MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsum Structured version   Visualization version   GIF version

Theorem cpmadugsum 22027
Description: The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
cpmadugsum.g + = (+g𝑌)
cpmadugsum.s = (-g𝑌)
cpmadugsum.i 𝐼 = ((𝑋 · 1 ) (𝑇𝑀))
cpmadugsum.j 𝐽 = (𝑁 maAdju 𝑃)
cpmadugsum.0 0 = (0g𝑌)
cpmadugsum.g2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
Assertion
Ref Expression
cpmadugsum ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏,𝑠,𝑇   ,𝑖   ,𝑖   𝐴,𝑏,𝑛,𝑠   𝐵,𝑏,𝑛,𝑠   𝐼,𝑏,𝑖,𝑛,𝑠   𝐽,𝑏,𝑖,𝑛,𝑠   𝑀,𝑏,𝑛,𝑠   𝑁,𝑏,𝑛,𝑠   𝑃,𝑖,𝑛   𝑅,𝑏,𝑛,𝑠   𝑇,𝑏,𝑛,𝑠   𝑋,𝑏,𝑛,𝑠   𝑌,𝑏,𝑛,𝑠   ,𝑛,𝑠,𝑏   · ,𝑏,𝑛,𝑠   𝑖,𝐺   × ,𝑛   0 ,𝑛   ,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝑃(𝑠,𝑏)   + (𝑖,𝑛,𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   (𝑠,𝑏)   0 (𝑖,𝑠,𝑏)

Proof of Theorem cpmadugsum
StepHypRef Expression
1 cpmadugsum.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 cpmadugsum.b . . 3 𝐵 = (Base‘𝐴)
3 cpmadugsum.p . . 3 𝑃 = (Poly1𝑅)
4 cpmadugsum.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 cpmadugsum.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
6 cpmadugsum.x . . 3 𝑋 = (var1𝑅)
7 cpmadugsum.e . . 3 = (.g‘(mulGrp‘𝑃))
8 cpmadugsum.m . . 3 · = ( ·𝑠𝑌)
9 cpmadugsum.r . . 3 × = (.r𝑌)
10 cpmadugsum.1 . . 3 1 = (1r𝑌)
11 cpmadugsum.g . . 3 + = (+g𝑌)
12 cpmadugsum.s . . 3 = (-g𝑌)
13 cpmadugsum.i . . 3 𝐼 = ((𝑋 · 1 ) (𝑇𝑀))
14 cpmadugsum.j . . 3 𝐽 = (𝑁 maAdju 𝑃)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cpmadugsumfi 22026 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
16 simpr 485 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))) → (𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
17 cpmadugsum.0 . . . . . . . 8 0 = (0g𝑌)
18 cpmadugsum.g2 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
191, 2, 3, 4, 9, 12, 17, 5, 18, 6, 8, 7, 11chfacfscmulgsum 22009 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))))
2019eqcomd 2744 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
2120adantr 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
2216, 21eqtrd 2778 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ (𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0)))))) → (𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
2322ex 413 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) → (𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
2423reximdvva 3206 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼 × (𝐽𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))) + ((((𝑠 + 1) 𝑋) · (𝑇‘(𝑏𝑠))) ((𝑇𝑀) × (𝑇‘(𝑏‘0))))) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖))))))
2515, 24mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐼 × (𝐽𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 𝑋) · (𝐺𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205  cn 11973  0cn0 12233  ...cfz 13239  Basecbs 16912  +gcplusg 16962  .rcmulr 16963   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  -gcsg 18579  .gcmg 18700  mulGrpcmgp 19720  1rcur 19737  CRingccrg 19784  var1cv1 21347  Poly1cpl1 21348   Mat cmat 21554   maAdju cmadu 21781   matToPolyMat cmat2pmat 21853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-cur 8083  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-dsmm 20939  df-frlm 20954  df-assa 21060  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-mamu 21533  df-mat 21555  df-mdet 21734  df-madu 21783  df-mat2pmat 21856  df-decpmat 21912
This theorem is referenced by:  cpmidgsum2  22028  cpmadumatpoly  22032
  Copyright terms: Public domain W3C validator