MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5ALT Structured version   Visualization version   GIF version

Theorem frgrwopreglem5ALT 28587
Description: Alternate direct proof of frgrwopreglem5 28586, not using frgrwopreglem5a 28576. This proof would be even a little bit shorter than the proof of frgrwopreglem5 28586 without using frgrwopreglem5lem 28585. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 3-Jan-2022.) (Proof shortened by AV, 5-Feb-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5ALT ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝐴,𝑏   𝑥,𝐵   𝑦,𝐷   𝐺,𝑎,𝑏,𝑦,𝑥   𝑦,𝑉   𝐴,𝑎,𝑦   𝐵,𝑎,𝑏,𝑦   𝑥,𝐸,𝑎,𝑏
Allowed substitution hints:   𝐷(𝑎,𝑏)   𝐸(𝑦)   𝐾(𝑦,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem frgrwopreglem5ALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpllr 772 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → 𝑎𝑥)
21anim1i 614 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → (𝑎𝑥𝑏𝑦))
3 frgrwopreg.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
4 frgrwopreg.d . . . . . . . . . . . . . . . . . 18 𝐷 = (VtxDeg‘𝐺)
5 frgrwopreg.a . . . . . . . . . . . . . . . . . 18 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
6 frgrwopreg.b . . . . . . . . . . . . . . . . . 18 𝐵 = (𝑉𝐴)
7 frgrwopreg.e . . . . . . . . . . . . . . . . . 18 𝐸 = (Edg‘𝐺)
83, 4, 5, 6, 7frgrwopreglem4 28580 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FriendGraph → ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸)
9 preq1 4666 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑎 → {𝑧, 𝑏} = {𝑎, 𝑏})
109eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑎 → ({𝑧, 𝑏} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
1110ralbidv 3120 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑎 → (∀𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸))
1211cbvralvw 3372 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸)
13 rsp2 3136 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → ((𝑎𝐴𝑏𝐵) → {𝑎, 𝑏} ∈ 𝐸))
1413com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑏𝐵) → (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1514ad2ant2r 743 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1612, 15syl5bi 241 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1716imp 406 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸)
18 prcom 4665 . . . . . . . . . . . . . . . . . . . 20 {𝑏, 𝑥} = {𝑥, 𝑏}
19 preq1 4666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑥 → {𝑧, 𝑏} = {𝑥, 𝑏})
2019eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → ({𝑧, 𝑏} ∈ 𝐸 ↔ {𝑥, 𝑏} ∈ 𝐸))
2120ralbidv 3120 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (∀𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸))
2221cbvralvw 3372 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑥𝐴𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸)
23 rsp2 3136 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑥𝐴𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸 → ((𝑥𝐴𝑏𝐵) → {𝑥, 𝑏} ∈ 𝐸))
2422, 23sylbi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → ((𝑥𝐴𝑏𝐵) → {𝑥, 𝑏} ∈ 𝐸))
2524com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴𝑏𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑏} ∈ 𝐸))
2625ad2ant2lr 744 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑏} ∈ 𝐸))
2726imp 406 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑥, 𝑏} ∈ 𝐸)
2818, 27eqeltrid 2843 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑏, 𝑥} ∈ 𝐸)
2917, 28jca 511 . . . . . . . . . . . . . . . . . 18 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
3029expcom 413 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
318, 30syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
3231adantr 480 . . . . . . . . . . . . . . 15 ((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
3332impl 455 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
3433adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
35 preq2 4667 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → {𝑥, 𝑏} = {𝑥, 𝑦})
3635eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦 → ({𝑥, 𝑏} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
3720, 36rspc2v 3562 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝑦𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑦} ∈ 𝐸))
3837ad2ant2l 742 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑦} ∈ 𝐸))
3938impcom 407 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑥, 𝑦} ∈ 𝐸)
40 prcom 4665 . . . . . . . . . . . . . . . . . . . 20 {𝑦, 𝑎} = {𝑎, 𝑦}
41 preq2 4667 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → {𝑎, 𝑏} = {𝑎, 𝑦})
4241eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑎, 𝑦} ∈ 𝐸))
4310, 42rspc2v 3562 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑦𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑦} ∈ 𝐸))
4443ad2ant2rl 745 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑦} ∈ 𝐸))
4544impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑎, 𝑦} ∈ 𝐸)
4640, 45eqeltrid 2843 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑦, 𝑎} ∈ 𝐸)
4739, 46jca 511 . . . . . . . . . . . . . . . . . 18 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
4847ex 412 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
498, 48syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5049adantr 480 . . . . . . . . . . . . . . 15 ((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5150impl 455 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
5251adantr 480 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
532, 34, 523jca 1126 . . . . . . . . . . . 12 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5453ex 412 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (𝑏𝑦 → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5554reximdvva 3205 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5655exp31 419 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑎𝑥 → ((𝑎𝐴𝑥𝐴) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
5756com24 95 . . . . . . . 8 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ((𝑎𝐴𝑥𝐴) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
5857imp31 417 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) ∧ (𝑎𝐴𝑥𝐴)) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5958reximdvva 3205 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
6059ex 412 . . . . 5 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
6160com13 88 . . . 4 (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
6261imp 406 . . 3 ((∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
633, 4, 5, 6frgrwopreglem1 28577 . . . 4 (𝐴 ∈ V ∧ 𝐵 ∈ V)
64 hashgt12el 14065 . . . . . 6 ((𝐴 ∈ V ∧ 1 < (♯‘𝐴)) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥)
6564ex 412 . . . . 5 (𝐴 ∈ V → (1 < (♯‘𝐴) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥))
66 hashgt12el 14065 . . . . . 6 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵)) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦)
6766ex 412 . . . . 5 (𝐵 ∈ V → (1 < (♯‘𝐵) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
6865, 67im2anan9 619 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦)))
6963, 68ax-mp 5 . . 3 ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
7062, 69syl11 33 . 2 (𝐺 ∈ FriendGraph → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
71703impib 1114 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  {cpr 4560   class class class wbr 5070  cfv 6418  1c1 10803   < clt 10940  chash 13972  Vtxcvtx 27269  Edgcedg 27320  VtxDegcvtxdg 27735   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-xadd 12778  df-fz 13169  df-hash 13973  df-edg 27321  df-uhgr 27331  df-ushgr 27332  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-nbgr 27603  df-vtxdg 27736  df-frgr 28524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator