MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5ALT Structured version   Visualization version   GIF version

Theorem frgrwopreglem5ALT 27872
Description: Alternate direct proof of frgrwopreglem5 27871, not using frgrwopreglem5a 27861. This proof would be even a little bit shorter than the proof of frgrwopreglem5 27871 without using frgrwopreglem5lem 27870. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 3-Jan-2022.) (Proof shortened by AV, 5-Feb-2022.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5ALT ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝐴,𝑏   𝑥,𝐵   𝑦,𝐷   𝐺,𝑎,𝑏,𝑦,𝑥   𝑦,𝑉   𝐴,𝑎,𝑦   𝐵,𝑎,𝑏,𝑦   𝑥,𝐸,𝑎,𝑏
Allowed substitution hints:   𝐷(𝑎,𝑏)   𝐸(𝑦)   𝐾(𝑦,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem frgrwopreglem5ALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpllr 764 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → 𝑎𝑥)
21anim1i 606 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → (𝑎𝑥𝑏𝑦))
3 frgrwopreg.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
4 frgrwopreg.d . . . . . . . . . . . . . . . . . 18 𝐷 = (VtxDeg‘𝐺)
5 frgrwopreg.a . . . . . . . . . . . . . . . . . 18 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
6 frgrwopreg.b . . . . . . . . . . . . . . . . . 18 𝐵 = (𝑉𝐴)
7 frgrwopreg.e . . . . . . . . . . . . . . . . . 18 𝐸 = (Edg‘𝐺)
83, 4, 5, 6, 7frgrwopreglem4 27865 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FriendGraph → ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸)
9 preq1 4540 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑎 → {𝑧, 𝑏} = {𝑎, 𝑏})
109eleq1d 2845 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑎 → ({𝑧, 𝑏} ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
1110ralbidv 3142 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑎 → (∀𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸))
1211cbvralv 3378 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸)
13 rsp2 3158 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → ((𝑎𝐴𝑏𝐵) → {𝑎, 𝑏} ∈ 𝐸))
1413com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑏𝐵) → (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1514ad2ant2r 735 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1612, 15syl5bi 234 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸))
1716imp 398 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑎, 𝑏} ∈ 𝐸)
18 prcom 4539 . . . . . . . . . . . . . . . . . . . 20 {𝑏, 𝑥} = {𝑥, 𝑏}
19 preq1 4540 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑥 → {𝑧, 𝑏} = {𝑥, 𝑏})
2019eleq1d 2845 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → ({𝑧, 𝑏} ∈ 𝐸 ↔ {𝑥, 𝑏} ∈ 𝐸))
2120ralbidv 3142 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (∀𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸))
2221cbvralv 3378 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ↔ ∀𝑥𝐴𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸)
23 rsp2 3158 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑥𝐴𝑏𝐵 {𝑥, 𝑏} ∈ 𝐸 → ((𝑥𝐴𝑏𝐵) → {𝑥, 𝑏} ∈ 𝐸))
2422, 23sylbi 209 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → ((𝑥𝐴𝑏𝐵) → {𝑥, 𝑏} ∈ 𝐸))
2524com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴𝑏𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑏} ∈ 𝐸))
2625ad2ant2lr 736 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑏} ∈ 𝐸))
2726imp 398 . . . . . . . . . . . . . . . . . . . 20 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑥, 𝑏} ∈ 𝐸)
2818, 27syl5eqel 2865 . . . . . . . . . . . . . . . . . . 19 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → {𝑏, 𝑥} ∈ 𝐸)
2917, 28jca 504 . . . . . . . . . . . . . . . . . 18 ((((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) ∧ ∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
3029expcom 406 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
318, 30syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
3231adantr 473 . . . . . . . . . . . . . . 15 ((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸)))
3332impl 448 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
3433adantr 473 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸))
35 preq2 4541 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → {𝑥, 𝑏} = {𝑥, 𝑦})
3635eleq1d 2845 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝑦 → ({𝑥, 𝑏} ∈ 𝐸 ↔ {𝑥, 𝑦} ∈ 𝐸))
3720, 36rspc2v 3543 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝑦𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑦} ∈ 𝐸))
3837ad2ant2l 734 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑥, 𝑦} ∈ 𝐸))
3938impcom 399 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑥, 𝑦} ∈ 𝐸)
40 prcom 4539 . . . . . . . . . . . . . . . . . . . 20 {𝑦, 𝑎} = {𝑎, 𝑦}
41 preq2 4541 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑦 → {𝑎, 𝑏} = {𝑎, 𝑦})
4241eleq1d 2845 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = 𝑦 → ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑎, 𝑦} ∈ 𝐸))
4310, 42rspc2v 3543 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝐴𝑦𝐵) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑦} ∈ 𝐸))
4443ad2ant2rl 737 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → {𝑎, 𝑦} ∈ 𝐸))
4544impcom 399 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑎, 𝑦} ∈ 𝐸)
4640, 45syl5eqel 2865 . . . . . . . . . . . . . . . . . . 19 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → {𝑦, 𝑎} ∈ 𝐸)
4739, 46jca 504 . . . . . . . . . . . . . . . . . 18 ((∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 ∧ ((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵))) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
4847ex 405 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑏𝐵 {𝑧, 𝑏} ∈ 𝐸 → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
498, 48syl 17 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5049adantr 473 . . . . . . . . . . . . . . 15 ((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) → (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5150impl 448 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
5251adantr 473 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))
532, 34, 523jca 1109 . . . . . . . . . . . 12 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
5453ex 405 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (𝑏𝑦 → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5554reximdvva 3217 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5655exp31 412 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑎𝑥 → ((𝑎𝐴𝑥𝐴) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
5756com24 95 . . . . . . . 8 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ((𝑎𝐴𝑥𝐴) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
5857imp31 410 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) ∧ (𝑎𝐴𝑥𝐴)) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
5958reximdvva 3217 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
6059ex 405 . . . . 5 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
6160com13 88 . . . 4 (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
6261imp 398 . . 3 ((∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
633, 4, 5, 6frgrwopreglem1 27862 . . . 4 (𝐴 ∈ V ∧ 𝐵 ∈ V)
64 hashgt12el 13595 . . . . . 6 ((𝐴 ∈ V ∧ 1 < (♯‘𝐴)) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥)
6564ex 405 . . . . 5 (𝐴 ∈ V → (1 < (♯‘𝐴) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥))
66 hashgt12el 13595 . . . . . 6 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵)) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦)
6766ex 405 . . . . 5 (𝐵 ∈ V → (1 < (♯‘𝐵) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
6865, 67im2anan9 611 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦)))
6963, 68ax-mp 5 . . 3 ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
7062, 69syl11 33 . 2 (𝐺 ∈ FriendGraph → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
71703impib 1097 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2962  wral 3083  wrex 3084  {crab 3087  Vcvv 3410  cdif 3821  {cpr 4438   class class class wbr 4926  cfv 6186  1c1 10335   < clt 10473  chash 13504  Vtxcvtx 26500  Edgcedg 26551  VtxDegcvtxdg 26966   FriendGraph cfrgr 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-2o 7905  df-oadd 7908  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-dju 9123  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-n0 11707  df-xnn0 11779  df-z 11793  df-uz 12058  df-xadd 12324  df-fz 12708  df-hash 13505  df-edg 26552  df-uhgr 26562  df-ushgr 26563  df-upgr 26586  df-umgr 26587  df-uspgr 26654  df-usgr 26655  df-nbgr 26834  df-vtxdg 26967  df-frgr 27807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator