Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem6 Structured version   Visualization version   GIF version

Theorem ftc1anclem6 35782
Description: Lemma for ftc1anc 35785- construction of simple functions within an arbitrary absolute distance of the given function. Similar to Lemma 565Ib of [Fremlin5] p. 218, but without Fremlin's additional step of converting the simple function into a continuous one, which is unnecessary to this lemma's use; also, two simple functions are used to allow for complex-valued 𝐹. (Contributed by Brendan Leahy, 31-May-2018.)
Hypotheses
Ref Expression
ftc1anc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1anc.a (𝜑𝐴 ∈ ℝ)
ftc1anc.b (𝜑𝐵 ∈ ℝ)
ftc1anc.le (𝜑𝐴𝐵)
ftc1anc.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1anc.d (𝜑𝐷 ⊆ ℝ)
ftc1anc.i (𝜑𝐹 ∈ 𝐿1)
ftc1anc.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1anclem6 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑥,𝐴   𝐵,𝑓,𝑔,𝑡,𝑥   𝐷,𝑓,𝑔,𝑡,𝑥   𝑓,𝐹,𝑔,𝑡,𝑥   𝜑,𝑓,𝑔,𝑡,𝑥   𝑓,𝐺,𝑔   𝑓,𝑌,𝑔,𝑡,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1anclem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rphalfcl 12686 . . 3 (𝑌 ∈ ℝ+ → (𝑌 / 2) ∈ ℝ+)
2 ftc1anc.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
3 ftc1anc.a . . . 4 (𝜑𝐴 ∈ ℝ)
4 ftc1anc.b . . . 4 (𝜑𝐵 ∈ ℝ)
5 ftc1anc.le . . . 4 (𝜑𝐴𝐵)
6 ftc1anc.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7 ftc1anc.d . . . 4 (𝜑𝐷 ⊆ ℝ)
8 ftc1anc.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
9 ftc1anc.f . . . 4 (𝜑𝐹:𝐷⟶ℂ)
102, 3, 4, 5, 6, 7, 8, 9ftc1anclem5 35781 . . 3 ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2))
111, 10sylan2 592 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2))
12 eqid 2738 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) d𝑡) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) d𝑡)
13 ax-icn 10861 . . . . . . . 8 i ∈ ℂ
14 ine0 11340 . . . . . . . 8 i ≠ 0
1513, 14reccli 11635 . . . . . . 7 (1 / i) ∈ ℂ
1615a1i 11 . . . . . 6 (𝜑 → (1 / i) ∈ ℂ)
179ffvelrnda 6943 . . . . . 6 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
189feqmptd 6819 . . . . . . 7 (𝜑𝐹 = (𝑦𝐷 ↦ (𝐹𝑦)))
1918, 8eqeltrrd 2840 . . . . . 6 (𝜑 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ 𝐿1)
20 divrec2 11580 . . . . . . . . . 10 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2113, 14, 20mp3an23 1451 . . . . . . . . 9 ((𝐹𝑦) ∈ ℂ → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2217, 21syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → ((𝐹𝑦) / i) = ((1 / i) · (𝐹𝑦)))
2322mpteq2dva 5170 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ ((𝐹𝑦) / i)) = (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))))
24 iblmbf 24837 . . . . . . . . 9 ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ 𝐿1 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn)
2519, 24syl 17 . . . . . . . 8 (𝜑 → (𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn)
26 2fveq3 6761 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℜ‘(𝐹𝑦)) = (ℜ‘(𝐹𝑥)))
2726cbvmptv 5183 . . . . . . . . . . . . . . 15 (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) = (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥)))
2827eleq1i 2829 . . . . . . . . . . . . . 14 ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
2917recld 14833 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℝ)
3029recnd 10934 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℂ)
3130adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) ∧ 𝑦𝐷) → (ℜ‘(𝐹𝑦)) ∈ ℂ)
3228biimpri 227 . . . . . . . . . . . . . . . 16 ((𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
3332adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
3431, 33mbfneg 24719 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn) → (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn)
3528, 34sylan2b 593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn)
369ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℂ)
3736recld 14833 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
3837recnd 10934 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → (ℜ‘(𝐹𝑥)) ∈ ℂ)
3938negnegd 11253 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → --(ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑥)))
4039mpteq2dva 5170 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑥𝐷 ↦ (ℜ‘(𝐹𝑥))))
4140, 27eqtr4di 2797 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))))
4241adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) = (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))))
43 negex 11149 . . . . . . . . . . . . . . . 16 -(ℜ‘(𝐹𝑥)) ∈ V
4443a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) ∧ 𝑥𝐷) → -(ℜ‘(𝐹𝑥)) ∈ V)
4526negeqd 11145 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → -(ℜ‘(𝐹𝑦)) = -(ℜ‘(𝐹𝑥)))
4645cbvmptv 5183 . . . . . . . . . . . . . . . . . 18 (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) = (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥)))
4746eleq1i 2829 . . . . . . . . . . . . . . . . 17 ((𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
4847biimpi 215 . . . . . . . . . . . . . . . 16 ((𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn → (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
4948adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ -(ℜ‘(𝐹𝑥))) ∈ MblFn)
5044, 49mbfneg 24719 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑥𝐷 ↦ --(ℜ‘(𝐹𝑥))) ∈ MblFn)
5142, 50eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn) → (𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn)
5235, 51impbida 797 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn))
53 divcl 11569 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑦) / i) ∈ ℂ)
54 imre 14747 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑦) / i) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5553, 54syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5613, 14, 55mp3an23 1451 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = (ℜ‘(-i · ((𝐹𝑦) / i))))
5713, 14, 53mp3an23 1451 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ ℂ → ((𝐹𝑦) / i) ∈ ℂ)
58 mulneg1 11341 . . . . . . . . . . . . . . . . . . 19 ((i ∈ ℂ ∧ ((𝐹𝑦) / i) ∈ ℂ) → (-i · ((𝐹𝑦) / i)) = -(i · ((𝐹𝑦) / i)))
5913, 57, 58sylancr 586 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ ℂ → (-i · ((𝐹𝑦) / i)) = -(i · ((𝐹𝑦) / i)))
60 divcan2 11571 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑦) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (i · ((𝐹𝑦) / i)) = (𝐹𝑦))
6113, 14, 60mp3an23 1451 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ ℂ → (i · ((𝐹𝑦) / i)) = (𝐹𝑦))
6261negeqd 11145 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ ℂ → -(i · ((𝐹𝑦) / i)) = -(𝐹𝑦))
6359, 62eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝐹𝑦) ∈ ℂ → (-i · ((𝐹𝑦) / i)) = -(𝐹𝑦))
6463fveq2d 6760 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℜ‘(-i · ((𝐹𝑦) / i))) = (ℜ‘-(𝐹𝑦)))
65 reneg 14764 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ ℂ → (ℜ‘-(𝐹𝑦)) = -(ℜ‘(𝐹𝑦)))
6656, 64, 653eqtrd 2782 . . . . . . . . . . . . . . 15 ((𝐹𝑦) ∈ ℂ → (ℑ‘((𝐹𝑦) / i)) = -(ℜ‘(𝐹𝑦)))
6717, 66syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐷) → (ℑ‘((𝐹𝑦) / i)) = -(ℜ‘(𝐹𝑦)))
6867mpteq2dva 5170 . . . . . . . . . . . . 13 (𝜑 → (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) = (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))))
6968eleq1d 2823 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ↔ (𝑦𝐷 ↦ -(ℜ‘(𝐹𝑦))) ∈ MblFn))
7052, 69bitr4d 281 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn))
71 imval 14746 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ ℂ → (ℑ‘(𝐹𝑦)) = (ℜ‘((𝐹𝑦) / i)))
7217, 71syl 17 . . . . . . . . . . . . 13 ((𝜑𝑦𝐷) → (ℑ‘(𝐹𝑦)) = (ℜ‘((𝐹𝑦) / i)))
7372mpteq2dva 5170 . . . . . . . . . . . 12 (𝜑 → (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) = (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))))
7473eleq1d 2823 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn ↔ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn))
7570, 74anbi12d 630 . . . . . . . . . 10 (𝜑 → (((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn)))
76 ancom 460 . . . . . . . . . 10 (((𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn))
7775, 76bitrdi 286 . . . . . . . . 9 (𝜑 → (((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn) ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn)))
7817ismbfcn2 24707 . . . . . . . . 9 (𝜑 → ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn ↔ ((𝑦𝐷 ↦ (ℜ‘(𝐹𝑦))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘(𝐹𝑦))) ∈ MblFn)))
7917, 57syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐷) → ((𝐹𝑦) / i) ∈ ℂ)
8079ismbfcn2 24707 . . . . . . . . 9 (𝜑 → ((𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn ↔ ((𝑦𝐷 ↦ (ℜ‘((𝐹𝑦) / i))) ∈ MblFn ∧ (𝑦𝐷 ↦ (ℑ‘((𝐹𝑦) / i))) ∈ MblFn)))
8177, 78, 803bitr4d 310 . . . . . . . 8 (𝜑 → ((𝑦𝐷 ↦ (𝐹𝑦)) ∈ MblFn ↔ (𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn))
8225, 81mpbid 231 . . . . . . 7 (𝜑 → (𝑦𝐷 ↦ ((𝐹𝑦) / i)) ∈ MblFn)
8323, 82eqeltrrd 2840 . . . . . 6 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) ∈ MblFn)
8416, 17, 19, 83iblmulc2nc 35769 . . . . 5 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) ∈ 𝐿1)
85 mulcl 10886 . . . . . . 7 (((1 / i) ∈ ℂ ∧ (𝐹𝑦) ∈ ℂ) → ((1 / i) · (𝐹𝑦)) ∈ ℂ)
8615, 17, 85sylancr 586 . . . . . 6 ((𝜑𝑦𝐷) → ((1 / i) · (𝐹𝑦)) ∈ ℂ)
8786fmpttd 6971 . . . . 5 (𝜑 → (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))):𝐷⟶ℂ)
8812, 3, 4, 5, 6, 7, 84, 87ftc1anclem5 35781 . . . 4 ((𝜑 ∧ (𝑌 / 2) ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
891, 88sylan2 592 . . 3 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
909ffvelrnda 6943 . . . . . . . . . . . 12 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
91 0cnd 10899 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑡𝐷) → 0 ∈ ℂ)
9290, 91ifclda 4491 . . . . . . . . . . 11 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
93 imval 14746 . . . . . . . . . . 11 (if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
9492, 93syl 17 . . . . . . . . . 10 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
95 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
9695oveq2d 7271 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → ((1 / i) · (𝐹𝑦)) = ((1 / i) · (𝐹𝑡)))
97 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦))) = (𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))
98 ovex 7288 . . . . . . . . . . . . . . . 16 ((1 / i) · (𝐹𝑡)) ∈ V
9996, 97, 98fvmpt 6857 . . . . . . . . . . . . . . 15 (𝑡𝐷 → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((1 / i) · (𝐹𝑡)))
10099adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((1 / i) · (𝐹𝑡)))
101 divrec2 11580 . . . . . . . . . . . . . . . 16 (((𝐹𝑡) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
10213, 14, 101mp3an23 1451 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ∈ ℂ → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
10390, 102syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑡𝐷) → ((𝐹𝑡) / i) = ((1 / i) · (𝐹𝑡)))
104100, 103eqtr4d 2781 . . . . . . . . . . . . 13 ((𝜑𝑡𝐷) → ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡) = ((𝐹𝑡) / i))
105104ifeq1da 4487 . . . . . . . . . . . 12 (𝜑 → if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0) = if(𝑡𝐷, ((𝐹𝑡) / i), 0))
106 ovif 7350 . . . . . . . . . . . . 13 (if(𝑡𝐷, (𝐹𝑡), 0) / i) = if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i))
10713, 14div0i 11639 . . . . . . . . . . . . . 14 (0 / i) = 0
108 ifeq2 4461 . . . . . . . . . . . . . 14 ((0 / i) = 0 → if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i)) = if(𝑡𝐷, ((𝐹𝑡) / i), 0))
109107, 108ax-mp 5 . . . . . . . . . . . . 13 if(𝑡𝐷, ((𝐹𝑡) / i), (0 / i)) = if(𝑡𝐷, ((𝐹𝑡) / i), 0)
110106, 109eqtri 2766 . . . . . . . . . . . 12 (if(𝑡𝐷, (𝐹𝑡), 0) / i) = if(𝑡𝐷, ((𝐹𝑡) / i), 0)
111105, 110eqtr4di 2797 . . . . . . . . . . 11 (𝜑 → if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0) = (if(𝑡𝐷, (𝐹𝑡), 0) / i))
112111fveq2d 6760 . . . . . . . . . 10 (𝜑 → (ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) = (ℜ‘(if(𝑡𝐷, (𝐹𝑡), 0) / i)))
11394, 112eqtr4d 2781 . . . . . . . . 9 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) = (ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)))
114113fvoveq1d 7277 . . . . . . . 8 (𝜑 → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))
115114mpteq2dv 5172 . . . . . . 7 (𝜑 → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡)))))
116115fveq2d 6760 . . . . . 6 (𝜑 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))))
117116breq1d 5080 . . . . 5 (𝜑 → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
118117rexbidv 3225 . . . 4 (𝜑 → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
119118adantr 480 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2) ↔ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, ((𝑦𝐷 ↦ ((1 / i) · (𝐹𝑦)))‘𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
12089, 119mpbird 256 . 2 ((𝜑𝑌 ∈ ℝ+) → ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2))
121 reeanv 3292 . . 3 (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) ↔ (∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)))
122 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (𝑥𝐷𝑡𝐷))
123 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
124122, 123ifbieq1d 4480 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → if(𝑥𝐷, (𝐹𝑥), 0) = if(𝑡𝐷, (𝐹𝑡), 0))
125124fveq2d 6760 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
126 eqid 2738 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))
127 fvex 6769 . . . . . . . . . . . . . 14 (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
128125, 126, 127fvmpt 6857 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
129128fvoveq1d 7277 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))) = (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
130129mpteq2ia 5173 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
131130fveq2i 6759 . . . . . . . . . 10 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
132 rembl 24609 . . . . . . . . . . . . . . . . 17 ℝ ∈ dom vol
133132a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℝ ∈ dom vol)
134 0cnd 10899 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 𝑥𝐷) → 0 ∈ ℂ)
13536, 134ifclda 4491 . . . . . . . . . . . . . . . . 17 (𝜑 → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
136135adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
137 eldifn 4058 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℝ ∖ 𝐷) → ¬ 𝑥𝐷)
138137adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑥𝐷)
139138iffalsed 4467 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (ℝ ∖ 𝐷)) → if(𝑥𝐷, (𝐹𝑥), 0) = 0)
1409feqmptd 6819 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
141 iftrue 4462 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷 → if(𝑥𝐷, (𝐹𝑥), 0) = (𝐹𝑥))
142141mpteq2ia 5173 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)) = (𝑥𝐷 ↦ (𝐹𝑥))
143140, 142eqtr4di 2797 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)))
144143, 8eqeltrrd 2840 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1)
1457, 133, 136, 139, 144iblss2 24875 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1)
146135adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐷, (𝐹𝑥), 0) ∈ ℂ)
147146iblcn 24868 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐷, (𝐹𝑥), 0)) ∈ 𝐿1 ↔ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)))
148145, 147mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1))
149148simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
150146recld 14833 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
151150fmpttd 6971 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
152149, 151jca 511 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
153 ftc1anclem4 35780 . . . . . . . . . . . . 13 ((𝑓 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
1541533expb 1118 . . . . . . . . . . . 12 ((𝑓 ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
155152, 154sylan2 592 . . . . . . . . . . 11 ((𝑓 ∈ dom ∫1𝜑) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
156155ancoms 458 . . . . . . . . . 10 ((𝜑𝑓 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℜ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑓𝑡))))) ∈ ℝ)
157131, 156eqeltrrid 2844 . . . . . . . . 9 ((𝜑𝑓 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ)
158124fveq2d 6760 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) = (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))
159 eqid 2738 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))
160 fvex 6769 . . . . . . . . . . . . . 14 (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ V
161158, 159, 160fvmpt 6857 . . . . . . . . . . . . 13 (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) = (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))
162161fvoveq1d 7277 . . . . . . . . . . . 12 (𝑡 ∈ ℝ → (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
163162mpteq2ia 5173 . . . . . . . . . . 11 (𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
164163fveq2i 6759 . . . . . . . . . 10 (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
165148simprd 495 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1)
166135imcld 14834 . . . . . . . . . . . . . . 15 (𝜑 → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
167166adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)) ∈ ℝ)
168167fmpttd 6971 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)
169165, 168jca 511 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ))
170 ftc1anclem4 35780 . . . . . . . . . . . . 13 ((𝑔 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
1711703expb 1118 . . . . . . . . . . . 12 ((𝑔 ∈ dom ∫1 ∧ ((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))) ∈ 𝐿1 ∧ (𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0))):ℝ⟶ℝ)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
172169, 171sylan2 592 . . . . . . . . . . 11 ((𝑔 ∈ dom ∫1𝜑) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
173172ancoms 458 . . . . . . . . . 10 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦ (ℑ‘if(𝑥𝐷, (𝐹𝑥), 0)))‘𝑡) − (𝑔𝑡))))) ∈ ℝ)
174164, 173eqeltrrid 2844 . . . . . . . . 9 ((𝜑𝑔 ∈ dom ∫1) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
175157, 174anim12dan 618 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ))
1761rpred 12701 . . . . . . . . 9 (𝑌 ∈ ℝ+ → (𝑌 / 2) ∈ ℝ)
177176, 176jca 511 . . . . . . . 8 (𝑌 ∈ ℝ+ → ((𝑌 / 2) ∈ ℝ ∧ (𝑌 / 2) ∈ ℝ))
178 lt2add 11390 . . . . . . . 8 ((((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ) ∧ ((𝑌 / 2) ∈ ℝ ∧ (𝑌 / 2) ∈ ℝ)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
179175, 177, 178syl2an 595 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑌 ∈ ℝ+) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
180179an32s 648 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))))
18192recld 14833 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
182181recnd 10934 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
183 i1ff 24745 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
184183ffvelrnda 6943 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℝ)
185184recnd 10934 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑓𝑡) ∈ ℂ)
186 subcl 11150 . . . . . . . . . . . . . . . . . 18 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑓𝑡) ∈ ℂ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
187182, 185, 186syl2an 595 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
188187anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
189188adantlrr 717 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℂ)
19092imcld 14834 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
191190recnd 10934 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ)
192 i1ff 24745 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
193192ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℝ)
194193recnd 10934 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
195 subcl 11150 . . . . . . . . . . . . . . . . . . 19 (((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
196191, 194, 195syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
197196anassrs 467 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ)
198 mulcl 10886 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
19913, 197, 198sylancr 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
200199adantlrl 716 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
201189, 200addcld 10925 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) ∈ ℂ)
202201abscld 15076 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
203202rexrd 10956 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ*)
204201absge0d 15084 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
205 elxrge0 13118 . . . . . . . . . . . 12 ((abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ (0[,]+∞) ↔ ((abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ* ∧ 0 ≤ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
206203, 204, 205sylanbrc 582 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ (0[,]+∞))
207206fmpttd 6971 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞))
208 icossicc 13097 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
209 ge0addcl 13121 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
210208, 209sselid 3915 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,]+∞))
211210adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,]+∞))
212188abscld 15076 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ ℝ)
213188absge0d 15084 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))
214 elrege0 13115 . . . . . . . . . . . . . 14 ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ (0[,)+∞) ↔ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
215212, 213, 214sylanbrc 582 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ (0[,)+∞))
216215fmpttd 6971 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))):ℝ⟶(0[,)+∞))
217216adantrr 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))):ℝ⟶(0[,)+∞))
218197abscld 15076 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℝ)
219197absge0d 15084 . . . . . . . . . . . . . 14 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
220 elrege0 13115 . . . . . . . . . . . . . 14 ((abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ (0[,)+∞) ↔ ((abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℝ ∧ 0 ≤ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
221218, 219, 220sylanbrc 582 . . . . . . . . . . . . 13 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ (0[,)+∞))
222221fmpttd 6971 . . . . . . . . . . . 12 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))):ℝ⟶(0[,)+∞))
223222adantrl 712 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))):ℝ⟶(0[,)+∞))
224 reex 10893 . . . . . . . . . . . 12 ℝ ∈ V
225224a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ℝ ∈ V)
226 inidm 4149 . . . . . . . . . . 11 (ℝ ∩ ℝ) = ℝ
227211, 217, 223, 225, 225, 226off 7529 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))):ℝ⟶(0[,]+∞))
228189, 200abstrid 15096 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
229228ralrimiva 3107 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ∀𝑡 ∈ ℝ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
230 ovexd 7290 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ V)
231 eqidd 2739 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
232 fvexd 6771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ V)
233 fvexd 6771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) ∈ V)
234 eqidd 2739 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
235 absmul 14934 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)) ∈ ℂ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
23613, 197, 235sylancr 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
237 absi 14926 . . . . . . . . . . . . . . . . . 18 (abs‘i) = 1
238237oveq1i 7265 . . . . . . . . . . . . . . . . 17 ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (1 · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
239218recnd 10934 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) ∈ ℂ)
240239mulid2d 10924 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (1 · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
241238, 240syl5eq 2791 . . . . . . . . . . . . . . . 16 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((abs‘i) · (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))
242236, 241eqtr2d 2779 . . . . . . . . . . . . . . 15 (((𝜑𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))
243242mpteq2dva 5170 . . . . . . . . . . . . . 14 ((𝜑𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
244243adantrl 712 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
245225, 232, 233, 234, 244offval2 7531 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (𝑡 ∈ ℝ ↦ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
246225, 202, 230, 231, 245ofrfval2 7532 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ↔ ∀𝑡 ∈ ℝ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ≤ ((abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) + (abs‘(i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
247229, 246mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))
248 itg2le 24809 . . . . . . . . . 10 (((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞) ∧ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∘r ≤ ((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
249207, 227, 247, 248syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
250 absf 14977 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
251250a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → abs:ℂ⟶ℝ)
252251, 188cofmpt 6986 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))))
253 resubcl 11215 . . . . . . . . . . . . . . . 16 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑓𝑡) ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
254181, 184, 253syl2an 595 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑡 ∈ ℝ)) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
255254anassrs 467 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ ℝ)
256255fmpttd 6971 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))):ℝ⟶ℝ)
257132a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ dom ∫1) → ℝ ∈ dom vol)
258 iunin2 4996 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}))
259 imaiun 7100 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 𝑦 ∈ ran 𝑓{𝑦}) = 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})
260 iunid 4986 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ ran 𝑓{𝑦} = ran 𝑓
261260imaeq2i 5956 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 𝑦 ∈ ran 𝑓{𝑦}) = (𝑓 “ ran 𝑓)
262259, 261eqtr3i 2768 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}) = (𝑓 “ ran 𝑓)
263262ineq2i 4140 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓))
264258, 263eqtri 2766 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓))
265 cnvimass 5978 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
266 ovex 7288 . . . . . . . . . . . . . . . . . . . . . 22 ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ V
267 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
268266, 267dmmpti 6561 . . . . . . . . . . . . . . . . . . . . 21 dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) = ℝ
269265, 268sseqtri 3953 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ ℝ
270 cnvimarndm 5979 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 “ ran 𝑓) = dom 𝑓
271183fdmd 6595 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ dom ∫1 → dom 𝑓 = ℝ)
272270, 271syl5eq 2791 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (𝑓 “ ran 𝑓) = ℝ)
273269, 272sseqtrrid 3970 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ (𝑓 “ ran 𝑓))
274 df-ss 3900 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ⊆ (𝑓 “ ran 𝑓) ↔ (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
275273, 274sylib 217 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
276264, 275syl5eq 2791 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
277276ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)))
278183frnd 6592 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ dom ∫1 → ran 𝑓 ⊆ ℝ)
279278ad2antlr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ran 𝑓 ⊆ ℝ)
280279sselda 3917 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → 𝑦 ∈ ℝ)
281181ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
282 resubcl 11215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
283181, 282sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
284283adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ)
285281, 2842thd 264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ))
286 ltaddsub 11379 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
287181, 286syl3an3 1163 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝜑) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
2882873comr 1123 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
2892883expa 1116 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ↔ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦)))
290285, 289anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
291 readdcl 10885 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
292291rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ*)
293292adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ*)
294 elioopnf 13104 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 + 𝑦) ∈ ℝ* → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
295293, 294syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (𝑥 + 𝑦) < (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
296 rexr 10952 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
297296ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
298 elioopnf 13104 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ* → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
299297, 298syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ 𝑥 < ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))))
300290, 295, 2993bitr4rd 311 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)))
301 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓𝑡) = 𝑦 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦))
302301eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞)))
303302bibi1d 343 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑡) = 𝑦 → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))))
304300, 303syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞))))
305304pm5.32rd 577 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
306305adantllr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
307280, 306syldan 590 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)))
308307rabbidv 3404 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
309183feqmptd 6819 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
310309cnveqd 5773 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ dom ∫1𝑓 = (𝑡 ∈ ℝ ↦ (𝑓𝑡)))
311310imaeq1d 5957 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ dom ∫1 → (𝑓 “ {𝑦}) = ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}))
312311ineq2d 4143 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
313267mptpreima 6130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)}
314 vex 3426 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ V
315 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ ↦ (𝑓𝑡)) = (𝑡 ∈ ℝ ↦ (𝑓𝑡))
316315mptiniseg 6131 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ V → ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
317314, 316ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦}) = {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}
318313, 317ineq12i 4141 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
319 inrab 4237 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
320318, 319eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
321312, 320eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
322321ad3antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (𝑥(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
323311ineq2d 4143 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
324 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) = (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)))
325324mptpreima 6130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) = {𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)}
326325, 317ineq12i 4141 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
327 inrab 4237 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
328326, 327eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)}
329323, 328eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
330329ad3antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ((𝑥 + 𝑦)(,)+∞) ∧ (𝑓𝑡) = 𝑦)})
331308, 322, 3303eqtr4d 2788 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
332331iuneq2dv 4945 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∩ (𝑓 “ {𝑦})) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
333277, 332eqtr3d 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})))
334 i1frn 24746 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → ran 𝑓 ∈ Fin)
335334adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ran 𝑓 ∈ Fin)
33692adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡𝐷) → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
337 eldifn 4058 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡𝐷)
338337adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡𝐷)
339338iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡𝐷, (𝐹𝑡), 0) = 0)
3409feqmptd 6819 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
341 iftrue 4462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝐷 → if(𝑡𝐷, (𝐹𝑡), 0) = (𝐹𝑡))
342341mpteq2ia 5173 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)) = (𝑡𝐷 ↦ (𝐹𝑡))
343340, 342eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 = (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)))
344 iblmbf 24837 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
3458, 344syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 ∈ MblFn)
346343, 345eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑡𝐷 ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn)
3477, 133, 336, 339, 346mbfss 24715 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn)
34892adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑡 ∈ ℝ) → if(𝑡𝐷, (𝐹𝑡), 0) ∈ ℂ)
349348ismbfcn2 24707 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡𝐷, (𝐹𝑡), 0)) ∈ MblFn ↔ ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)))
350347, 349mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn))
351350simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn)
352181adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ℝ) → (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ)
353352fmpttd 6971 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ)
354 mbfima 24699 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol)
355351, 353, 354syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol)
356 i1fima 24747 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (𝑓 “ {𝑦}) ∈ dom vol)
357 inmbl 24611 . . . . . . . . . . . . . . . . . . 19 ((((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∈ dom vol ∧ (𝑓 “ {𝑦}) ∈ dom vol) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
358355, 356, 357syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
359358ralrimivw 3108 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
360 finiunmbl 24613 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
361335, 359, 360syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
362361adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ ((𝑥 + 𝑦)(,)+∞)) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
363333, 362eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (𝑥(,)+∞)) ∈ dom vol)
364 iunin2 4996 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦}))
365262ineq2i 4140 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ 𝑦 ∈ ran 𝑓(𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓))
366364, 365eqtri 2766 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓))
367 cnvimass 5978 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ dom (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))
368367, 268sseqtri 3953 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ ℝ
369368, 272sseqtrrid 3970 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ (𝑓 “ ran 𝑓))
370 df-ss 3900 . . . . . . . . . . . . . . . . . . 19 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ⊆ (𝑓 “ ran 𝑓) ↔ (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
371369, 370sylib 217 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ ran 𝑓)) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
372366, 371syl5eq 2791 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ dom ∫1 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
373372ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)))
374284, 2812thd 264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ))
375 ltsubadd 11375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
376181, 375syl3an1 1161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
3773763expa 1116 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
378377an32s 648 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥 ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦)))
379374, 378anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
380 elioomnf 13105 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ* → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥)))
381297, 380syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ ℝ ∧ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) < 𝑥)))
382 elioomnf 13105 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 + 𝑦) ∈ ℝ* → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
383293, 382syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℝ ∧ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) < (𝑥 + 𝑦))))
384379, 381, 3833bitr4d 310 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))))
385301eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥)))
386385bibi1d 343 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑡) = 𝑦 → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))) ↔ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − 𝑦) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))))
387384, 386syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑓𝑡) = 𝑦 → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ↔ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)))))
388387pm5.32rd 577 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
389388adantllr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
390280, 389syldan 590 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦) ↔ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)))
391390rabbidv 3404 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)} = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
392311ineq2d 4143 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
393267mptpreima 6130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)}
394393, 317ineq12i 4141 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
395 inrab 4237 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥)} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)}
396394, 395eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)}
397392, 396eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)})
398397ad3antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) ∈ (-∞(,)𝑥) ∧ (𝑓𝑡) = 𝑦)})
399311ineq2d 4143 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})))
400324mptpreima 6130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) = {𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))}
401400, 317ineq12i 4141 . . . . . . . . . . . . . . . . . . . . 21 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦})
402 inrab 4237 . . . . . . . . . . . . . . . . . . . . 21 ({𝑡 ∈ ℝ ∣ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦))} ∩ {𝑡 ∈ ℝ ∣ (𝑓𝑡) = 𝑦}) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)}
403401, 402eqtri 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ ((𝑡 ∈ ℝ ↦ (𝑓𝑡)) “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)}
404399, 403eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ dom ∫1 → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
405404ad3antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) = {𝑡 ∈ ℝ ∣ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ (-∞(,)(𝑥 + 𝑦)) ∧ (𝑓𝑡) = 𝑦)})
406391, 398, 4053eqtr4d 2788 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ran 𝑓) → (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
407406iuneq2dv 4945 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∩ (𝑓 “ {𝑦})) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
408373, 407eqtr3d 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) = 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})))
409 mbfima 24699 . . . . . . . . . . . . . . . . . . . 20 (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ MblFn ∧ (𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))):ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol)
410351, 353, 409syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol)
411 inmbl 24611 . . . . . . . . . . . . . . . . . . 19 ((((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∈ dom vol ∧ (𝑓 “ {𝑦}) ∈ dom vol) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
412410, 356, 411syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ dom ∫1) → (((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
413412ralrimivw 3108 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ dom ∫1) → ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
414 finiunmbl 24613 . . . . . . . . . . . . . . . . 17 ((ran 𝑓 ∈ Fin ∧ ∀𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
415335, 413, 414syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ dom ∫1) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
416415adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ran 𝑓(((𝑡 ∈ ℝ ↦ (ℜ‘if(𝑡𝐷, (𝐹𝑡), 0))) “ (-∞(,)(𝑥 + 𝑦))) ∩ (𝑓 “ {𝑦})) ∈ dom vol)
417408, 416eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) “ (-∞(,)𝑥)) ∈ dom vol)
418256, 257, 363, 417ismbf2d 24709 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ MblFn)
419 ftc1anclem1 35777 . . . . . . . . . . . . 13 (((𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))) ∈ MblFn) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
420256, 418, 419syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ dom ∫1) → (abs ∘ (𝑡 ∈ ℝ ↦ ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
421252, 420eqeltrrd 2840 . . . . . . . . . . 11 ((𝜑𝑓 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
422421adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∈ MblFn)
423157adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ)
424174adantrl 712 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ)
425422, 217, 423, 223, 424itg2addnc 35758 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)))) ∘f + (𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
426249, 425breqtrd 5096 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
427426adantlr 711 . . . . . . 7 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))))
428 itg2cl 24802 . . . . . . . . . 10 ((𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))):ℝ⟶(0[,]+∞) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
429207, 428syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
430429adantlr 711 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ*)
431 readdcl 10885 . . . . . . . . . . . 12 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) ∈ ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
432157, 174, 431syl2an 595 . . . . . . . . . . 11 (((𝜑𝑓 ∈ dom ∫1) ∧ (𝜑𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
433432anandis 674 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ)
434433rexrd 10956 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ*)
435434adantlr 711 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ*)
4361, 1rpaddcld 12716 . . . . . . . . . 10 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ+)
437436rpxrd 12702 . . . . . . . . 9 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*)
438437ad2antlr 723 . . . . . . . 8 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*)
439 xrlelttr 12819 . . . . . . . 8 (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ∈ ℝ* ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∈ ℝ* ∧ ((𝑌 / 2) + (𝑌 / 2)) ∈ ℝ*) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
440430, 435, 438, 439syl3anc 1369 . . . . . . 7 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) ≤ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) ∧ ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
441427, 440mpand 691 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) < ((𝑌 / 2) + (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
442180, 441syld 47 . . . . 5 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2))))
443 mulcl 10886 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ) → (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
44413, 191, 443sylancr 586 . . . . . . . . . . . . . 14 (𝜑 → (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ)
445182, 444jca 511 . . . . . . . . . . . . 13 (𝜑 → ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ))
446 mulcl 10886 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · (𝑔𝑡)) ∈ ℂ)
44713, 194, 446sylancr 586 . . . . . . . . . . . . . . 15 ((𝑔 ∈ dom ∫1𝑡 ∈ ℝ) → (i · (𝑔𝑡)) ∈ ℂ)
448185, 447anim12i 612 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝑔 ∈ dom ∫1𝑡 ∈ ℝ)) → ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ))
449448anandirs 675 . . . . . . . . . . . . 13 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ))
450 addsub4 11194 . . . . . . . . . . . . 13 ((((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) ∈ ℂ) ∧ ((𝑓𝑡) ∈ ℂ ∧ (i · (𝑔𝑡)) ∈ ℂ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
451445, 449, 450syl2an 595 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
452451anassrs 467 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
45392replimd 14836 . . . . . . . . . . . . 13 (𝜑 → if(𝑡𝐷, (𝐹𝑡), 0) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
454453ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → if(𝑡𝐷, (𝐹𝑡), 0) = ((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))))
455454oveq1d 7270 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) + (i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)))) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
456194adantll 710 . . . . . . . . . . . . . 14 (((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → (𝑔𝑡) ∈ ℂ)
457 subdi 11338 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) ∈ ℂ ∧ (𝑔𝑡) ∈ ℂ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
45813, 191, 456, 457mp3an3an 1465 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ)) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
459458anassrs 467 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))) = ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡))))
460459oveq2d 7271 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + ((i · (ℑ‘if(𝑡𝐷, (𝐹𝑡), 0))) − (i · (𝑔𝑡)))))
461452, 455, 4603eqtr4rd 2789 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))) = (if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))
462461fveq2d 6760 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) ∧ 𝑡 ∈ ℝ) → (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) = (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))
463462mpteq2dva 5170 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡)))))) = (𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡)))))))
464463fveq2d 6760 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
465464adantlr 711 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))))
466 rpcn 12669 . . . . . . . 8 (𝑌 ∈ ℝ+𝑌 ∈ ℂ)
4674662halvesd 12149 . . . . . . 7 (𝑌 ∈ ℝ+ → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌)
468467ad2antlr 723 . . . . . 6 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((𝑌 / 2) + (𝑌 / 2)) = 𝑌)
469465, 468breq12d 5083 . . . . 5 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡)) + (i · ((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))))) < ((𝑌 / 2) + (𝑌 / 2)) ↔ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
470442, 469sylibd 238 . . . 4 (((𝜑𝑌 ∈ ℝ+) ∧ (𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1)) → (((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
471470reximdvva 3205 . . 3 ((𝜑𝑌 ∈ ℝ+) → (∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1((∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
472121, 471syl5bir 242 . 2 ((𝜑𝑌 ∈ ℝ+) → ((∃𝑓 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℜ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑓𝑡))))) < (𝑌 / 2) ∧ ∃𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘((ℑ‘if(𝑡𝐷, (𝐹𝑡), 0)) − (𝑔𝑡))))) < (𝑌 / 2)) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌))
47311, 120, 472mp2and 695 1 ((𝜑𝑌 ∈ ℝ+) → ∃𝑓 ∈ dom ∫1𝑔 ∈ dom ∫1(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡𝐷, (𝐹𝑡), 0) − ((𝑓𝑡) + (i · (𝑔𝑡))))))) < 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  ifcif 4456  {csn 4558   ciun 4921   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  +crp 12659  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  cre 14736  cim 14737  abscabs 14873  volcvol 24532  MblFncmbf 24683  1citg1 24684  2citg2 24685  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-0p 24739
This theorem is referenced by:  ftc1anc  35785
  Copyright terms: Public domain W3C validator