Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem6 Structured version   Visualization version   GIF version

Theorem ftc1anclem6 37746
Description: Lemma for ftc1anc 37749- construction of simple functions within an arbitrary absolute distance of the given function. Similar to Lemma 565Ib of [Fremlin5] p. 218, but without Fremlin's additional step of converting the simple function into a continuous one, which is unnecessary to this lemma's use; also, two simple functions are used to allow for complex-valued 𝐹. (Contributed by Brendan Leahy, 31-May-2018.)
Hypotheses
Ref Expression
ftc1anc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1anc.a (𝜑𝐴 ∈ ℝ)
ftc1anc.b (𝜑𝐵 ∈ ℝ)
ftc1anc.le (𝜑𝐴𝐵)
ftc1anc.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1anc.d (𝜑𝐷 ⊆ ℝ)
ftc1anc.i (𝜑𝐹 ∈ 𝐿1)
ftc1anc.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1anclem6 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑥,𝐴   𝐵,𝑓,𝑔,𝑡,𝑥   𝐷,𝑓,𝑔,𝑡,𝑥   𝑓,𝐹,𝑔,𝑡,𝑥   𝜑,𝑓,𝑔,𝑡,𝑥   𝑓,𝐺,𝑔   𝑓,𝑌,𝑔,𝑡,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1anclem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rphalfcl 12919 . . 3 (𝑌 ∈ ℝ+ → (𝑌 / 2) ∈ ℝ+)
2 ftc1anc.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
3 ftc1anc.a . . . 4 (𝜑𝐴 ∈ ℝ)
4 ftc1anc.b . . . 4 (𝜑𝐵 ∈ ℝ)
5 ftc1anc.le . . . 4 (𝜑𝐴𝐵)
6 ftc1anc.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7 ftc1anc.d . . . 4 (𝜑𝐷 ⊆ ℝ)
8 ftc1anc.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
9 ftc1anc.f . . . 4 (𝜑𝐹:𝐷⟶ℂ)
102, 3, 4, 5, 6, 7, 8, 9ftc1anclem5 37745 . . 3 ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2))
111, 10sylan2 593 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2))
12 eqid 2731 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) d𝑡)
13 ax-icn 11065 . . . . . . . 8 i ∈ ℂ
14 ine0 11552 . . . . . . . 8 i ≠ 0
1513, 14reccli 11851 . . . . . . 7 (1 / i) ∈ ℂ
1615a1i 11 . . . . . 6 (𝜑 → (1 / i) ∈ ℂ)
179ffvelcdmda 7017 . . . . . 6 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
189feqmptd 6890 . . . . . . 7 (𝜑𝐹 = (𝑦𝐷 ↦ (𝐹𝑦)))
1918, 8eqeltrrd 2832 . . . . . 6 (𝜑 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ 𝐿1)
20 divrec2 11793 . . . . . . . . . 10 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2113, 14, 20mp3an23 1455 . . . . . . . . 9 ((𝐹𝑦) ∈ ℂ → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2217, 21syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2322mpteq2dva 5182 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ ((𝐹𝑦) / i)) = (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))))
24 iblmbf 25695 . . . . . . . . 9 ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ 𝐿1 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn)
2519, 24syl 17 . . . . . . . 8 (𝜑 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn)
26 2fveq3 6827 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(𝐹𝑦)) = (ℜ‘(𝐹𝑥)))
2726cbvmptv 5193 . . . . . . . . . . . . . . 15 (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) = (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥)))
2827eleq1i 2822 . . . . . . . . . . . . . 14 ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
2917recld 15101 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℝ)
3029recnd 11140 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℂ)
3130adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) ∧ 𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℂ)
3228biimpri 228 . . . . . . . . . . . . . . . 16 ((𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
3332adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
3431, 33mbfneg 25578 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) → (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn)
3528, 34sylan2b 594 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn)
369ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℂ)
3736recld 15101 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
3837recnd 11140 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (ℜ‘(𝐹𝑥)) ∈ ℂ)
3938negnegd 11463 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → --(ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑥)))
4039mpteq2dva 5182 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))))
4140, 27eqtr4di 2784 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))))
4241adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))))
43 negex 11358 . . . . . . . . . . . . . . . 16 -(ℜ‘(𝐹𝑥)) ∈ V
4443a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) ∧ 𝑥𝐷) → -(ℜ‘(𝐹𝑥)) ∈ V)
4526negeqd 11354 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → -(ℜ‘(𝐹𝑦)) = -(ℜ‘(𝐹𝑥)))
4645cbvmptv 5193 . . . . . . . . . . . . . . . . . 18 (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) = (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥)))
4746eleq1i 2822 . . . . . . . . . . . . . . . . 17 ((𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
4847biimpi 216 . . . . . . . . . . . . . . . 16 ((𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn → (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
4948adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
5044, 49mbfneg 25578 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) ∈ MblFn)
5142, 50eqeltrrd 2832 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
5235, 51impbida 800 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn))
53 divcl 11782 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑦) / i) ∈ ℂ)
54 imre 15015 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) / i) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5613, 14, 55mp3an23 1455 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5713, 14, 53mp3an23 1455 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ ℂ → ((𝐹𝑦) / i) ∈ ℂ)
58 mulneg1 11553 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ ((𝐹𝑦) / i) ∈ ℂ) → (-i · ((𝐹𝑦) / i)) = -(i · ((𝐹𝑦) / i)))
5913, 57, 58sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ ℂ → (-i · ((𝐹𝑦) / i)) = -(i · ((𝐹𝑦) / i)))
60 divcan2 11784 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐹𝑦) / i)) = (𝐹𝑦))
6113, 14, 60mp3an23 1455 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ ℂ → (i · ((𝐹𝑦) / i)) = (𝐹𝑦))
6261negeqd 11354 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ ℂ → -(i · ((𝐹𝑦) / i)) = -(𝐹𝑦))
6359, 62eqtrd 2766 . . . . . . . . . . . . . . . . 17 ((𝐹𝑦) ∈ ℂ → (-i · ((𝐹𝑦) / i)) = -(𝐹𝑦))
6463fveq2d 6826 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℜ‘(-i · ((𝐹𝑦) / i))) = (ℜ‘-(𝐹𝑦)))
65 reneg 15032 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℜ‘-(𝐹𝑦)) = -(ℜ‘(𝐹𝑦)))
6656, 64, 653eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝐹𝑦) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = -(ℜ‘(𝐹𝑦)))
6717, 66syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐷) → (ℑ‘((𝐹𝑦) / i)) = -(ℜ‘(𝐹𝑦)))
6867mpteq2dva 5182 . . . . . . . . . . . . 13 (𝜑 → (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) = (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))))
6968eleq1d 2816 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ↔ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn))
7052, 69bitr4d 282 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn))
71 imval 15014 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ ℂ → (ℑ‘(𝐹𝑦)) = (ℜ‘((𝐹𝑦) / i)))
7217, 71syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝐷) → (ℑ‘(𝐹𝑦)) = (ℜ‘((𝐹𝑦) / i)))
7372mpteq2dva 5182 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) = (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))))
7473eleq1d 2816 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn))
7570, 74anbi12d 632 . . . . . . . . . 10 (𝜑 → (((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn)))
76 ancom 460 . . . . . . . . . 10 (((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn))
7775, 76bitrdi 287 . . . . . . . . 9 (𝜑 → (((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn)))
7817ismbfcn2 25566 . . . . . . . . 9 (𝜑 → ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn ↔ ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn)))
7917, 57syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐷) → ((𝐹𝑦) / i) ∈ ℂ)
8079ismbfcn2 25566 . . . . . . . . 9 (𝜑 → ((𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn)))
8177, 78, 803bitr4d 311 . . . . . . . 8 (𝜑 → ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn ↔ (𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn))
8225, 81mpbid 232 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn)
8323, 82eqeltrrd 2832 . . . . . 6 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) ∈ MblFn)
8416, 17, 19, 83iblmulc2nc 37733 . . . . 5 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) ∈ 𝐿1)
85 mulcl 11090 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → ((1 / i) · (𝐹𝑦)) ∈ ℂ)
8615, 17, 85sylancr 587 . . . . . 6 ((𝜑𝑦𝐷) → ((1 / i) · (𝐹𝑦)) ∈ ℂ)
8786fmpttd 7048 . . . . 5 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))):𝐷⟶ℂ)
8812, 3, 4, 5, 6, 7, 84, 87ftc1anclem5 37745 . . . 4 ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
891, 88sylan2 593 . . 3 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
909ffvelcdmda 7017 . . . . . . . . . . . 12 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
91 0cnd 11105 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ ℂ)
9290, 91ifclda 4508 . . . . . . . . . . 11 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
93 imval 15014 . . . . . . . . . . 11 (if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
9492, 93syl 17 . . . . . . . . . 10 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
95 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
9695oveq2d 7362 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → ((1 / i) · (𝐹𝑦)) = ((1 / i) · (𝐹𝑡)))
97 eqid 2731 . . . . . . . . . . . . . . . 16 (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) = (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))
98 ovex 7379 . . . . . . . . . . . . . . . 16 ((1 / i) · (𝐹𝑡)) ∈ V
9996, 97, 98fvmpt 6929 . . . . . . . . . . . . . . 15 (𝑡𝐷 → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((1 / i) · (𝐹𝑡)))
10099adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((1 / i) · (𝐹𝑡)))
101 divrec2 11793 . . . . . . . . . . . . . . . 16 (((𝐹𝑡) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
10213, 14, 101mp3an23 1455 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ∈ ℂ → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
10390, 102syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
104100, 103eqtr4d 2769 . . . . . . . . . . . . 13 ((𝜑𝑡𝐷) → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((𝐹𝑡) / i))
105104ifeq1da 4504 . . . . . . . . . . . 12 (𝜑 → if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0) = if(𝑡𝐷, ((𝐹𝑡) / i), 0))
106 ovif 7444 . . . . . . . . . . . . 13 (if(𝑡𝐷, (𝐹𝑡), 0) / i) = if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i))
10713, 14div0i 11855 . . . . . . . . . . . . . 14 (0 / i) = 0
108 ifeq2 4477 . . . . . . . . . . . . . 14 ((0 / i) = 0 → if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i)) = if(𝑡𝐷, ((𝐹𝑡) / i), 0))
109107, 108ax-mp 5 . . . . . . . . . . . . 13 if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i)) = if(𝑡𝐷, ((𝐹𝑡) / i), 0)
110106, 109eqtri 2754 . . . . . . . . . . . 12 (if(𝑡𝐷, (𝐹𝑡), 0) / i) = if(𝑡𝐷, ((𝐹𝑡) / i), 0)
111105, 110eqtr4di 2784 . . . . . . . . . . 11 (𝜑 → if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0) = (if(𝑡𝐷, (𝐹𝑡), 0) / i))
112111fveq2d 6826 . . . . . . . . . 10 (𝜑 → (ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
11394, 112eqtr4d 2769 . . . . . . . . 9 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)))
114113fvoveq1d 7368 . . . . . . . 8 (𝜑 → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))
115114mpteq2dv 5183 . . . . . . 7 (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡)))))
116115fveq2d 6826 . . . . . 6 (𝜑 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))))
117116breq1d 5099 . . . . 5 (𝜑 → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
118117rexbidv 3156 . . . 4 (𝜑 → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
119118adantr 480 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
12089, 119mpbird 257 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
121 reeanv 3204 . . 3 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) ↔ (∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
122 eleq1w 2814 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (𝑥𝐷𝑡𝐷))
123 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
124122, 123ifbieq1d 4497 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → if(𝑥𝐷, (𝐹𝑥), 0) = if(𝑡𝐷, (𝐹𝑡), 0))
125124fveq2d 6826 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
126 eqid 2731 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))
127 fvex 6835 . . . . . . . . . . . . . 14 (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
128125, 126, 127fvmpt 6929 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
129128fvoveq1d 7368 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
130129mpteq2ia 5184 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
131130fveq2i 6825 . . . . . . . . . 10 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
132 rembl 25468 . . . . . . . . . . . . . . . . 17 ℝ ∈ dom vol
133132a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℝ ∈ dom vol)
134 0cnd 11105 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝑥𝐷) → 0 ∈ ℂ)
13536, 134ifclda 4508 . . . . . . . . . . . . . . . . 17 (𝜑 → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
136135adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
137 eldifn 4079 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℝ ∖ 𝐷) → ¬ 𝑥𝐷)
138137adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑥𝐷)
139138iffalsed 4483 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℝ ∖ 𝐷)) → if(𝑥𝐷, (𝐹𝑥), 0) = 0)
1409feqmptd 6890 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
141 iftrue 4478 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷 → if(𝑥𝐷, (𝐹𝑥), 0) = (𝐹𝑥))
142141mpteq2ia 5184 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)) = (𝑥𝐷 ↦ (𝐹𝑥))
143140, 142eqtr4di 2784 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)))
144143, 8eqeltrrd 2832 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1)
1457, 133, 136, 139, 144iblss2 25734 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1)
146135adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
147146iblcn 25727 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1 ↔ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)))
148145, 147mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1))
149148simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
150146recld 15101 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
151150fmpttd 7048 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
152149, 151jca 511 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
153 ftc1anclem4 37744 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
1541533expb 1120 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
155152, 154sylan2 593 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝜑) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
156155ancoms 458 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
157131, 156eqeltrrid 2836 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ)
158124fveq2d 6826 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))
159 eqid 2731 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))
160 fvex 6835 . . . . . . . . . . . . . 14 (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
161158, 159, 160fvmpt 6929 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))
162161fvoveq1d 7368 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
163162mpteq2ia 5184 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
164163fveq2i 6825 . . . . . . . . . 10 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
165148simprd 495 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
166135imcld 15102 . . . . . . . . . . . . . . 15 (𝜑 → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
167166adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
168167fmpttd 7048 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
169165, 168jca 511 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
170 ftc1anclem4 37744 . . . . . . . . . . . . 13 ((𝑔 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
1711703expb 1120 . . . . . . . . . . . 12 ((𝑔 ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
172169, 171sylan2 593 . . . . . . . . . . 11 ((𝑔 ∈ dom ∫1𝜑) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
173172ancoms 458 . . . . . . . . . 10 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
174164, 173eqeltrrid 2836 . . . . . . . . 9 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
175157, 174anim12dan 619 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ))
1761rpred 12934 . . . . . . . . 9 (𝑌 ∈ ℝ+ → (𝑌 / 2) ∈ ℝ)
177176, 176jca 511 . . . . . . . 8 (𝑌 ∈ ℝ+ → ((𝑌 / 2) ∈ ℝ ∧ (𝑌 / 2) ∈ ℝ))
178 lt2add 11602 . . . . . . . 8 ((((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ) ∧ ((𝑌 / 2) ∈ ℝ ∧ (𝑌 / 2) ∈ ℝ)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
179175, 177, 178syl2an 596 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑌 ∈ ℝ+) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
180179an32s 652 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
18192recld 15101 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
182181recnd 11140 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
183 i1ff 25604 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
184183ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℝ)
185184recnd 11140 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℂ)
186 subcl 11359 . . . . . . . . . . . . . . . . . 18 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑓𝑡) ∈ ℂ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
187182, 185, 186syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
188187anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
189188adantlrr 721 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
19092imcld 15102 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
191190recnd 11140 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
192 i1ff 25604 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
193192ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℝ)
194193recnd 11140 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
195 subcl 11359 . . . . . . . . . . . . . . . . . . 19 (((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
196191, 194, 195syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
197196anassrs 467 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
198 mulcl 11090 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
19913, 197, 198sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
200199adantlrl 720 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
201189, 200addcld 11131 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) ∈ ℂ)
202201abscld 15346 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
203202rexrd 11162 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ*)
204201absge0d 15354 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
205 elxrge0 13357 . . . . . . . . . . . 12 ((abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ (0[,]+∞) ↔ ((abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ* ∧ 0 ≤ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
206203, 204, 205sylanbrc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ (0[,]+∞))
207206fmpttd 7048 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞))
208 icossicc 13336 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
209 ge0addcl 13360 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
210208, 209sselid 3927 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,]+∞))
211210adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞))
212188abscld 15346 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ ℝ)
213188absge0d 15354 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
214 elrege0 13354 . . . . . . . . . . . . . 14 ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ (0[,)+∞) ↔ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
215212, 213, 214sylanbrc 583 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ (0[,)+∞))
216215fmpttd 7048 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))):ℝ⟶(0[,)+∞))
217216adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))):ℝ⟶(0[,)+∞))
218197abscld 15346 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℝ)
219197absge0d 15354 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
220 elrege0 13354 . . . . . . . . . . . . . 14 ((abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ (0[,)+∞) ↔ ((abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
221218, 219, 220sylanbrc 583 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ (0[,)+∞))
222221fmpttd 7048 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))):ℝ⟶(0[,)+∞))
223222adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))):ℝ⟶(0[,)+∞))
224 reex 11097 . . . . . . . . . . . 12 ℝ ∈ V
225224a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ℝ ∈ V)
226 inidm 4174 . . . . . . . . . . 11 (ℝ ∩ ℝ) = ℝ
227211, 217, 223, 225, 225, 226off 7628 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))):ℝ⟶(0[,]+∞))
228189, 200abstrid 15366 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
229228ralrimiva 3124 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ∀𝑡 ∈ ℝ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
230 ovexd 7381 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ V)
231 eqidd 2732 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
232 fvexd 6837 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ V)
233 fvexd 6837 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) ∈ V)
234 eqidd 2732 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
235 absmul 15201 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
23613, 197, 235sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
237 absi 15193 . . . . . . . . . . . . . . . . . 18 (abs‘i) = 1
238237oveq1i 7356 . . . . . . . . . . . . . . . . 17 ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (1 · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
239218recnd 11140 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
240239mullidd 11130 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (1 · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
241238, 240eqtrid 2778 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
242236, 241eqtr2d 2767 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
243242mpteq2dva 5182 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
244243adantrl 716 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
245225, 232, 233, 234, 244offval2 7630 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (𝑡 ∈ ℝ ↦ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
246225, 202, 230, 231, 245ofrfval2 7631 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ↔ ∀𝑡 ∈ ℝ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
247229, 246mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
248 itg2le 25667 . . . . . . . . . 10 (((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞) ∧ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
249207, 227, 247, 248syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
250 absf 15245 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
251250a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → abs:ℂ⟶ℝ)
252251, 188cofmpt 7065 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
253 resubcl 11425 . . . . . . . . . . . . . . . 16 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑓𝑡) ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
254181, 184, 253syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
255254anassrs 467 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
256255fmpttd 7048 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))):ℝ⟶ℝ)
257132a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ dom vol)
258 iunin2 5017 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}))
259 imaiun 7179 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 𝑦 ∈ ran 𝑓{𝑦}) = 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})
260 iunid 5007 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ ran 𝑓{𝑦} = ran 𝑓
261260imaeq2i 6006 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 𝑦 ∈ ran 𝑓{𝑦}) = (𝑓 “ ran 𝑓)
262259, 261eqtr3i 2756 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}) = (𝑓 “ ran 𝑓)
263262ineq2i 4164 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓))
264258, 263eqtri 2754 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓))
265 cnvimass 6030 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
266 ovex 7379 . . . . . . . . . . . . . . . . . . . . . 22 ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ V
267 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
268266, 267dmmpti 6625 . . . . . . . . . . . . . . . . . . . . 21 dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = ℝ
269265, 268sseqtri 3978 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ ℝ
270 cnvimarndm 6031 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 “ ran 𝑓) = dom 𝑓
271183fdmd 6661 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ dom ∫1 → dom 𝑓 = ℝ)
272270, 271eqtrid 2778 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (𝑓 “ ran 𝑓) = ℝ)
273269, 272sseqtrrid 3973 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ (𝑓 “ ran 𝑓))
274 dfss2 3915 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ (𝑓 “ ran 𝑓) ↔ (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
275273, 274sylib 218 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
276264, 275eqtrid 2778 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
277276ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
278183frnd 6659 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ dom ∫1 → ran 𝑓 ⊆ ℝ)
279278ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ran 𝑓 ⊆ ℝ)
280279sselda 3929 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → 𝑦 ∈ ℝ)
281181ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
282 resubcl 11425 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
283181, 282sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
284283adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
285281, 2842thd 265 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ))
286 ltaddsub 11591 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
287181, 286syl3an3 1165 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝜑) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
2882873comr 1125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
2892883expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
290285, 289anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
291 readdcl 11089 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
292291rexrd 11162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ*)
293292adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ*)
294 elioopnf 13343 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 + 𝑦) ∈ ℝ* → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
295293, 294syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
296 rexr 11158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
297296ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
298 elioopnf 13343 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ* → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
299297, 298syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
300290, 295, 2993bitr4rd 312 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))
301 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑡) = 𝑦 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))
302301eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞)))
303302bibi1d 343 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑡) = 𝑦 → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))))
304300, 303syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))))
305304pm5.32rd 578 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
306305adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
307280, 306syldan 591 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
308307rabbidv 3402 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
309183feqmptd 6890 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
310309cnveqd 5814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
311310imaeq1d 6007 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ dom ∫1 → (𝑓 “ {𝑦}) = ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}))
312311ineq2d 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
313267mptpreima 6185 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)}
314 vex 3440 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
315 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ ↦ (𝑓𝑡)) = (𝑡 ∈ ℝ ↦ (𝑓𝑡))
316315mptiniseg 6186 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ V → ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
317314, 316ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}
318313, 317ineq12i 4165 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
319 inrab 4263 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
320318, 319eqtri 2754 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
321312, 320eqtrdi 2782 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
322321ad3antlr 731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
323311ineq2d 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
324 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
325324mptpreima 6185 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) = {𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)}
326325, 317ineq12i 4165 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
327 inrab 4263 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
328326, 327eqtri 2754 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
329323, 328eqtrdi 2782 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
330329ad3antlr 731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
331308, 322, 3303eqtr4d 2776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
332331iuneq2dv 4964 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
333277, 332eqtr3d 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
334 i1frn 25605 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → ran 𝑓 ∈ Fin)
335334adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ran 𝑓 ∈ Fin)
33692adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡𝐷) → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
337 eldifn 4079 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡𝐷)
338337adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡𝐷)
339338iffalsed 4483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡𝐷, (𝐹𝑡), 0) = 0)
3409feqmptd 6890 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
341 iftrue 4478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝐷 → if(𝑡𝐷, (𝐹𝑡), 0) = (𝐹𝑡))
342341mpteq2ia 5184 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)) = (𝑡𝐷 ↦ (𝐹𝑡))
343340, 342eqtr4di 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)))
344 iblmbf 25695 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
3458, 344syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 ∈ MblFn)
346343, 345eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn)
3477, 133, 336, 339, 346mbfss 25574 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn)
34892adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
349348ismbfcn2 25566 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn ↔ ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)))
350347, 349mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn))
351350simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)
352181adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
353352fmpttd 7048 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ)
354 mbfima 25558 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol)
355351, 353, 354syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol)
356 i1fima 25606 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (𝑓 “ {𝑦}) ∈ dom vol)
357 inmbl 25470 . . . . . . . . . . . . . . . . . . 19 ((((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol ∧ (𝑓 “ {𝑦}) ∈ dom vol) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
358355, 356, 357syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
359358ralrimivw 3128 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
360 finiunmbl 25472 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
361335, 359, 360syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
362361adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
363333, 362eqeltrd 2831 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
364 iunin2 5017 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}))
365262ineq2i 4164 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓))
366364, 365eqtri 2754 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓))
367 cnvimass 6030 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
368367, 268sseqtri 3978 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ ℝ
369368, 272sseqtrrid 3973 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ (𝑓 “ ran 𝑓))
370 dfss2 3915 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ (𝑓 “ ran 𝑓) ↔ (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
371369, 370sylib 218 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
372366, 371eqtrid 2778 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
373372ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
374284, 2812thd 265 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ))
375 ltsubadd 11587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
376181, 375syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
3773763expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
378377an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
379374, 378anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
380 elioomnf 13344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ* → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥)))
381297, 380syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥)))
382 elioomnf 13344 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 + 𝑦) ∈ ℝ* → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
383293, 382syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
384379, 381, 3833bitr4d 311 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))
385301eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥)))
386385bibi1d 343 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑡) = 𝑦 → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))))
387384, 386syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))))
388387pm5.32rd 578 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
389388adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
390280, 389syldan 591 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
391390rabbidv 3402 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
392311ineq2d 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
393267mptpreima 6185 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)}
394393, 317ineq12i 4165 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
395 inrab 4263 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)}
396394, 395eqtri 2754 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)}
397392, 396eqtrdi 2782 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)})
398397ad3antlr 731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)})
399311ineq2d 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
400324mptpreima 6185 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) = {𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))}
401400, 317ineq12i 4165 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
402 inrab 4263 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)}
403401, 402eqtri 2754 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)}
404399, 403eqtrdi 2782 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
405404ad3antlr 731 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
406391, 398, 4053eqtr4d 2776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
407406iuneq2dv 4964 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
408373, 407eqtr3d 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
409 mbfima 25558 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol)
410351, 353, 409syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol)
411 inmbl 25470 . . . . . . . . . . . . . . . . . . 19 ((((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol ∧ (𝑓 “ {𝑦}) ∈ dom vol) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
412410, 356, 411syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
413412ralrimivw 3128 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
414 finiunmbl 25472 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
415335, 413, 414syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
416415adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
417408, 416eqeltrd 2831 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
418256, 257, 363, 417ismbf2d 25568 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ MblFn)
419 ftc1anclem1 37741 . . . . . . . . . . . . 13 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
420256, 418, 419syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
421252, 420eqeltrrd 2832 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
422421adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
423157adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ)
424174adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
425422, 217, 423, 223, 424itg2addnc 37722 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
426249, 425breqtrd 5115 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
427426adantlr 715 . . . . . . 7 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
428 itg2cl 25660 . . . . . . . . . 10 ((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
429207, 428syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
430429adantlr 715 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
431 readdcl 11089 . . . . . . . . . . . 12 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
432157, 174, 431syl2an 596 . . . . . . . . . . 11 (((𝜑𝑓 ∈ dom ∫1) ∧ (𝜑𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
433432anandis 678 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
434433rexrd 11162 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ*)
435434adantlr 715 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ*)
4361, 1rpaddcld 12949 . . . . . . . . . 10 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ+)
437436rpxrd 12935 . . . . . . . . 9 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*)
438437ad2antlr 727 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*)
439 xrlelttr 13055 . . . . . . . 8 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ* ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ* ∧ ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
440430, 435, 438, 439syl3anc 1373 . . . . . . 7 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
441427, 440mpand 695 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
442180, 441syld 47 . . . . 5 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
443 mulcl 11090 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ) → (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
44413, 191, 443sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
445182, 444jca 511 . . . . . . . . . . . . 13 (𝜑 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ))
446 mulcl 11090 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · (𝑔𝑡)) ∈ ℂ)
44713, 194, 446sylancr 587 . . . . . . . . . . . . . . 15 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (i · (𝑔𝑡)) ∈ ℂ)
448185, 447anim12i 613 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ))
449448anandirs 679 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ))
450 addsub4 11404 . . . . . . . . . . . . 13 ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ) ∧ ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
451445, 449, 450syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
452451anassrs 467 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
45392replimd 15104 . . . . . . . . . . . . 13 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
454453ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (𝐹𝑡), 0) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
455454oveq1d 7361 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
456194adantll 714 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
457 subdi 11550 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
45813, 191, 456, 457mp3an3an 1469 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
459458anassrs 467 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
460459oveq2d 7362 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
461452, 455, 4603eqtr4rd 2777 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
462461fveq2d 6826 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
463462mpteq2dva 5182 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
464463fveq2d 6826 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
465464adantlr 715 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
466 rpcn 12901 . . . . . . . 8 (𝑌 ∈ ℝ+𝑌 ∈ ℂ)
4674662halvesd 12367 . . . . . . 7 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌)
468467ad2antlr 727 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌)
469465, 468breq12d 5102 . . . . 5 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
470442, 469sylibd 239 . . . 4 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
471470reximdvva 3180 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
472121, 471biimtrrid 243 . 2 ((𝜑𝑌 ∈ ℝ+) → ((∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
47311, 120, 472mp2and 699 1 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  cin 3896  wss 3897  ifcif 4472  {csn 4573   ciun 4939   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  r cofr 7609  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  2c2 12180  +crp 12890  (,)cioo 13245  [,)cico 13247  [,]cicc 13248  cre 15004  cim 15005  abscabs 15141  volcvol 25391  MblFncmbf 25542  1citg1 25543  2citg2 25544  𝐿1cibl 25545  citg 25546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550  df-0p 25598
This theorem is referenced by:  ftc1anc  37749
  Copyright terms: Public domain W3C validator