MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelval2 Structured version   Visualization version   GIF version

Theorem lsmelval2 20337
Description: Subspace sum membership in terms of a sum of 1-dim subspaces (atoms), which can be useful for treating subspaces as projective lattice elements. (Contributed by NM, 9-Aug-2014.)
Hypotheses
Ref Expression
lsmelval2.v 𝑉 = (Base‘𝑊)
lsmelval2.s 𝑆 = (LSubSp‘𝑊)
lsmelval2.p = (LSSum‘𝑊)
lsmelval2.n 𝑁 = (LSpan‘𝑊)
lsmelval2.w (𝜑𝑊 ∈ LMod)
lsmelval2.t (𝜑𝑇𝑆)
lsmelval2.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lsmelval2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
Distinct variable groups:   𝑦,𝑧,   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑊,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem lsmelval2
StepHypRef Expression
1 lsmelval2.w . . . . . 6 (𝜑𝑊 ∈ LMod)
2 lsmelval2.t . . . . . 6 (𝜑𝑇𝑆)
3 lsmelval2.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
43lsssubg 20209 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
51, 2, 4syl2anc 584 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝑊))
6 lsmelval2.u . . . . . 6 (𝜑𝑈𝑆)
73lsssubg 20209 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
81, 6, 7syl2anc 584 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 eqid 2740 . . . . . 6 (+g𝑊) = (+g𝑊)
10 lsmelval2.p . . . . . 6 = (LSSum‘𝑊)
119, 10lsmelval 19244 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧)))
125, 8, 11syl2anc 584 . . . 4 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧)))
131adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑊 ∈ LMod)
142adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑇𝑆)
15 simprl 768 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑇)
16 lsmelval2.v . . . . . . . . . . . 12 𝑉 = (Base‘𝑊)
1716, 3lssel 20189 . . . . . . . . . . 11 ((𝑇𝑆𝑦𝑇) → 𝑦𝑉)
1814, 15, 17syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑉)
19 lsmelval2.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
2016, 3, 19lspsncl 20229 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → (𝑁‘{𝑦}) ∈ 𝑆)
2113, 18, 20syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ∈ 𝑆)
223lsssubg 20209 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘{𝑦}) ∈ (SubGrp‘𝑊))
2313, 21, 22syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ∈ (SubGrp‘𝑊))
246adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑈𝑆)
25 simprr 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑈)
2616, 3lssel 20189 . . . . . . . . . . 11 ((𝑈𝑆𝑧𝑈) → 𝑧𝑉)
2724, 25, 26syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑉)
2816, 3, 19lspsncl 20229 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → (𝑁‘{𝑧}) ∈ 𝑆)
2913, 27, 28syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ∈ 𝑆)
303lsssubg 20209 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑧}) ∈ 𝑆) → (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊))
3113, 29, 30syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊))
3216, 19lspsnid 20245 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦𝑉) → 𝑦 ∈ (𝑁‘{𝑦}))
3313, 18, 32syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑦 ∈ (𝑁‘{𝑦}))
3416, 19lspsnid 20245 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → 𝑧 ∈ (𝑁‘{𝑧}))
3513, 27, 34syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑧 ∈ (𝑁‘{𝑧}))
369, 10lsmelvali 19245 . . . . . . . 8 ((((𝑁‘{𝑦}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊)) ∧ (𝑦 ∈ (𝑁‘{𝑦}) ∧ 𝑧 ∈ (𝑁‘{𝑧}))) → (𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
3723, 31, 33, 35, 36syl22anc 836 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))
38 eleq1a 2836 . . . . . . 7 ((𝑦(+g𝑊)𝑧) ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) → (𝑋 = (𝑦(+g𝑊)𝑧) → 𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
3937, 38syl 17 . . . . . 6 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 = (𝑦(+g𝑊)𝑧) → 𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
403, 10lsmcl 20335 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆 ∧ (𝑁‘{𝑧}) ∈ 𝑆) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ∈ 𝑆)
4113, 21, 29, 40syl3anc 1370 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ∈ 𝑆)
4216, 3, 19, 13, 41lspsnel6 20246 . . . . . 6 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4339, 42sylibd 238 . . . . 5 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 = (𝑦(+g𝑊)𝑧) → (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4443reximdvva 3208 . . . 4 (𝜑 → (∃𝑦𝑇𝑧𝑈 𝑋 = (𝑦(+g𝑊)𝑧) → ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
4512, 44sylbid 239 . . 3 (𝜑 → (𝑋 ∈ (𝑇 𝑈) → ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
465adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
473, 19, 13, 14, 15lspsnel5a 20248 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑦}) ⊆ 𝑇)
4810lsmless1 19255 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ 𝑇) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 (𝑁‘{𝑧})))
4946, 31, 47, 48syl3anc 1370 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 (𝑁‘{𝑧})))
508adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
513, 19, 13, 24, 25lspsnel5a 20248 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑁‘{𝑧}) ⊆ 𝑈)
5210lsmless2 19256 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑧}) ⊆ 𝑈) → (𝑇 (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5346, 50, 51, 52syl3anc 1370 . . . . . . 7 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑇 (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5449, 53sstrd 3936 . . . . . 6 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑁‘{𝑦}) (𝑁‘{𝑧})) ⊆ (𝑇 𝑈))
5554sseld 3925 . . . . 5 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → (𝑋 ∈ ((𝑁‘{𝑦}) (𝑁‘{𝑧})) → 𝑋 ∈ (𝑇 𝑈)))
5642, 55sylbird 259 . . . 4 ((𝜑 ∧ (𝑦𝑇𝑧𝑈)) → ((𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) → 𝑋 ∈ (𝑇 𝑈)))
5756rexlimdvva 3225 . . 3 (𝜑 → (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) → 𝑋 ∈ (𝑇 𝑈)))
5845, 57impbid 211 . 2 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
59 r19.42v 3279 . . . 4 (∃𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6059rexbii 3180 . . 3 (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ ∃𝑦𝑇 (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
61 r19.42v 3279 . . 3 (∃𝑦𝑇 (𝑋𝑉 ∧ ∃𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6260, 61bitri 274 . 2 (∃𝑦𝑇𝑧𝑈 (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧}))))
6358, 62bitrdi 287 1 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ (𝑋𝑉 ∧ ∃𝑦𝑇𝑧𝑈 (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑦}) (𝑁‘{𝑧})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wrex 3067  wss 3892  {csn 4567  cfv 6431  (class class class)co 7269  Basecbs 16902  +gcplusg 16952  SubGrpcsubg 18739  LSSumclsm 19229  LModclmod 20113  LSubSpclss 20183  LSpanclspn 20223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-2 12028  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-0g 17142  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-submnd 18421  df-grp 18570  df-minusg 18571  df-sbg 18572  df-subg 18742  df-cntz 18913  df-lsm 19231  df-cmn 19378  df-abl 19379  df-mgp 19711  df-ur 19728  df-ring 19775  df-lmod 20115  df-lss 20184  df-lsp 20224
This theorem is referenced by:  dihjat1lem  39430
  Copyright terms: Public domain W3C validator