![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmadugsum | Structured version Visualization version GIF version |
Description: The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019.) |
Ref | Expression |
---|---|
cpmadugsum.a | โข ๐ด = (๐ Mat ๐ ) |
cpmadugsum.b | โข ๐ต = (Baseโ๐ด) |
cpmadugsum.p | โข ๐ = (Poly1โ๐ ) |
cpmadugsum.y | โข ๐ = (๐ Mat ๐) |
cpmadugsum.t | โข ๐ = (๐ matToPolyMat ๐ ) |
cpmadugsum.x | โข ๐ = (var1โ๐ ) |
cpmadugsum.e | โข โ = (.gโ(mulGrpโ๐)) |
cpmadugsum.m | โข ยท = ( ยท๐ โ๐) |
cpmadugsum.r | โข ร = (.rโ๐) |
cpmadugsum.1 | โข 1 = (1rโ๐) |
cpmadugsum.g | โข + = (+gโ๐) |
cpmadugsum.s | โข โ = (-gโ๐) |
cpmadugsum.i | โข ๐ผ = ((๐ ยท 1 ) โ (๐โ๐)) |
cpmadugsum.j | โข ๐ฝ = (๐ maAdju ๐) |
cpmadugsum.0 | โข 0 = (0gโ๐) |
cpmadugsum.g2 | โข ๐บ = (๐ โ โ0 โฆ if(๐ = 0, ( 0 โ ((๐โ๐) ร (๐โ(๐โ0)))), if(๐ = (๐ + 1), (๐โ(๐โ๐ )), if((๐ + 1) < ๐, 0 , ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐)))))))) |
Ref | Expression |
---|---|
cpmadugsum | โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ โ๐ โ โ โ๐ โ (๐ต โm (0...๐ ))(๐ผ ร (๐ฝโ๐ผ)) = (๐ ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐บโ๐))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmadugsum.a | . . 3 โข ๐ด = (๐ Mat ๐ ) | |
2 | cpmadugsum.b | . . 3 โข ๐ต = (Baseโ๐ด) | |
3 | cpmadugsum.p | . . 3 โข ๐ = (Poly1โ๐ ) | |
4 | cpmadugsum.y | . . 3 โข ๐ = (๐ Mat ๐) | |
5 | cpmadugsum.t | . . 3 โข ๐ = (๐ matToPolyMat ๐ ) | |
6 | cpmadugsum.x | . . 3 โข ๐ = (var1โ๐ ) | |
7 | cpmadugsum.e | . . 3 โข โ = (.gโ(mulGrpโ๐)) | |
8 | cpmadugsum.m | . . 3 โข ยท = ( ยท๐ โ๐) | |
9 | cpmadugsum.r | . . 3 โข ร = (.rโ๐) | |
10 | cpmadugsum.1 | . . 3 โข 1 = (1rโ๐) | |
11 | cpmadugsum.g | . . 3 โข + = (+gโ๐) | |
12 | cpmadugsum.s | . . 3 โข โ = (-gโ๐) | |
13 | cpmadugsum.i | . . 3 โข ๐ผ = ((๐ ยท 1 ) โ (๐โ๐)) | |
14 | cpmadugsum.j | . . 3 โข ๐ฝ = (๐ maAdju ๐) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cpmadugsumfi 22378 | . 2 โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ โ๐ โ โ โ๐ โ (๐ต โm (0...๐ ))(๐ผ ร (๐ฝโ๐ผ)) = ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0)))))) |
16 | simpr 485 | . . . . 5 โข ((((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โง (๐ โ โ โง ๐ โ (๐ต โm (0...๐ )))) โง (๐ผ ร (๐ฝโ๐ผ)) = ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0)))))) โ (๐ผ ร (๐ฝโ๐ผ)) = ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0)))))) | |
17 | cpmadugsum.0 | . . . . . . . 8 โข 0 = (0gโ๐) | |
18 | cpmadugsum.g2 | . . . . . . . 8 โข ๐บ = (๐ โ โ0 โฆ if(๐ = 0, ( 0 โ ((๐โ๐) ร (๐โ(๐โ0)))), if(๐ = (๐ + 1), (๐โ(๐โ๐ )), if((๐ + 1) < ๐, 0 , ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐)))))))) | |
19 | 1, 2, 3, 4, 9, 12, 17, 5, 18, 6, 8, 7, 11 | chfacfscmulgsum 22361 | . . . . . . 7 โข (((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โง (๐ โ โ โง ๐ โ (๐ต โm (0...๐ )))) โ (๐ ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐บโ๐)))) = ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0)))))) |
20 | 19 | eqcomd 2738 | . . . . . 6 โข (((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โง (๐ โ โ โง ๐ โ (๐ต โm (0...๐ )))) โ ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0))))) = (๐ ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐บโ๐))))) |
21 | 20 | adantr 481 | . . . . 5 โข ((((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โง (๐ โ โ โง ๐ โ (๐ต โm (0...๐ )))) โง (๐ผ ร (๐ฝโ๐ผ)) = ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0)))))) โ ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0))))) = (๐ ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐บโ๐))))) |
22 | 16, 21 | eqtrd 2772 | . . . 4 โข ((((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โง (๐ โ โ โง ๐ โ (๐ต โm (0...๐ )))) โง (๐ผ ร (๐ฝโ๐ผ)) = ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0)))))) โ (๐ผ ร (๐ฝโ๐ผ)) = (๐ ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐บโ๐))))) |
23 | 22 | ex 413 | . . 3 โข (((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โง (๐ โ โ โง ๐ โ (๐ต โm (0...๐ )))) โ ((๐ผ ร (๐ฝโ๐ผ)) = ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0))))) โ (๐ผ ร (๐ฝโ๐ผ)) = (๐ ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐บโ๐)))))) |
24 | 23 | reximdvva 3205 | . 2 โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ (โ๐ โ โ โ๐ โ (๐ต โm (0...๐ ))(๐ผ ร (๐ฝโ๐ผ)) = ((๐ ฮฃg (๐ โ (1...๐ ) โฆ ((๐ โ ๐) ยท ((๐โ(๐โ(๐ โ 1))) โ ((๐โ๐) ร (๐โ(๐โ๐))))))) + ((((๐ + 1) โ ๐) ยท (๐โ(๐โ๐ ))) โ ((๐โ๐) ร (๐โ(๐โ0))))) โ โ๐ โ โ โ๐ โ (๐ต โm (0...๐ ))(๐ผ ร (๐ฝโ๐ผ)) = (๐ ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐บโ๐)))))) |
25 | 15, 24 | mpd 15 | 1 โข ((๐ โ Fin โง ๐ โ CRing โง ๐ โ ๐ต) โ โ๐ โ โ โ๐ โ (๐ต โm (0...๐ ))(๐ผ ร (๐ฝโ๐ผ)) = (๐ ฮฃg (๐ โ โ0 โฆ ((๐ โ ๐) ยท (๐บโ๐))))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 โwrex 3070 ifcif 4528 class class class wbr 5148 โฆ cmpt 5231 โcfv 6543 (class class class)co 7408 โm cmap 8819 Fincfn 8938 0cc0 11109 1c1 11110 + caddc 11112 < clt 11247 โ cmin 11443 โcn 12211 โ0cn0 12471 ...cfz 13483 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 ยท๐ cvsca 17200 0gc0g 17384 ฮฃg cgsu 17385 -gcsg 18820 .gcmg 18949 mulGrpcmgp 19986 1rcur 20003 CRingccrg 20056 var1cv1 21699 Poly1cpl1 21700 Mat cmat 21906 maAdju cmadu 22133 matToPolyMat cmat2pmat 22205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-tpos 8210 df-cur 8251 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-word 14464 df-lsw 14512 df-concat 14520 df-s1 14545 df-substr 14590 df-pfx 14620 df-splice 14699 df-reverse 14708 df-s2 14798 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-efmnd 18749 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-ghm 19089 df-gim 19132 df-cntz 19180 df-oppg 19209 df-symg 19234 df-pmtr 19309 df-psgn 19358 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-srg 20009 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-rnghom 20250 df-subrg 20316 df-drng 20358 df-lmod 20472 df-lss 20542 df-sra 20784 df-rgmod 20785 df-cnfld 20944 df-zring 21017 df-zrh 21052 df-dsmm 21286 df-frlm 21301 df-assa 21407 df-ascl 21409 df-psr 21461 df-mvr 21462 df-mpl 21463 df-opsr 21465 df-psr1 21703 df-vr1 21704 df-ply1 21705 df-coe1 21706 df-mamu 21885 df-mat 21907 df-mdet 22086 df-madu 22135 df-mat2pmat 22208 df-decpmat 22264 |
This theorem is referenced by: cpmidgsum2 22380 cpmadumatpoly 22384 |
Copyright terms: Public domain | W3C validator |