4170 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
402 inrab 4266 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)}
403401, 402eqtri 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)}
404399, 403eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
405404ad3antlr 729 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
406391, 398, 4053eqtr4d 2786 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
407406iuneq2dv 4978 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
408373, 407eqtr3d 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
409 mbfima 24994 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol)
410351, 353, 409syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol)
411 inmbl 24906 . . . . . . . . . . . . . . . . . . 19 ((((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol ∧ (𝑓 “ {𝑦}) ∈ dom vol) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
412410, 356, 411syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
413412ralrimivw 3147 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
414 finiunmbl 24908 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
415335, 413, 414syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
416415adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
417408, 416eqeltrd 2838 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
418256, 257, 363, 417ismbf2d 25004 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ MblFn)
419 ftc1anclem1 36151 . . . . . . . . . . . . 13 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
420256, 418, 419syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
421252, 420eqeltrrd 2839 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
422421adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
423157adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ)
424174adantrl 714 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
425422, 217, 423, 223, 424itg2addnc 36132 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
426249, 425breqtrd 5131 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
427426adantlr 713 . . . . . . 7 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
428 itg2cl 25097 . . . . . . . . . 10 ((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
429207, 428syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
430429adantlr 713 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
431 readdcl 11134 . . . . . . . . . . . 12 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
432157, 174, 431syl2an 596 . . . . . . . . . . 11 (((𝜑𝑓 ∈ dom ∫1) ∧ (𝜑𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
433432anandis 676 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
434433rexrd 11205 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ*)
435434adantlr 713 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ*)
4361, 1rpaddcld 12972 . . . . . . . . . 10 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ+)
437436rpxrd 12958 . . . . . . . . 9 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*)
438437ad2antlr 725 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*)
439 xrlelttr 13075 . . . . . . . 8 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ* ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ* ∧ ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
440430, 435, 438, 439syl3anc 1371 . . . . . . 7 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
441427, 440mpand 693 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
442180, 441syld 47 . . . . 5 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
443 mulcl 11135 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ) → (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
44413, 191, 443sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
445182, 444jca 512 . . . . . . . . . . . . 13 (𝜑 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ))
446 mulcl 11135 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · (𝑔𝑡)) ∈ ℂ)
44713, 194, 446sylancr 587 . . . . . . . . . . . . . . 15 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (i · (𝑔𝑡)) ∈ ℂ)
448185, 447anim12i 613 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ))
449448anandirs 677 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ))
450 addsub4 11444 . . . . . . . . . . . . 13 ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ) ∧ ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
451445, 449, 450syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
452451anassrs 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
45392replimd 15082 . . . . . . . . . . . . 13 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
454453ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (𝐹𝑡), 0) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
455454oveq1d 7372 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
456194adantll 712 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
457 subdi 11588 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
45813, 191, 456, 457mp3an3an 1467 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
459458anassrs 468 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
460459oveq2d 7373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
461452, 455, 4603eqtr4rd 2787 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
462461fveq2d 6846 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
463462mpteq2dva 5205 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
464463fveq2d 6846 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
465464adantlr 713 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
466 rpcn 12925 . . . . . . . 8 (𝑌 ∈ ℝ+𝑌 ∈ ℂ)
4674662halvesd 12399 . . . . . . 7 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌)
468467ad2antlr 725 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌)
469465, 468breq12d 5118 . . . . 5 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
470442, 469sylibd 238 . . . 4 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
471470reximdvva 3202 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
472121, 471biimtrrid 242 . 2 ((𝜑𝑌 ∈ ℝ+) → ((∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
47311, 120, 472mp2and 697 1 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  cin 3909  wss 3910  ifcif 4486  {csn 4586   ciun 4954   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  r cofr 7616  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  +crp 12915  (,)cioo 13264  [,)cico 13266  [,]cicc 13267  cre 14982  cim 14983  abscabs 15119  volcvol 24827  MblFncmbf 24978  1citg1 24979  2citg2 24980  𝐿1cibl 24981  citg 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-0p 25034
This theorem is referenced by:  ftc1anc  36159
  Copyright terms: Public domain W3C validator