Proof of Theorem lsmelval2
Step | Hyp | Ref
| Expression |
1 | | lsmelval2.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ LMod) |
2 | | lsmelval2.t |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
3 | | lsmelval2.s |
. . . . . . 7
⊢ 𝑆 = (LSubSp‘𝑊) |
4 | 3 | lsssubg 20134 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆) → 𝑇 ∈ (SubGrp‘𝑊)) |
5 | 1, 2, 4 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
6 | | lsmelval2.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
7 | 3 | lsssubg 20134 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
8 | 1, 6, 7 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
10 | | lsmelval2.p |
. . . . . 6
⊢ ⊕ =
(LSSum‘𝑊) |
11 | 9, 10 | lsmelval 19169 |
. . . . 5
⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦(+g‘𝑊)𝑧))) |
12 | 5, 8, 11 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦(+g‘𝑊)𝑧))) |
13 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑊 ∈ LMod) |
14 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑇 ∈ 𝑆) |
15 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑦 ∈ 𝑇) |
16 | | lsmelval2.v |
. . . . . . . . . . . 12
⊢ 𝑉 = (Base‘𝑊) |
17 | 16, 3 | lssel 20114 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑉) |
18 | 14, 15, 17 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑦 ∈ 𝑉) |
19 | | lsmelval2.n |
. . . . . . . . . . 11
⊢ 𝑁 = (LSpan‘𝑊) |
20 | 16, 3, 19 | lspsncl 20154 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉) → (𝑁‘{𝑦}) ∈ 𝑆) |
21 | 13, 18, 20 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑁‘{𝑦}) ∈ 𝑆) |
22 | 3 | lsssubg 20134 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘{𝑦}) ∈ (SubGrp‘𝑊)) |
23 | 13, 21, 22 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑁‘{𝑦}) ∈ (SubGrp‘𝑊)) |
24 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑈 ∈ 𝑆) |
25 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑧 ∈ 𝑈) |
26 | 16, 3 | lssel 20114 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ 𝑆 ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ 𝑉) |
27 | 24, 25, 26 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑧 ∈ 𝑉) |
28 | 16, 3, 19 | lspsncl 20154 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑧 ∈ 𝑉) → (𝑁‘{𝑧}) ∈ 𝑆) |
29 | 13, 27, 28 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑁‘{𝑧}) ∈ 𝑆) |
30 | 3 | lsssubg 20134 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑧}) ∈ 𝑆) → (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊)) |
31 | 13, 29, 30 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊)) |
32 | 16, 19 | lspsnid 20170 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ (𝑁‘{𝑦})) |
33 | 13, 18, 32 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑦 ∈ (𝑁‘{𝑦})) |
34 | 16, 19 | lspsnid 20170 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑧 ∈ 𝑉) → 𝑧 ∈ (𝑁‘{𝑧})) |
35 | 13, 27, 34 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑧 ∈ (𝑁‘{𝑧})) |
36 | 9, 10 | lsmelvali 19170 |
. . . . . . . 8
⊢ ((((𝑁‘{𝑦}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊)) ∧ (𝑦 ∈ (𝑁‘{𝑦}) ∧ 𝑧 ∈ (𝑁‘{𝑧}))) → (𝑦(+g‘𝑊)𝑧) ∈ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) |
37 | 23, 31, 33, 35, 36 | syl22anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑦(+g‘𝑊)𝑧) ∈ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) |
38 | | eleq1a 2834 |
. . . . . . 7
⊢ ((𝑦(+g‘𝑊)𝑧) ∈ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) → (𝑋 = (𝑦(+g‘𝑊)𝑧) → 𝑋 ∈ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})))) |
39 | 37, 38 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑋 = (𝑦(+g‘𝑊)𝑧) → 𝑋 ∈ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})))) |
40 | 3, 10 | lsmcl 20260 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆 ∧ (𝑁‘{𝑧}) ∈ 𝑆) → ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ∈ 𝑆) |
41 | 13, 21, 29, 40 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ∈ 𝑆) |
42 | 16, 3, 19, 13, 41 | lspsnel6 20171 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑋 ∈ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) |
43 | 39, 42 | sylibd 238 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑋 = (𝑦(+g‘𝑊)𝑧) → (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) |
44 | 43 | reximdvva 3205 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑋 = (𝑦(+g‘𝑊)𝑧) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) |
45 | 12, 44 | sylbid 239 |
. . 3
⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) |
46 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑇 ∈ (SubGrp‘𝑊)) |
47 | 3, 19, 13, 14, 15 | lspsnel5a 20173 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑁‘{𝑦}) ⊆ 𝑇) |
48 | 10 | lsmless1 19180 |
. . . . . . . 8
⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ 𝑇) → ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ⊆ (𝑇 ⊕ (𝑁‘{𝑧}))) |
49 | 46, 31, 47, 48 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ⊆ (𝑇 ⊕ (𝑁‘{𝑧}))) |
50 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → 𝑈 ∈ (SubGrp‘𝑊)) |
51 | 3, 19, 13, 24, 25 | lspsnel5a 20173 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑁‘{𝑧}) ⊆ 𝑈) |
52 | 10 | lsmless2 19181 |
. . . . . . . 8
⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ⊆ 𝑈) → (𝑇 ⊕ (𝑁‘{𝑧})) ⊆ (𝑇 ⊕ 𝑈)) |
53 | 46, 50, 51, 52 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑇 ⊕ (𝑁‘{𝑧})) ⊆ (𝑇 ⊕ 𝑈)) |
54 | 49, 53 | sstrd 3927 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) ⊆ (𝑇 ⊕ 𝑈)) |
55 | 54 | sseld 3916 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → (𝑋 ∈ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})) → 𝑋 ∈ (𝑇 ⊕ 𝑈))) |
56 | 42, 55 | sylbird 259 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈)) → ((𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) → 𝑋 ∈ (𝑇 ⊕ 𝑈))) |
57 | 56 | rexlimdvva 3222 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) → 𝑋 ∈ (𝑇 ⊕ 𝑈))) |
58 | 45, 57 | impbid 211 |
. 2
⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) |
59 | | r19.42v 3276 |
. . . 4
⊢
(∃𝑧 ∈
𝑈 (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})))) |
60 | 59 | rexbii 3177 |
. . 3
⊢
(∃𝑦 ∈
𝑇 ∃𝑧 ∈ 𝑈 (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) ↔ ∃𝑦 ∈ 𝑇 (𝑋 ∈ 𝑉 ∧ ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})))) |
61 | | r19.42v 3276 |
. . 3
⊢
(∃𝑦 ∈
𝑇 (𝑋 ∈ 𝑉 ∧ ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})))) |
62 | 60, 61 | bitri 274 |
. 2
⊢
(∃𝑦 ∈
𝑇 ∃𝑧 ∈ 𝑈 (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))) ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧})))) |
63 | 58, 62 | bitrdi 286 |
1
⊢ (𝜑 → (𝑋 ∈ (𝑇 ⊕ 𝑈) ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) ⊕ (𝑁‘{𝑧}))))) |