MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5ALT Structured version   Visualization version   GIF version

Theorem frgrwopreglem5ALT 28110
Description: Alternate direct proof of frgrwopreglem5 28109, not using frgrwopreglem5a 28099. This proof would be even a little bit shorter than the proof of frgrwopreglem5 28109 without using frgrwopreglem5lem 28108. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 3-Jan-2022.) (Proof shortened by AV, 5-Feb-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5ALT ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝐴,𝑏   𝑥,𝐵   𝑦,𝐷   𝐺,𝑎,𝑏,𝑦,𝑥   𝑦,𝑉   𝐴,𝑎,𝑦   𝐵,𝑎,𝑏,𝑦   𝑥,𝐸,𝑎,𝑏
Allowed substitution hints:   𝐷(𝑎,𝑏)   𝐸(𝑦)   𝐾(𝑦,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem frgrwopreglem5ALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → 𝑎𝑥)
21anim1i 617 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → (𝑎𝑥𝑏𝑦))
3 frgrwopreg.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
4 frgrwopreg.d . . . . . . . . . . . . . . . . . 18 𝐷 = (VtxDeg‘𝐺)
5 frgrwopreg.a . . . . . . . . . . . . . . . . . 18 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
6 frgrwopreg.b . . . . . . . . . . . . . . . . . 18 𝐵 = (𝑉𝐴)
7 frgrwopreg.e . . . . . . . . . . . . . . . . . 18 𝐸 = (Edg‘𝐺)
83, 4, 5, 6, 7frgrwopreglem4 28103 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FriendGraph → ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸)
9 preq1 4654 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑎 → {𝑧, 𝑏} = {𝑎, 𝑏})
109eleq1d 2900 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑎 → ({𝑧, 𝑏} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
1110ralbidv 3192 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑎 → (∀𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸))
1211cbvralvw 3434 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸)
13 rsp2 3207 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → ((𝑎𝐴𝑏𝐵) → {𝑎, 𝑏} ∈ 𝐸))
1413com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑏𝐵) → (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1514ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1612, 15syl5bi 245 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1716imp 410 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸)
18 prcom 4653 . . . . . . . . . . . . . . . . . . . 20 {𝑏, 𝑥} = {𝑥, 𝑏}
19 preq1 4654 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑥 → {𝑧, 𝑏} = {𝑥, 𝑏})
2019eleq1d 2900 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → ({𝑧, 𝑏} ∈ 𝐸 ↔ {𝑥, 𝑏} ∈ 𝐸))
2120ralbidv 3192 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (∀𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸))
2221cbvralvw 3434 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑥𝐴𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸)
23 rsp2 3207 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑥𝐴𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸 → ((𝑥𝐴𝑏𝐵) → {𝑥, 𝑏} ∈ 𝐸))
2422, 23sylbi 220 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → ((𝑥𝐴𝑏𝐵) → {𝑥, 𝑏} ∈ 𝐸))
2524com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴𝑏𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑏} ∈ 𝐸))
2625ad2ant2lr 747 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑏} ∈ 𝐸))
2726imp 410 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑥, 𝑏} ∈ 𝐸)
2818, 27eqeltrid 2920 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑏, 𝑥} ∈ 𝐸)
2917, 28jca 515 . . . . . . . . . . . . . . . . . 18 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
3029expcom 417 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
318, 30syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
3231adantr 484 . . . . . . . . . . . . . . 15 ((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
3332impl 459 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
3433adantr 484 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
35 preq2 4655 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → {𝑥, 𝑏} = {𝑥, 𝑦})
3635eleq1d 2900 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦 → ({𝑥, 𝑏} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
3720, 36rspc2v 3619 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝑦𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑦} ∈ 𝐸))
3837ad2ant2l 745 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑦} ∈ 𝐸))
3938impcom 411 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑥, 𝑦} ∈ 𝐸)
40 prcom 4653 . . . . . . . . . . . . . . . . . . . 20 {𝑦, 𝑎} = {𝑎, 𝑦}
41 preq2 4655 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → {𝑎, 𝑏} = {𝑎, 𝑦})
4241eleq1d 2900 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑎, 𝑦} ∈ 𝐸))
4310, 42rspc2v 3619 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑦𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑦} ∈ 𝐸))
4443ad2ant2rl 748 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑦} ∈ 𝐸))
4544impcom 411 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑎, 𝑦} ∈ 𝐸)
4640, 45eqeltrid 2920 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑦, 𝑎} ∈ 𝐸)
4739, 46jca 515 . . . . . . . . . . . . . . . . . 18 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
4847ex 416 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
498, 48syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5049adantr 484 . . . . . . . . . . . . . . 15 ((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5150impl 459 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
5251adantr 484 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
532, 34, 523jca 1125 . . . . . . . . . . . 12 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5453ex 416 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (𝑏𝑦 → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5554reximdvva 3269 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5655exp31 423 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑎𝑥 → ((𝑎𝐴𝑥𝐴) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
5756com24 95 . . . . . . . 8 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ((𝑎𝐴𝑥𝐴) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
5857imp31 421 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) ∧ (𝑎𝐴𝑥𝐴)) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5958reximdvva 3269 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
6059ex 416 . . . . 5 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
6160com13 88 . . . 4 (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
6261imp 410 . . 3 ((∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
633, 4, 5, 6frgrwopreglem1 28100 . . . 4 (𝐴 ∈ V ∧ 𝐵 ∈ V)
64 hashgt12el 13788 . . . . . 6 ((𝐴 ∈ V ∧ 1 < (♯‘𝐴)) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥)
6564ex 416 . . . . 5 (𝐴 ∈ V → (1 < (♯‘𝐴) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥))
66 hashgt12el 13788 . . . . . 6 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵)) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦)
6766ex 416 . . . . 5 (𝐵 ∈ V → (1 < (♯‘𝐵) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
6865, 67im2anan9 622 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦)))
6963, 68ax-mp 5 . . 3 ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
7062, 69syl11 33 . 2 (𝐺 ∈ FriendGraph → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
71703impib 1113 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  Vcvv 3480  cdif 3916  {cpr 4552   class class class wbr 5052  cfv 6343  1c1 10536   < clt 10673  chash 13695  Vtxcvtx 26792  Edgcedg 26843  VtxDegcvtxdg 27258   FriendGraph cfrgr 28046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-xadd 12505  df-fz 12895  df-hash 13696  df-edg 26844  df-uhgr 26854  df-ushgr 26855  df-upgr 26878  df-umgr 26879  df-uspgr 26946  df-usgr 26947  df-nbgr 27126  df-vtxdg 27259  df-frgr 28047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator