MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelval2 Structured version   Visualization version   GIF version

Theorem lsmelval2 19850
Description: Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014.)
Hypotheses
Ref Expression
lsmelval2.v 𝑉 = (Base‘𝑊)
lsmelval2.s 𝑆 = (LSubSp‘𝑊)
lsmelval2.p = (LSSum‘𝑊)
lsmelval2.n 𝑁 = (LSpan‘𝑊)
lsmelval2.w (𝜑𝑊 ∈ LMod)
lsmelval2.t (𝜑𝑇𝑆)
lsmelval2.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lsmelval2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
Distinct variable groups:   𝑦,𝑧,   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑊,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem lsmelval2
StepHypRef Expression
1 lsmelval2.w . . . . . 6 (𝜑𝑊 ∈ LMod)
2 lsmelval2.t . . . . . 6 (𝜑𝑇𝑆)
3 lsmelval2.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
43lsssubg 19722 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
51, 2, 4syl2anc 587 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝑊))
6 lsmelval2.u . . . . . 6 (𝜑𝑈𝑆)
73lsssubg 19722 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
81, 6, 7syl2anc 587 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 eqid 2798 . . . . . 6 (+g𝑊) = (+g𝑊)
10 lsmelval2.p . . . . . 6 = (LSSum‘𝑊)
119, 10lsmelval 18766 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧)))
125, 8, 11syl2anc 587 . . . 4 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧)))
131adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑊 ∈ LMod)
142adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑇𝑆)
15 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑇)
16 lsmelval2.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
1716, 3lssel 19702 . . . . . . . . . . 11 ((𝑇𝑆𝑦𝑇) → 𝑦𝑉)
1814, 15, 17syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑉)
19 lsmelval2.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
2016, 3, 19lspsncl 19742 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → (𝑁‘{𝑦}) ∈ 𝑆)
2113, 18, 20syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ∈ 𝑆)
223lsssubg 19722 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘{𝑦}) ∈ (SubGrp‘𝑊))
2313, 21, 22syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ∈ (SubGrp‘𝑊))
246adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑈𝑆)
25 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑈)
2616, 3lssel 19702 . . . . . . . . . . 11 ((𝑈𝑆𝑧𝑈) → 𝑧𝑉)
2724, 25, 26syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑉)
2816, 3, 19lspsncl 19742 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → (𝑁‘{𝑧}) ∈ 𝑆)
2913, 27, 28syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ∈ 𝑆)
303lsssubg 19722 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑧}) ∈ 𝑆) → (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊))
3113, 29, 30syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊))
3216, 19lspsnid 19758 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → 𝑦 ∈ (𝑁‘{𝑦}))
3313, 18, 32syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦 ∈ (𝑁‘{𝑦}))
3416, 19lspsnid 19758 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → 𝑧 ∈ (𝑁‘{𝑧}))
3513, 27, 34syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧 ∈ (𝑁‘{𝑧}))
369, 10lsmelvali 18767 . . . . . . . 8 ((((𝑁‘{𝑦}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊)) ∧ (𝑦 ∈ (𝑁‘{𝑦}) ∧ 𝑧 ∈ (𝑁‘{𝑧}))) → (𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
3723, 31, 33, 35, 36syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
38 eleq1a 2885 . . . . . . 7 ((𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) → (𝑋 = (𝑦(+g𝑊)𝑧) → 𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
3937, 38syl 17 . . . . . 6 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 = (𝑦(+g𝑊)𝑧) → 𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
403, 10lsmcl 19848 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆 ∧ (𝑁‘{𝑧}) ∈ 𝑆) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ∈ 𝑆)
4113, 21, 29, 40syl3anc 1368 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ∈ 𝑆)
4216, 3, 19, 13, 41lspsnel6 19759 . . . . . 6 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4339, 42sylibd 242 . . . . 5 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 = (𝑦(+g𝑊)𝑧) → (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4443reximdvva 3236 . . . 4 (𝜑 → (∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧) → ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4512, 44sylbid 243 . . 3 (𝜑 → (𝑋 ∈ (𝑇 𝑈) → ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
465adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
473, 19, 13, 14, 15lspsnel5a 19761 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ⊆ 𝑇)
4810lsmless1 18777 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ 𝑇) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 (𝑁‘{𝑧})))
4946, 31, 47, 48syl3anc 1368 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 (𝑁‘{𝑧})))
508adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
513, 19, 13, 24, 25lspsnel5a 19761 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ⊆ 𝑈)
5210lsmless2 18778 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ⊆ 𝑈) → (𝑇 (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5346, 50, 51, 52syl3anc 1368 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑇 (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5449, 53sstrd 3925 . . . . . 6 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5554sseld 3914 . . . . 5 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) → 𝑋 ∈ (𝑇 𝑈)))
5642, 55sylbird 263 . . . 4 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) → 𝑋 ∈ (𝑇 𝑈)))
5756rexlimdvva 3253 . . 3 (𝜑 → (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) → 𝑋 ∈ (𝑇 𝑈)))
5845, 57impbid 215 . 2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
59 r19.42v 3303 . . . 4 (∃𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6059rexbii 3210 . . 3 (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ ∃𝑦𝑇 (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
61 r19.42v 3303 . . 3 (∃𝑦𝑇 (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6260, 61bitri 278 . 2 (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6358, 62syl6bb 290 1 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  wss 3881  {csn 4525  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  SubGrpcsubg 18265  LSSumclsm 18751  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697  df-lsp 19737
This theorem is referenced by:  dihjat1lem  38724
  Copyright terms: Public domain W3C validator