Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem6 Structured version   Visualization version   GIF version

Theorem ftc1anclem6 35855
Description: Lemma for ftc1anc 35858- construction of simple functions within an arbitrary absolute distance of the given function. Similar to Lemma 565Ib of [Fremlin5] p. 218, but without Fremlin's additional step of converting the simple function into a continuous one, which is unnecessary to this lemma's use; also, two simple functions are used to allow for complex-valued 𝐹. (Contributed by Brendan Leahy, 31-May-2018.)
Hypotheses
Ref Expression
ftc1anc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1anc.a (𝜑𝐴 ∈ ℝ)
ftc1anc.b (𝜑𝐵 ∈ ℝ)
ftc1anc.le (𝜑𝐴𝐵)
ftc1anc.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1anc.d (𝜑𝐷 ⊆ ℝ)
ftc1anc.i (𝜑𝐹 ∈ 𝐿1)
ftc1anc.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1anclem6 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑥,𝐴   𝐵,𝑓,𝑔,𝑡,𝑥   𝐷,𝑓,𝑔,𝑡,𝑥   𝑓,𝐹,𝑔,𝑡,𝑥   𝜑,𝑓,𝑔,𝑡,𝑥   𝑓,𝐺,𝑔   𝑓,𝑌,𝑔,𝑡,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1anclem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rphalfcl 12757 . . 3 (𝑌 ∈ ℝ+ → (𝑌 / 2) ∈ ℝ+)
2 ftc1anc.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
3 ftc1anc.a . . . 4 (𝜑𝐴 ∈ ℝ)
4 ftc1anc.b . . . 4 (𝜑𝐵 ∈ ℝ)
5 ftc1anc.le . . . 4 (𝜑𝐴𝐵)
6 ftc1anc.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7 ftc1anc.d . . . 4 (𝜑𝐷 ⊆ ℝ)
8 ftc1anc.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
9 ftc1anc.f . . . 4 (𝜑𝐹:𝐷⟶ℂ)
102, 3, 4, 5, 6, 7, 8, 9ftc1anclem5 35854 . . 3 ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2))
111, 10sylan2 593 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2))
12 eqid 2738 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) d𝑡)
13 ax-icn 10930 . . . . . . . 8 i ∈ ℂ
14 ine0 11410 . . . . . . . 8 i ≠ 0
1513, 14reccli 11705 . . . . . . 7 (1 / i) ∈ ℂ
1615a1i 11 . . . . . 6 (𝜑 → (1 / i) ∈ ℂ)
179ffvelrnda 6961 . . . . . 6 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
189feqmptd 6837 . . . . . . 7 (𝜑𝐹 = (𝑦𝐷 ↦ (𝐹𝑦)))
1918, 8eqeltrrd 2840 . . . . . 6 (𝜑 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ 𝐿1)
20 divrec2 11650 . . . . . . . . . 10 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2113, 14, 20mp3an23 1452 . . . . . . . . 9 ((𝐹𝑦) ∈ ℂ → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2217, 21syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2322mpteq2dva 5174 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ ((𝐹𝑦) / i)) = (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))))
24 iblmbf 24932 . . . . . . . . 9 ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ 𝐿1 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn)
2519, 24syl 17 . . . . . . . 8 (𝜑 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn)
26 2fveq3 6779 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(𝐹𝑦)) = (ℜ‘(𝐹𝑥)))
2726cbvmptv 5187 . . . . . . . . . . . . . . 15 (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) = (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥)))
2827eleq1i 2829 . . . . . . . . . . . . . 14 ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
2917recld 14905 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℝ)
3029recnd 11003 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℂ)
3130adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) ∧ 𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℂ)
3228biimpri 227 . . . . . . . . . . . . . . . 16 ((𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
3332adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
3431, 33mbfneg 24814 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) → (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn)
3528, 34sylan2b 594 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn)
369ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℂ)
3736recld 14905 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
3837recnd 11003 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (ℜ‘(𝐹𝑥)) ∈ ℂ)
3938negnegd 11323 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → --(ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑥)))
4039mpteq2dva 5174 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))))
4140, 27eqtr4di 2796 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))))
4241adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))))
43 negex 11219 . . . . . . . . . . . . . . . 16 -(ℜ‘(𝐹𝑥)) ∈ V
4443a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) ∧ 𝑥𝐷) → -(ℜ‘(𝐹𝑥)) ∈ V)
4526negeqd 11215 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → -(ℜ‘(𝐹𝑦)) = -(ℜ‘(𝐹𝑥)))
4645cbvmptv 5187 . . . . . . . . . . . . . . . . . 18 (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) = (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥)))
4746eleq1i 2829 . . . . . . . . . . . . . . . . 17 ((𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
4847biimpi 215 . . . . . . . . . . . . . . . 16 ((𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn → (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
4948adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
5044, 49mbfneg 24814 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) ∈ MblFn)
5142, 50eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
5235, 51impbida 798 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn))
53 divcl 11639 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑦) / i) ∈ ℂ)
54 imre 14819 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) / i) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5613, 14, 55mp3an23 1452 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5713, 14, 53mp3an23 1452 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ ℂ → ((𝐹𝑦) / i) ∈ ℂ)
58 mulneg1 11411 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ ((𝐹𝑦) / i) ∈ ℂ) → (-i · ((𝐹𝑦) / i)) = -(i · ((𝐹𝑦) / i)))
5913, 57, 58sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ ℂ → (-i · ((𝐹𝑦) / i)) = -(i · ((𝐹𝑦) / i)))
60 divcan2 11641 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐹𝑦) / i)) = (𝐹𝑦))
6113, 14, 60mp3an23 1452 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ ℂ → (i · ((𝐹𝑦) / i)) = (𝐹𝑦))
6261negeqd 11215 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ ℂ → -(i · ((𝐹𝑦) / i)) = -(𝐹𝑦))
6359, 62eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝐹𝑦) ∈ ℂ → (-i · ((𝐹𝑦) / i)) = -(𝐹𝑦))
6463fveq2d 6778 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℜ‘(-i · ((𝐹𝑦) / i))) = (ℜ‘-(𝐹𝑦)))
65 reneg 14836 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℜ‘-(𝐹𝑦)) = -(ℜ‘(𝐹𝑦)))
6656, 64, 653eqtrd 2782 . . . . . . . . . . . . . . 15 ((𝐹𝑦) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = -(ℜ‘(𝐹𝑦)))
6717, 66syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐷) → (ℑ‘((𝐹𝑦) / i)) = -(ℜ‘(𝐹𝑦)))
6867mpteq2dva 5174 . . . . . . . . . . . . 13 (𝜑 → (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) = (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))))
6968eleq1d 2823 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ↔ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn))
7052, 69bitr4d 281 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn))
71 imval 14818 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ ℂ → (ℑ‘(𝐹𝑦)) = (ℜ‘((𝐹𝑦) / i)))
7217, 71syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝐷) → (ℑ‘(𝐹𝑦)) = (ℜ‘((𝐹𝑦) / i)))
7372mpteq2dva 5174 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) = (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))))
7473eleq1d 2823 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn))
7570, 74anbi12d 631 . . . . . . . . . 10 (𝜑 → (((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn)))
76 ancom 461 . . . . . . . . . 10 (((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn))
7775, 76bitrdi 287 . . . . . . . . 9 (𝜑 → (((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn)))
7817ismbfcn2 24802 . . . . . . . . 9 (𝜑 → ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn ↔ ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn)))
7917, 57syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐷) → ((𝐹𝑦) / i) ∈ ℂ)
8079ismbfcn2 24802 . . . . . . . . 9 (𝜑 → ((𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn)))
8177, 78, 803bitr4d 311 . . . . . . . 8 (𝜑 → ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn ↔ (𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn))
8225, 81mpbid 231 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn)
8323, 82eqeltrrd 2840 . . . . . 6 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) ∈ MblFn)
8416, 17, 19, 83iblmulc2nc 35842 . . . . 5 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) ∈ 𝐿1)
85 mulcl 10955 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → ((1 / i) · (𝐹𝑦)) ∈ ℂ)
8615, 17, 85sylancr 587 . . . . . 6 ((𝜑𝑦𝐷) → ((1 / i) · (𝐹𝑦)) ∈ ℂ)
8786fmpttd 6989 . . . . 5 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))):𝐷⟶ℂ)
8812, 3, 4, 5, 6, 7, 84, 87ftc1anclem5 35854 . . . 4 ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
891, 88sylan2 593 . . 3 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
909ffvelrnda 6961 . . . . . . . . . . . 12 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
91 0cnd 10968 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ ℂ)
9290, 91ifclda 4494 . . . . . . . . . . 11 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
93 imval 14818 . . . . . . . . . . 11 (if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
9492, 93syl 17 . . . . . . . . . 10 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
95 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
9695oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → ((1 / i) · (𝐹𝑦)) = ((1 / i) · (𝐹𝑡)))
97 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) = (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))
98 ovex 7308 . . . . . . . . . . . . . . . 16 ((1 / i) · (𝐹𝑡)) ∈ V
9996, 97, 98fvmpt 6875 . . . . . . . . . . . . . . 15 (𝑡𝐷 → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((1 / i) · (𝐹𝑡)))
10099adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((1 / i) · (𝐹𝑡)))
101 divrec2 11650 . . . . . . . . . . . . . . . 16 (((𝐹𝑡) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
10213, 14, 101mp3an23 1452 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ∈ ℂ → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
10390, 102syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
104100, 103eqtr4d 2781 . . . . . . . . . . . . 13 ((𝜑𝑡𝐷) → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((𝐹𝑡) / i))
105104ifeq1da 4490 . . . . . . . . . . . 12 (𝜑 → if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0) = if(𝑡𝐷, ((𝐹𝑡) / i), 0))
106 ovif 7372 . . . . . . . . . . . . 13 (if(𝑡𝐷, (𝐹𝑡), 0) / i) = if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i))
10713, 14div0i 11709 . . . . . . . . . . . . . 14 (0 / i) = 0
108 ifeq2 4464 . . . . . . . . . . . . . 14 ((0 / i) = 0 → if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i)) = if(𝑡𝐷, ((𝐹𝑡) / i), 0))
109107, 108ax-mp 5 . . . . . . . . . . . . 13 if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i)) = if(𝑡𝐷, ((𝐹𝑡) / i), 0)
110106, 109eqtri 2766 . . . . . . . . . . . 12 (if(𝑡𝐷, (𝐹𝑡), 0) / i) = if(𝑡𝐷, ((𝐹𝑡) / i), 0)
111105, 110eqtr4di 2796 . . . . . . . . . . 11 (𝜑 → if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0) = (if(𝑡𝐷, (𝐹𝑡), 0) / i))
112111fveq2d 6778 . . . . . . . . . 10 (𝜑 → (ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
11394, 112eqtr4d 2781 . . . . . . . . 9 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)))
114113fvoveq1d 7297 . . . . . . . 8 (𝜑 → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))
115114mpteq2dv 5176 . . . . . . 7 (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡)))))
116115fveq2d 6778 . . . . . 6 (𝜑 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))))
117116breq1d 5084 . . . . 5 (𝜑 → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
118117rexbidv 3226 . . . 4 (𝜑 → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
119118adantr 481 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
12089, 119mpbird 256 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
121 reeanv 3294 . . 3 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) ↔ (∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
122 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (𝑥𝐷𝑡𝐷))
123 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
124122, 123ifbieq1d 4483 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → if(𝑥𝐷, (𝐹𝑥), 0) = if(𝑡𝐷, (𝐹𝑡), 0))
125124fveq2d 6778 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
126 eqid 2738 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))
127 fvex 6787 . . . . . . . . . . . . . 14 (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
128125, 126, 127fvmpt 6875 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
129128fvoveq1d 7297 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
130129mpteq2ia 5177 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
131130fveq2i 6777 . . . . . . . . . 10 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
132 rembl 24704 . . . . . . . . . . . . . . . . 17 ℝ ∈ dom vol
133132a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℝ ∈ dom vol)
134 0cnd 10968 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝑥𝐷) → 0 ∈ ℂ)
13536, 134ifclda 4494 . . . . . . . . . . . . . . . . 17 (𝜑 → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
136135adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
137 eldifn 4062 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℝ ∖ 𝐷) → ¬ 𝑥𝐷)
138137adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑥𝐷)
139138iffalsed 4470 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℝ ∖ 𝐷)) → if(𝑥𝐷, (𝐹𝑥), 0) = 0)
1409feqmptd 6837 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
141 iftrue 4465 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷 → if(𝑥𝐷, (𝐹𝑥), 0) = (𝐹𝑥))
142141mpteq2ia 5177 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)) = (𝑥𝐷 ↦ (𝐹𝑥))
143140, 142eqtr4di 2796 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)))
144143, 8eqeltrrd 2840 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1)
1457, 133, 136, 139, 144iblss2 24970 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1)
146135adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
147146iblcn 24963 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1 ↔ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)))
148145, 147mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1))
149148simpld 495 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
150146recld 14905 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
151150fmpttd 6989 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
152149, 151jca 512 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
153 ftc1anclem4 35853 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
1541533expb 1119 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
155152, 154sylan2 593 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝜑) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
156155ancoms 459 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
157131, 156eqeltrrid 2844 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ)
158124fveq2d 6778 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))
159 eqid 2738 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))
160 fvex 6787 . . . . . . . . . . . . . 14 (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
161158, 159, 160fvmpt 6875 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))
162161fvoveq1d 7297 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
163162mpteq2ia 5177 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
164163fveq2i 6777 . . . . . . . . . 10 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
165148simprd 496 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
166135imcld 14906 . . . . . . . . . . . . . . 15 (𝜑 → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
167166adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
168167fmpttd 6989 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
169165, 168jca 512 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
170 ftc1anclem4 35853 . . . . . . . . . . . . 13 ((𝑔 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
1711703expb 1119 . . . . . . . . . . . 12 ((𝑔 ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
172169, 171sylan2 593 . . . . . . . . . . 11 ((𝑔 ∈ dom ∫1𝜑) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
173172ancoms 459 . . . . . . . . . 10 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
174164, 173eqeltrrid 2844 . . . . . . . . 9 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
175157, 174anim12dan 619 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ))
1761rpred 12772 . . . . . . . . 9 (𝑌 ∈ ℝ+ → (𝑌 / 2) ∈ ℝ)
177176, 176jca 512 . . . . . . . 8 (𝑌 ∈ ℝ+ → ((𝑌 / 2) ∈ ℝ ∧ (𝑌 / 2) ∈ ℝ))
178 lt2add 11460 . . . . . . . 8 ((((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ) ∧ ((𝑌 / 2) ∈ ℝ ∧ (𝑌 / 2) ∈ ℝ)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
179175, 177, 178syl2an 596 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑌 ∈ ℝ+) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
180179an32s 649 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
18192recld 14905 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
182181recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
183 i1ff 24840 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
184183ffvelrnda 6961 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℝ)
185184recnd 11003 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℂ)
186 subcl 11220 . . . . . . . . . . . . . . . . . 18 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑓𝑡) ∈ ℂ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
187182, 185, 186syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
188187anassrs 468 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
189188adantlrr 718 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
19092imcld 14906 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
191190recnd 11003 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
192 i1ff 24840 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
193192ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℝ)
194193recnd 11003 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
195 subcl 11220 . . . . . . . . . . . . . . . . . . 19 (((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
196191, 194, 195syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
197196anassrs 468 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
198 mulcl 10955 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
19913, 197, 198sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
200199adantlrl 717 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
201189, 200addcld 10994 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) ∈ ℂ)
202201abscld 15148 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
203202rexrd 11025 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ*)
204201absge0d 15156 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
205 elxrge0 13189 . . . . . . . . . . . 12 ((abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ (0[,]+∞) ↔ ((abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ* ∧ 0 ≤ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
206203, 204, 205sylanbrc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ (0[,]+∞))
207206fmpttd 6989 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞))
208 icossicc 13168 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
209 ge0addcl 13192 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
210208, 209sselid 3919 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,]+∞))
211210adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞))
212188abscld 15148 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ ℝ)
213188absge0d 15156 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
214 elrege0 13186 . . . . . . . . . . . . . 14 ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ (0[,)+∞) ↔ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
215212, 213, 214sylanbrc 583 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ (0[,)+∞))
216215fmpttd 6989 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))):ℝ⟶(0[,)+∞))
217216adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))):ℝ⟶(0[,)+∞))
218197abscld 15148 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℝ)
219197absge0d 15156 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
220 elrege0 13186 . . . . . . . . . . . . . 14 ((abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ (0[,)+∞) ↔ ((abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
221218, 219, 220sylanbrc 583 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ (0[,)+∞))
222221fmpttd 6989 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))):ℝ⟶(0[,)+∞))
223222adantrl 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))):ℝ⟶(0[,)+∞))
224 reex 10962 . . . . . . . . . . . 12 ℝ ∈ V
225224a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ℝ ∈ V)
226 inidm 4152 . . . . . . . . . . 11 (ℝ ∩ ℝ) = ℝ
227211, 217, 223, 225, 225, 226off 7551 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))):ℝ⟶(0[,]+∞))
228189, 200abstrid 15168 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
229228ralrimiva 3103 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ∀𝑡 ∈ ℝ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
230 ovexd 7310 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ V)
231 eqidd 2739 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
232 fvexd 6789 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ V)
233 fvexd 6789 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) ∈ V)
234 eqidd 2739 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
235 absmul 15006 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
23613, 197, 235sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
237 absi 14998 . . . . . . . . . . . . . . . . . 18 (abs‘i) = 1
238237oveq1i 7285 . . . . . . . . . . . . . . . . 17 ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (1 · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
239218recnd 11003 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
240239mulid2d 10993 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (1 · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
241238, 240eqtrid 2790 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
242236, 241eqtr2d 2779 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
243242mpteq2dva 5174 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
244243adantrl 713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
245225, 232, 233, 234, 244offval2 7553 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (𝑡 ∈ ℝ ↦ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
246225, 202, 230, 231, 245ofrfval2 7554 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ↔ ∀𝑡 ∈ ℝ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
247229, 246mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
248 itg2le 24904 . . . . . . . . . 10 (((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞) ∧ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
249207, 227, 247, 248syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
250 absf 15049 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
251250a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → abs:ℂ⟶ℝ)
252251, 188cofmpt 7004 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
253 resubcl 11285 . . . . . . . . . . . . . . . 16 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑓𝑡) ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
254181, 184, 253syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
255254anassrs 468 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
256255fmpttd 6989 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))):ℝ⟶ℝ)
257132a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ dom vol)
258 iunin2 5000 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}))
259 imaiun 7118 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 𝑦 ∈ ran 𝑓{𝑦}) = 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})
260 iunid 4990 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ ran 𝑓{𝑦} = ran 𝑓
261260imaeq2i 5967 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 𝑦 ∈ ran 𝑓{𝑦}) = (𝑓 “ ran 𝑓)
262259, 261eqtr3i 2768 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}) = (𝑓 “ ran 𝑓)
263262ineq2i 4143 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓))
264258, 263eqtri 2766 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓))
265 cnvimass 5989 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
266 ovex 7308 . . . . . . . . . . . . . . . . . . . . . 22 ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ V
267 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
268266, 267dmmpti 6577 . . . . . . . . . . . . . . . . . . . . 21 dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = ℝ
269265, 268sseqtri 3957 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ ℝ
270 cnvimarndm 5990 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 “ ran 𝑓) = dom 𝑓
271183fdmd 6611 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ dom ∫1 → dom 𝑓 = ℝ)
272270, 271eqtrid 2790 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (𝑓 “ ran 𝑓) = ℝ)
273269, 272sseqtrrid 3974 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ (𝑓 “ ran 𝑓))
274 df-ss 3904 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ (𝑓 “ ran 𝑓) ↔ (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
275273, 274sylib 217 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
276264, 275eqtrid 2790 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
277276ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
278183frnd 6608 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ dom ∫1 → ran 𝑓 ⊆ ℝ)
279278ad2antlr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ran 𝑓 ⊆ ℝ)
280279sselda 3921 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → 𝑦 ∈ ℝ)
281181ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
282 resubcl 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
283181, 282sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
284283adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
285281, 2842thd 264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ))
286 ltaddsub 11449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
287181, 286syl3an3 1164 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝜑) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
2882873comr 1124 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
2892883expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
290285, 289anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
291 readdcl 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
292291rexrd 11025 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ*)
293292adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ*)
294 elioopnf 13175 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 + 𝑦) ∈ ℝ* → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
295293, 294syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
296 rexr 11021 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
297296ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
298 elioopnf 13175 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ* → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
299297, 298syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
300290, 295, 2993bitr4rd 312 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))
301 oveq2 7283 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑡) = 𝑦 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))
302301eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞)))
303302bibi1d 344 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑡) = 𝑦 → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))))
304300, 303syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))))
305304pm5.32rd 578 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
306305adantllr 716 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
307280, 306syldan 591 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
308307rabbidv 3414 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
309183feqmptd 6837 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
310309cnveqd 5784 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
311310imaeq1d 5968 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ dom ∫1 → (𝑓 “ {𝑦}) = ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}))
312311ineq2d 4146 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
313267mptpreima 6141 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)}
314 vex 3436 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
315 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ ↦ (𝑓𝑡)) = (𝑡 ∈ ℝ ↦ (𝑓𝑡))
316315mptiniseg 6142 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ V → ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
317314, 316ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}
318313, 317ineq12i 4144 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
319 inrab 4240 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
320318, 319eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
321312, 320eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
322321ad3antlr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
323311ineq2d 4146 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
324 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
325324mptpreima 6141 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) = {𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)}
326325, 317ineq12i 4144 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
327 inrab 4240 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
328326, 327eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
329323, 328eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
330329ad3antlr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
331308, 322, 3303eqtr4d 2788 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
332331iuneq2dv 4948 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
333277, 332eqtr3d 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
334 i1frn 24841 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → ran 𝑓 ∈ Fin)
335334adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ran 𝑓 ∈ Fin)
33692adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡𝐷) → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
337 eldifn 4062 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡𝐷)
338337adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡𝐷)
339338iffalsed 4470 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡𝐷, (𝐹𝑡), 0) = 0)
3409feqmptd 6837 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
341 iftrue 4465 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝐷 → if(𝑡𝐷, (𝐹𝑡), 0) = (𝐹𝑡))
342341mpteq2ia 5177 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)) = (𝑡𝐷 ↦ (𝐹𝑡))
343340, 342eqtr4di 2796 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)))
344 iblmbf 24932 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
3458, 344syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 ∈ MblFn)
346343, 345eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn)
3477, 133, 336, 339, 346mbfss 24810 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn)
34892adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
349348ismbfcn2 24802 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn ↔ ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)))
350347, 349mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn))
351350simpld 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)
352181adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
353352fmpttd 6989 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ)
354 mbfima 24794 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol)
355351, 353, 354syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol)
356 i1fima 24842 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (𝑓 “ {𝑦}) ∈ dom vol)
357 inmbl 24706 . . . . . . . . . . . . . . . . . . 19 ((((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol ∧ (𝑓 “ {𝑦}) ∈ dom vol) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
358355, 356, 357syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
359358ralrimivw 3104 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
360 finiunmbl 24708 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
361335, 359, 360syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
362361adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
363333, 362eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
364 iunin2 5000 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}))
365262ineq2i 4143 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓))
366364, 365eqtri 2766 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓))
367 cnvimass 5989 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
368367, 268sseqtri 3957 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ ℝ
369368, 272sseqtrrid 3974 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ (𝑓 “ ran 𝑓))
370 df-ss 3904 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ (𝑓 “ ran 𝑓) ↔ (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
371369, 370sylib 217 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
372366, 371eqtrid 2790 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
373372ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
374284, 2812thd 264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ))
375 ltsubadd 11445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
376181, 375syl3an1 1162 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
3773763expa 1117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
378377an32s 649 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
379374, 378anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
380 elioomnf 13176 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ* → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥)))
381297, 380syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥)))
382 elioomnf 13176 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 + 𝑦) ∈ ℝ* → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
383293, 382syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
384379, 381, 3833bitr4d 311 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))
385301eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥)))
386385bibi1d 344 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑡) = 𝑦 → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))))
387384, 386syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))))
388387pm5.32rd 578 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
389388adantllr 716 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
390280, 389syldan 591 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
391390rabbidv 3414 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
392311ineq2d 4146 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
393267mptpreima 6141 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)}
394393, 317ineq12i 4144 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
395 inrab 4240 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)}
396394, 395eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)}
397392, 396eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)})
398397ad3antlr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)})
399311ineq2d 4146 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
400324mptpreima 6141 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) = {𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))}
401400, 317ineq12i 4144 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
402 inrab 4240 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)}
403401, 402eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)}
404399, 403eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
405404ad3antlr 728 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
406391, 398, 4053eqtr4d 2788 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
407406iuneq2dv 4948 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
408373, 407eqtr3d 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
409 mbfima 24794 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol)
410351, 353, 409syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol)
411 inmbl 24706 . . . . . . . . . . . . . . . . . . 19 ((((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol ∧ (𝑓 “ {𝑦}) ∈ dom vol) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
412410, 356, 411syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
413412ralrimivw 3104 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
414 finiunmbl 24708 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
415335, 413, 414syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
416415adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
417408, 416eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
418256, 257, 363, 417ismbf2d 24804 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ MblFn)
419 ftc1anclem1 35850 . . . . . . . . . . . . 13 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
420256, 418, 419syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
421252, 420eqeltrrd 2840 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
422421adantrr 714 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
423157adantrr 714 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ)
424174adantrl 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
425422, 217, 423, 223, 424itg2addnc 35831 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
426249, 425breqtrd 5100 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
427426adantlr 712 . . . . . . 7 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
428 itg2cl 24897 . . . . . . . . . 10 ((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
429207, 428syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
430429adantlr 712 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
431 readdcl 10954 . . . . . . . . . . . 12 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
432157, 174, 431syl2an 596 . . . . . . . . . . 11 (((𝜑𝑓 ∈ dom ∫1) ∧ (𝜑𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
433432anandis 675 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
434433rexrd 11025 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ*)
435434adantlr 712 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ*)
4361, 1rpaddcld 12787 . . . . . . . . . 10 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ+)
437436rpxrd 12773 . . . . . . . . 9 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*)
438437ad2antlr 724 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*)
439 xrlelttr 12890 . . . . . . . 8 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ* ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ* ∧ ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
440430, 435, 438, 439syl3anc 1370 . . . . . . 7 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
441427, 440mpand 692 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
442180, 441syld 47 . . . . 5 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
443 mulcl 10955 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ) → (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
44413, 191, 443sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
445182, 444jca 512 . . . . . . . . . . . . 13 (𝜑 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ))
446 mulcl 10955 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · (𝑔𝑡)) ∈ ℂ)
44713, 194, 446sylancr 587 . . . . . . . . . . . . . . 15 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (i · (𝑔𝑡)) ∈ ℂ)
448185, 447anim12i 613 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ))
449448anandirs 676 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ))
450 addsub4 11264 . . . . . . . . . . . . 13 ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ) ∧ ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
451445, 449, 450syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
452451anassrs 468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
45392replimd 14908 . . . . . . . . . . . . 13 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
454453ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (𝐹𝑡), 0) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
455454oveq1d 7290 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
456194adantll 711 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
457 subdi 11408 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
45813, 191, 456, 457mp3an3an 1466 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
459458anassrs 468 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
460459oveq2d 7291 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
461452, 455, 4603eqtr4rd 2789 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
462461fveq2d 6778 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
463462mpteq2dva 5174 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
464463fveq2d 6778 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
465464adantlr 712 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
466 rpcn 12740 . . . . . . . 8 (𝑌 ∈ ℝ+𝑌 ∈ ℂ)
4674662halvesd 12219 . . . . . . 7 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌)
468467ad2antlr 724 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌)
469465, 468breq12d 5087 . . . . 5 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
470442, 469sylibd 238 . . . 4 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
471470reximdvva 3206 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
472121, 471syl5bir 242 . 2 ((𝜑𝑌 ∈ ℝ+) → ((∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
47311, 120, 472mp2and 696 1 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  ifcif 4459  {csn 4561   ciun 4924   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  r cofr 7532  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12730  (,)cioo 13079  [,)cico 13081  [,]cicc 13082  cre 14808  cim 14809  abscabs 14945  volcvol 24627  MblFncmbf 24778  1citg1 24779  2citg2 24780  𝐿1cibl 24781  citg 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-0p 24834
This theorem is referenced by:  ftc1anc  35858
  Copyright terms: Public domain W3C validator