MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5ALT Structured version   Visualization version   GIF version

Theorem frgrwopreglem5ALT 29266
Description: Alternate direct proof of frgrwopreglem5 29265, not using frgrwopreglem5a 29255. This proof would be even a little bit shorter than the proof of frgrwopreglem5 29265 without using frgrwopreglem5lem 29264. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 3-Jan-2022.) (Proof shortened by AV, 5-Feb-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5ALT ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝐴,𝑏   𝑥,𝐵   𝑦,𝐷   𝐺,𝑎,𝑏,𝑦,𝑥   𝑦,𝑉   𝐴,𝑎,𝑦   𝐵,𝑎,𝑏,𝑦   𝑥,𝐸,𝑎,𝑏
Allowed substitution hints:   𝐷(𝑎,𝑏)   𝐸(𝑦)   𝐾(𝑦,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem frgrwopreglem5ALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpllr 774 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → 𝑎𝑥)
21anim1i 615 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → (𝑎𝑥𝑏𝑦))
3 frgrwopreg.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
4 frgrwopreg.d . . . . . . . . . . . . . . . . . 18 𝐷 = (VtxDeg‘𝐺)
5 frgrwopreg.a . . . . . . . . . . . . . . . . . 18 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
6 frgrwopreg.b . . . . . . . . . . . . . . . . . 18 𝐵 = (𝑉𝐴)
7 frgrwopreg.e . . . . . . . . . . . . . . . . . 18 𝐸 = (Edg‘𝐺)
83, 4, 5, 6, 7frgrwopreglem4 29259 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FriendGraph → ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸)
9 preq1 4694 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑎 → {𝑧, 𝑏} = {𝑎, 𝑏})
109eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑎 → ({𝑧, 𝑏} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
1110ralbidv 3174 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑎 → (∀𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸))
1211cbvralvw 3225 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸)
13 rsp2 3260 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → ((𝑎𝐴𝑏𝐵) → {𝑎, 𝑏} ∈ 𝐸))
1413com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑏𝐵) → (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1514ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1612, 15biimtrid 241 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1716imp 407 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸)
18 prcom 4693 . . . . . . . . . . . . . . . . . . . 20 {𝑏, 𝑥} = {𝑥, 𝑏}
19 preq1 4694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑥 → {𝑧, 𝑏} = {𝑥, 𝑏})
2019eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → ({𝑧, 𝑏} ∈ 𝐸 ↔ {𝑥, 𝑏} ∈ 𝐸))
2120ralbidv 3174 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (∀𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸))
2221cbvralvw 3225 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑥𝐴𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸)
23 rsp2 3260 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑥𝐴𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸 → ((𝑥𝐴𝑏𝐵) → {𝑥, 𝑏} ∈ 𝐸))
2422, 23sylbi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → ((𝑥𝐴𝑏𝐵) → {𝑥, 𝑏} ∈ 𝐸))
2524com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴𝑏𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑏} ∈ 𝐸))
2625ad2ant2lr 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑏} ∈ 𝐸))
2726imp 407 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑥, 𝑏} ∈ 𝐸)
2818, 27eqeltrid 2842 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑏, 𝑥} ∈ 𝐸)
2917, 28jca 512 . . . . . . . . . . . . . . . . . 18 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
3029expcom 414 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
318, 30syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
3231adantr 481 . . . . . . . . . . . . . . 15 ((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
3332impl 456 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
3433adantr 481 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
35 preq2 4695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → {𝑥, 𝑏} = {𝑥, 𝑦})
3635eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦 → ({𝑥, 𝑏} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
3720, 36rspc2v 3590 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝑦𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑦} ∈ 𝐸))
3837ad2ant2l 744 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑦} ∈ 𝐸))
3938impcom 408 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑥, 𝑦} ∈ 𝐸)
40 prcom 4693 . . . . . . . . . . . . . . . . . . . 20 {𝑦, 𝑎} = {𝑎, 𝑦}
41 preq2 4695 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → {𝑎, 𝑏} = {𝑎, 𝑦})
4241eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑎, 𝑦} ∈ 𝐸))
4310, 42rspc2v 3590 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑦𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑦} ∈ 𝐸))
4443ad2ant2rl 747 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑦} ∈ 𝐸))
4544impcom 408 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑎, 𝑦} ∈ 𝐸)
4640, 45eqeltrid 2842 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑦, 𝑎} ∈ 𝐸)
4739, 46jca 512 . . . . . . . . . . . . . . . . . 18 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
4847ex 413 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
498, 48syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5049adantr 481 . . . . . . . . . . . . . . 15 ((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5150impl 456 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
5251adantr 481 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
532, 34, 523jca 1128 . . . . . . . . . . . 12 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5453ex 413 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (𝑏𝑦 → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5554reximdvva 3202 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5655exp31 420 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑎𝑥 → ((𝑎𝐴𝑥𝐴) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
5756com24 95 . . . . . . . 8 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ((𝑎𝐴𝑥𝐴) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
5857imp31 418 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) ∧ (𝑎𝐴𝑥𝐴)) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5958reximdvva 3202 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
6059ex 413 . . . . 5 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
6160com13 88 . . . 4 (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
6261imp 407 . . 3 ((∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
633, 4, 5, 6frgrwopreglem1 29256 . . . 4 (𝐴 ∈ V ∧ 𝐵 ∈ V)
64 hashgt12el 14322 . . . . . 6 ((𝐴 ∈ V ∧ 1 < (♯‘𝐴)) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥)
6564ex 413 . . . . 5 (𝐴 ∈ V → (1 < (♯‘𝐴) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥))
66 hashgt12el 14322 . . . . . 6 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵)) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦)
6766ex 413 . . . . 5 (𝐵 ∈ V → (1 < (♯‘𝐵) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
6865, 67im2anan9 620 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦)))
6963, 68ax-mp 5 . . 3 ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
7062, 69syl11 33 . 2 (𝐺 ∈ FriendGraph → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
71703impib 1116 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  {cpr 4588   class class class wbr 5105  cfv 6496  1c1 11052   < clt 11189  chash 14230  Vtxcvtx 27947  Edgcedg 27998  VtxDegcvtxdg 28413   FriendGraph cfrgr 29202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-xadd 13034  df-fz 13425  df-hash 14231  df-edg 27999  df-uhgr 28009  df-ushgr 28010  df-upgr 28033  df-umgr 28034  df-uspgr 28101  df-usgr 28102  df-nbgr 28281  df-vtxdg 28414  df-frgr 29203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator