| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mulsuniflem.3 | . . . 4
⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) | 
| 2 |  | mulsuniflem.1 | . . . . 5
⊢ (𝜑 → 𝐿 <<s 𝑅) | 
| 3 | 2 | scutcld 27849 | . . . 4
⊢ (𝜑 → (𝐿 |s 𝑅) ∈  No
) | 
| 4 | 1, 3 | eqeltrd 2840 | . . 3
⊢ (𝜑 → 𝐴 ∈  No
) | 
| 5 |  | mulsuniflem.4 | . . . 4
⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) | 
| 6 |  | mulsuniflem.2 | . . . . 5
⊢ (𝜑 → 𝑀 <<s 𝑆) | 
| 7 | 6 | scutcld 27849 | . . . 4
⊢ (𝜑 → (𝑀 |s 𝑆) ∈  No
) | 
| 8 | 5, 7 | eqeltrd 2840 | . . 3
⊢ (𝜑 → 𝐵 ∈  No
) | 
| 9 |  | mulsval 28136 | . . 3
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))) | 
| 10 | 4, 8, 9 | syl2anc 584 | . 2
⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))) | 
| 11 | 4, 8 | mulscut2 28160 | . . 3
⊢ (𝜑 → ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) <<s ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})) | 
| 12 | 2, 1 | cofcutr1d 27960 | . . . . . 6
⊢ (𝜑 → ∀𝑓 ∈ ( L ‘𝐴)∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝) | 
| 13 | 6, 5 | cofcutr1d 27960 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑔 ∈ ( L ‘𝐵)∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞) | 
| 14 | 13 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ ∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝)) → ∀𝑔 ∈ ( L ‘𝐵)∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞) | 
| 15 |  | reeanv 3228 | . . . . . . . . . . . . . . 15
⊢
(∃𝑝 ∈
𝐿 ∃𝑞 ∈ 𝑀 (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞) ↔ (∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ∧ ∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞)) | 
| 16 |  | leftssno 27920 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ( L
‘𝐴) ⊆  No | 
| 17 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → 𝑓 ∈ ( L ‘𝐴)) | 
| 18 | 16, 17 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → 𝑓 ∈  No
) | 
| 19 | 18 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → 𝑓 ∈  No
) | 
| 20 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → 𝐵 ∈  No
) | 
| 21 | 19, 20 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (𝑓 ·s 𝐵) ∈  No
) | 
| 22 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → 𝐴 ∈  No
) | 
| 23 |  | leftssno 27920 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ( L
‘𝐵) ⊆  No | 
| 24 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → 𝑔 ∈ ( L ‘𝐵)) | 
| 25 | 23, 24 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → 𝑔 ∈  No
) | 
| 26 | 25 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → 𝑔 ∈  No
) | 
| 27 | 22, 26 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (𝐴 ·s 𝑔) ∈  No
) | 
| 28 | 21, 27 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → ((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) ∈  No
) | 
| 29 | 19, 26 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (𝑓 ·s 𝑔) ∈  No
) | 
| 30 | 28, 29 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ∈  No
) | 
| 31 | 30 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ∈  No
) | 
| 32 |  | ssltss1 27834 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐿 <<s 𝑅 → 𝐿 ⊆  No
) | 
| 33 | 2, 32 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝐿 ⊆  No
) | 
| 34 | 33 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐿 ⊆  No
) | 
| 35 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑝 ∈ 𝐿) | 
| 36 | 34, 35 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑝 ∈  No
) | 
| 37 | 36 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → 𝑝 ∈  No
) | 
| 38 | 37, 20 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (𝑝 ·s 𝐵) ∈  No
) | 
| 39 | 38, 27 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → ((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) ∈  No
) | 
| 40 | 37, 26 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (𝑝 ·s 𝑔) ∈  No
) | 
| 41 | 39, 40 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑝 ·s 𝑔)) ∈  No
) | 
| 42 | 41 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑝 ·s 𝑔)) ∈  No
) | 
| 43 |  | ssltss1 27834 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 <<s 𝑆 → 𝑀 ⊆  No
) | 
| 44 | 6, 43 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑀 ⊆  No
) | 
| 45 | 44 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑀 ⊆  No
) | 
| 46 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑞 ∈ 𝑀) | 
| 47 | 45, 46 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑞 ∈  No
) | 
| 48 | 47 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → 𝑞 ∈  No
) | 
| 49 | 22, 48 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (𝐴 ·s 𝑞) ∈  No
) | 
| 50 | 38, 49 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → ((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) ∈  No
) | 
| 51 | 37, 48 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (𝑝 ·s 𝑞) ∈  No
) | 
| 52 | 50, 51 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∈  No
) | 
| 53 | 52 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∈  No
) | 
| 54 | 18 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝑓 ∈  No
) | 
| 55 | 37 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝑝 ∈  No
) | 
| 56 | 25 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝑔 ∈  No
) | 
| 57 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝐵 ∈  No
) | 
| 58 |  | simprrl 780 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞))) → 𝑓 ≤s 𝑝) | 
| 59 | 58 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝑓 ≤s 𝑝) | 
| 60 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → 𝐵 ∈  No
) | 
| 61 |  | ssltleft 27910 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐵 ∈ 
No  → ( L ‘𝐵) <<s {𝐵}) | 
| 62 | 8, 61 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ( L ‘𝐵) <<s {𝐵}) | 
| 63 | 62 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → ( L ‘𝐵) <<s {𝐵}) | 
| 64 |  | snidg 4659 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐵 ∈ 
No  → 𝐵 ∈
{𝐵}) | 
| 65 | 8, 64 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝐵 ∈ {𝐵}) | 
| 66 | 65 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → 𝐵 ∈ {𝐵}) | 
| 67 | 63, 24, 66 | ssltsepcd 27840 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → 𝑔 <s 𝐵) | 
| 68 | 25, 60, 67 | sltled 27815 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → 𝑔 ≤s 𝐵) | 
| 69 | 68 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝑔 ≤s 𝐵) | 
| 70 | 54, 55, 56, 57, 59, 69 | slemuld 28165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → ((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) ≤s ((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔))) | 
| 71 | 21, 29 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → ((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) ∈  No
) | 
| 72 | 38, 40 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → ((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔)) ∈  No
) | 
| 73 | 71, 72, 27 | sleadd1d 28029 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) ≤s ((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔)) ↔ (((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) +s (𝐴 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔)) +s (𝐴 ·s 𝑔)))) | 
| 74 | 73 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) ≤s ((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔)) ↔ (((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) +s (𝐴 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔)) +s (𝐴 ·s 𝑔)))) | 
| 75 | 70, 74 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) +s (𝐴 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔)) +s (𝐴 ·s 𝑔))) | 
| 76 | 21, 27, 29 | addsubsd 28113 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) = (((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) +s (𝐴 ·s 𝑔))) | 
| 77 | 76 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) = (((𝑓 ·s 𝐵) -s (𝑓 ·s 𝑔)) +s (𝐴 ·s 𝑔))) | 
| 78 | 38, 27, 40 | addsubsd 28113 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑝 ·s 𝑔)) = (((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔)) +s (𝐴 ·s 𝑔))) | 
| 79 | 78 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑝 ·s 𝑔)) = (((𝑝 ·s 𝐵) -s (𝑝 ·s 𝑔)) +s (𝐴 ·s 𝑔))) | 
| 80 | 75, 77, 79 | 3brtr4d 5174 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑝 ·s 𝑔))) | 
| 81 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝐴 ∈  No
) | 
| 82 | 48 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝑞 ∈  No
) | 
| 83 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐴 ∈  No
) | 
| 84 |  | scutcut 27847 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐿 <<s 𝑅 → ((𝐿 |s 𝑅) ∈  No 
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) | 
| 85 | 2, 84 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → ((𝐿 |s 𝑅) ∈  No 
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) | 
| 86 | 85 | simp2d 1143 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝐿 <<s {(𝐿 |s 𝑅)}) | 
| 87 | 86 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐿 <<s {(𝐿 |s 𝑅)}) | 
| 88 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐿 |s 𝑅) ∈ V | 
| 89 | 88 | snid 4661 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝐿 |s 𝑅) ∈ {(𝐿 |s 𝑅)} | 
| 90 | 1, 89 | eqeltrdi 2848 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝐴 ∈ {(𝐿 |s 𝑅)}) | 
| 91 | 90 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝐴 ∈ {(𝐿 |s 𝑅)}) | 
| 92 | 87, 35, 91 | ssltsepcd 27840 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑝 <s 𝐴) | 
| 93 | 36, 83, 92 | sltled 27815 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → 𝑝 ≤s 𝐴) | 
| 94 | 93 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → 𝑝 ≤s 𝐴) | 
| 95 | 94 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝑝 ≤s 𝐴) | 
| 96 |  | simprrr 781 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞))) → 𝑔 ≤s 𝑞) | 
| 97 | 96 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → 𝑔 ≤s 𝑞) | 
| 98 | 55, 81, 56, 82, 95, 97 | slemuld 28165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → ((𝑝 ·s 𝑞) -s (𝑝 ·s 𝑔)) ≤s ((𝐴 ·s 𝑞) -s (𝐴 ·s 𝑔))) | 
| 99 | 51, 49, 40, 27 | slesubsub3bd 28119 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑝 ·s 𝑞) -s (𝑝 ·s 𝑔)) ≤s ((𝐴 ·s 𝑞) -s (𝐴 ·s 𝑔)) ↔ ((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔)) ≤s ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞)))) | 
| 100 | 27, 40 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → ((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔)) ∈  No
) | 
| 101 | 49, 51 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞)) ∈  No
) | 
| 102 | 100, 101,
38 | sleadd2d 28030 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔)) ≤s ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞)) ↔ ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔))) ≤s ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞))))) | 
| 103 | 99, 102 | bitrd 279 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑝 ·s 𝑞) -s (𝑝 ·s 𝑔)) ≤s ((𝐴 ·s 𝑞) -s (𝐴 ·s 𝑔)) ↔ ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔))) ≤s ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞))))) | 
| 104 | 103 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑝 ·s 𝑞) -s (𝑝 ·s 𝑔)) ≤s ((𝐴 ·s 𝑞) -s (𝐴 ·s 𝑔)) ↔ ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔))) ≤s ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞))))) | 
| 105 | 98, 104 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔))) ≤s ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞)))) | 
| 106 | 38, 27, 40 | addsubsassd 28112 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑝 ·s 𝑔)) = ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔)))) | 
| 107 | 106 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑝 ·s 𝑔)) = ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑔) -s (𝑝 ·s 𝑔)))) | 
| 108 | 38, 49, 51 | addsubsassd 28112 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) = ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞)))) | 
| 109 | 108 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) = ((𝑝 ·s 𝐵) +s ((𝐴 ·s 𝑞) -s (𝑝 ·s 𝑞)))) | 
| 110 | 105, 107,
109 | 3brtr4d 5174 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑝 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 111 | 31, 42, 53, 80, 110 | sletrd 27808 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)))) → (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 112 | 111 | anassrs 467 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) ∧ ((𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀) ∧ (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞))) → (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 113 | 112 | expr 456 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) ∧ (𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀)) → ((𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞) → (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 114 | 113 | reximdvva 3206 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵))) → (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞) → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 115 | 114 | expcom 413 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) → (𝜑 → (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞) → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))) | 
| 116 | 115 | com23 86 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) → (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞) → (𝜑 → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))) | 
| 117 | 116 | imp 406 | . . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞)) → (𝜑 → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 118 | 15, 117 | sylan2br 595 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ ( L ‘𝐴) ∧ 𝑔 ∈ ( L ‘𝐵)) ∧ (∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ∧ ∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞)) → (𝜑 → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 119 | 118 | an4s 660 | . . . . . . . . . . . . 13
⊢ (((𝑓 ∈ ( L ‘𝐴) ∧ ∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝) ∧ (𝑔 ∈ ( L ‘𝐵) ∧ ∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞)) → (𝜑 → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 120 | 119 | impcom 407 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑓 ∈ ( L ‘𝐴) ∧ ∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝) ∧ (𝑔 ∈ ( L ‘𝐵) ∧ ∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞))) → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 121 | 120 | anassrs 467 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ ∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝)) ∧ (𝑔 ∈ ( L ‘𝐵) ∧ ∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞)) → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 122 | 121 | expr 456 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ ∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝)) ∧ 𝑔 ∈ ( L ‘𝐵)) → (∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 → ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 123 | 122 | ralimdva 3166 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ ∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝)) → (∀𝑔 ∈ ( L ‘𝐵)∃𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 → ∀𝑔 ∈ ( L ‘𝐵)∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 124 | 14, 123 | mpd 15 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ ( L ‘𝐴) ∧ ∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝)) → ∀𝑔 ∈ ( L ‘𝐵)∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 125 | 124 | expr 456 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ ( L ‘𝐴)) → (∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 → ∀𝑔 ∈ ( L ‘𝐵)∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 126 | 125 | ralimdva 3166 | . . . . . 6
⊢ (𝜑 → (∀𝑓 ∈ ( L ‘𝐴)∃𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 → ∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 127 | 12, 126 | mpd 15 | . . . . 5
⊢ (𝜑 → ∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 128 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑎 = 𝑧 → (𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ 𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 129 | 128 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑎 = 𝑧 → (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 130 | 129 | rexab 3699 | . . . . . . . 8
⊢
(∃𝑧 ∈
{𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧 ↔ ∃𝑧(∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧)) | 
| 131 |  | r19.41vv 3226 | . . . . . . . . 9
⊢
(∃𝑝 ∈
𝐿 ∃𝑞 ∈ 𝑀 (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ (∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧)) | 
| 132 | 131 | exbii 1847 | . . . . . . . 8
⊢
(∃𝑧∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ ∃𝑧(∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧)) | 
| 133 |  | rexcom4 3287 | . . . . . . . . 9
⊢
(∃𝑝 ∈
𝐿 ∃𝑧∃𝑞 ∈ 𝑀 (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ ∃𝑧∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧)) | 
| 134 |  | rexcom4 3287 | . . . . . . . . . . 11
⊢
(∃𝑞 ∈
𝑀 ∃𝑧(𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ ∃𝑧∃𝑞 ∈ 𝑀 (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧)) | 
| 135 |  | ovex 7465 | . . . . . . . . . . . . 13
⊢ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∈ V | 
| 136 |  | breq2 5146 | . . . . . . . . . . . . 13
⊢ (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → ((((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧 ↔ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 137 | 135, 136 | ceqsexv 3531 | . . . . . . . . . . . 12
⊢
(∃𝑧(𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 138 | 137 | rexbii 3093 | . . . . . . . . . . 11
⊢
(∃𝑞 ∈
𝑀 ∃𝑧(𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 139 | 134, 138 | bitr3i 277 | . . . . . . . . . 10
⊢
(∃𝑧∃𝑞 ∈ 𝑀 (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 140 | 139 | rexbii 3093 | . . . . . . . . 9
⊢
(∃𝑝 ∈
𝐿 ∃𝑧∃𝑞 ∈ 𝑀 (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 141 | 133, 140 | bitr3i 277 | . . . . . . . 8
⊢
(∃𝑧∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (𝑧 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) ↔ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 142 | 130, 132,
141 | 3bitr2i 299 | . . . . . . 7
⊢
(∃𝑧 ∈
{𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧 ↔ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 143 |  | ssun1 4177 | . . . . . . . 8
⊢ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ⊆ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) | 
| 144 |  | ssrexv 4052 | . . . . . . . 8
⊢ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ⊆ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) → (∃𝑧 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧 → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧)) | 
| 145 | 143, 144 | ax-mp 5 | . . . . . . 7
⊢
(∃𝑧 ∈
{𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧 → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 146 | 142, 145 | sylbir 235 | . . . . . 6
⊢
(∃𝑝 ∈
𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 147 | 146 | 2ralimi 3122 | . . . . 5
⊢
(∀𝑓 ∈ (
L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → ∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 148 | 127, 147 | syl 17 | . . . 4
⊢ (𝜑 → ∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 149 | 2, 1 | cofcutr2d 27961 | . . . . . 6
⊢ (𝜑 → ∀𝑖 ∈ ( R ‘𝐴)∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖) | 
| 150 | 6, 5 | cofcutr2d 27961 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ ( R ‘𝐵)∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗) | 
| 151 | 150 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ ∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖)) → ∀𝑗 ∈ ( R ‘𝐵)∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗) | 
| 152 |  | reeanv 3228 | . . . . . . . . . . . . . . 15
⊢
(∃𝑟 ∈
𝑅 ∃𝑠 ∈ 𝑆 (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗) ↔ (∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ∧ ∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗)) | 
| 153 |  | rightssno 27921 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ( R
‘𝐴) ⊆  No | 
| 154 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → 𝑖 ∈ ( R ‘𝐴)) | 
| 155 | 153, 154 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → 𝑖 ∈  No
) | 
| 156 | 155 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → 𝑖 ∈  No
) | 
| 157 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → 𝐵 ∈  No
) | 
| 158 | 156, 157 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (𝑖 ·s 𝐵) ∈  No
) | 
| 159 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → 𝐴 ∈  No
) | 
| 160 |  | rightssno 27921 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ( R
‘𝐵) ⊆  No | 
| 161 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → 𝑗 ∈ ( R ‘𝐵)) | 
| 162 | 160, 161 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → 𝑗 ∈  No
) | 
| 163 | 162 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → 𝑗 ∈  No
) | 
| 164 | 159, 163 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (𝐴 ·s 𝑗) ∈  No
) | 
| 165 | 158, 164 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → ((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) ∈  No
) | 
| 166 | 156, 163 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (𝑖 ·s 𝑗) ∈  No
) | 
| 167 | 165, 166 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ∈  No
) | 
| 168 | 167 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ∈  No
) | 
| 169 |  | ssltss2 27835 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐿 <<s 𝑅 → 𝑅 ⊆  No
) | 
| 170 | 2, 169 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑅 ⊆  No
) | 
| 171 | 170 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑅 ⊆  No
) | 
| 172 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑟 ∈ 𝑅) | 
| 173 | 171, 172 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑟 ∈  No
) | 
| 174 | 173 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → 𝑟 ∈  No
) | 
| 175 | 174, 157 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (𝑟 ·s 𝐵) ∈  No
) | 
| 176 | 175, 164 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) ∈  No
) | 
| 177 | 174, 163 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (𝑟 ·s 𝑗) ∈  No
) | 
| 178 | 176, 177 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑟 ·s 𝑗)) ∈  No
) | 
| 179 | 178 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑟 ·s 𝑗)) ∈  No
) | 
| 180 |  | ssltss2 27835 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 <<s 𝑆 → 𝑆 ⊆  No
) | 
| 181 | 6, 180 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑆 ⊆  No
) | 
| 182 | 181 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑆 ⊆  No
) | 
| 183 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑠 ∈ 𝑆) | 
| 184 | 182, 183 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝑠 ∈  No
) | 
| 185 | 184 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → 𝑠 ∈  No
) | 
| 186 | 159, 185 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (𝐴 ·s 𝑠) ∈  No
) | 
| 187 | 175, 186 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) ∈  No
) | 
| 188 | 173, 184 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → (𝑟 ·s 𝑠) ∈  No
) | 
| 189 | 188 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (𝑟 ·s 𝑠) ∈  No
) | 
| 190 | 187, 189 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∈  No
) | 
| 191 | 190 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∈  No
) | 
| 192 | 174 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝑟 ∈  No
) | 
| 193 | 155 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝑖 ∈  No
) | 
| 194 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝐵 ∈  No
) | 
| 195 | 162 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝑗 ∈  No
) | 
| 196 |  | simprrl 780 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗))) → 𝑟 ≤s 𝑖) | 
| 197 | 196 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝑟 ≤s 𝑖) | 
| 198 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → 𝐵 ∈  No
) | 
| 199 |  | ssltright 27911 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐵 ∈ 
No  → {𝐵}
<<s ( R ‘𝐵)) | 
| 200 | 8, 199 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → {𝐵} <<s ( R ‘𝐵)) | 
| 201 | 200 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → {𝐵} <<s ( R ‘𝐵)) | 
| 202 | 65 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → 𝐵 ∈ {𝐵}) | 
| 203 | 201, 202,
161 | ssltsepcd 27840 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → 𝐵 <s 𝑗) | 
| 204 | 198, 162,
203 | sltled 27815 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → 𝐵 ≤s 𝑗) | 
| 205 | 204 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝐵 ≤s 𝑗) | 
| 206 | 192, 193,
194, 195, 197, 205 | slemuld 28165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → ((𝑟 ·s 𝑗) -s (𝑟 ·s 𝐵)) ≤s ((𝑖 ·s 𝑗) -s (𝑖 ·s 𝐵))) | 
| 207 | 177, 175,
166, 158 | slesubsub2bd 28118 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑟 ·s 𝑗) -s (𝑟 ·s 𝐵)) ≤s ((𝑖 ·s 𝑗) -s (𝑖 ·s 𝐵)) ↔ ((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) ≤s ((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)))) | 
| 208 | 158, 166 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → ((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) ∈  No
) | 
| 209 | 175, 177 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → ((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)) ∈  No
) | 
| 210 | 208, 209,
164 | sleadd1d 28029 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) ≤s ((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)) ↔ (((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) +s (𝐴 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)) +s (𝐴 ·s 𝑗)))) | 
| 211 | 207, 210 | bitrd 279 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑟 ·s 𝑗) -s (𝑟 ·s 𝐵)) ≤s ((𝑖 ·s 𝑗) -s (𝑖 ·s 𝐵)) ↔ (((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) +s (𝐴 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)) +s (𝐴 ·s 𝑗)))) | 
| 212 | 211 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑟 ·s 𝑗) -s (𝑟 ·s 𝐵)) ≤s ((𝑖 ·s 𝑗) -s (𝑖 ·s 𝐵)) ↔ (((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) +s (𝐴 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)) +s (𝐴 ·s 𝑗)))) | 
| 213 | 206, 212 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) +s (𝐴 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)) +s (𝐴 ·s 𝑗))) | 
| 214 | 158, 164,
166 | addsubsd 28113 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) = (((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) +s (𝐴 ·s 𝑗))) | 
| 215 | 214 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) = (((𝑖 ·s 𝐵) -s (𝑖 ·s 𝑗)) +s (𝐴 ·s 𝑗))) | 
| 216 | 175, 164,
177 | addsubsd 28113 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑟 ·s 𝑗)) = (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)) +s (𝐴 ·s 𝑗))) | 
| 217 | 216 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑟 ·s 𝑗)) = (((𝑟 ·s 𝐵) -s (𝑟 ·s 𝑗)) +s (𝐴 ·s 𝑗))) | 
| 218 | 213, 215,
217 | 3brtr4d 5174 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑟 ·s 𝑗))) | 
| 219 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝐴 ∈  No
) | 
| 220 | 185 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝑠 ∈  No
) | 
| 221 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐴 ∈  No
) | 
| 222 | 85 | simp3d 1144 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → {(𝐿 |s 𝑅)} <<s 𝑅) | 
| 223 | 222 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → {(𝐿 |s 𝑅)} <<s 𝑅) | 
| 224 | 90 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐴 ∈ {(𝐿 |s 𝑅)}) | 
| 225 | 223, 224,
172 | ssltsepcd 27840 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐴 <s 𝑟) | 
| 226 | 221, 173,
225 | sltled 27815 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → 𝐴 ≤s 𝑟) | 
| 227 | 226 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → 𝐴 ≤s 𝑟) | 
| 228 | 227 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝐴 ≤s 𝑟) | 
| 229 |  | simprrr 781 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗))) → 𝑠 ≤s 𝑗) | 
| 230 | 229 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → 𝑠 ≤s 𝑗) | 
| 231 | 219, 192,
220, 195, 228, 230 | slemuld 28165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → ((𝐴 ·s 𝑗) -s (𝐴 ·s 𝑠)) ≤s ((𝑟 ·s 𝑗) -s (𝑟 ·s 𝑠))) | 
| 232 | 164, 177,
186, 189 | slesubsubbd 28117 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝐴 ·s 𝑗) -s (𝐴 ·s 𝑠)) ≤s ((𝑟 ·s 𝑗) -s (𝑟 ·s 𝑠)) ↔ ((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗)) ≤s ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠)))) | 
| 233 | 164, 177 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → ((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗)) ∈  No
) | 
| 234 | 186, 189 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠)) ∈  No
) | 
| 235 | 233, 234,
175 | sleadd2d 28030 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗)) ≤s ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠)) ↔ ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗))) ≤s ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠))))) | 
| 236 | 232, 235 | bitrd 279 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝐴 ·s 𝑗) -s (𝐴 ·s 𝑠)) ≤s ((𝑟 ·s 𝑗) -s (𝑟 ·s 𝑠)) ↔ ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗))) ≤s ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠))))) | 
| 237 | 236 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝐴 ·s 𝑗) -s (𝐴 ·s 𝑠)) ≤s ((𝑟 ·s 𝑗) -s (𝑟 ·s 𝑠)) ↔ ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗))) ≤s ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠))))) | 
| 238 | 231, 237 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗))) ≤s ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠)))) | 
| 239 | 175, 164,
177 | addsubsassd 28112 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑟 ·s 𝑗)) = ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗)))) | 
| 240 | 239 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑟 ·s 𝑗)) = ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑗) -s (𝑟 ·s 𝑗)))) | 
| 241 | 175, 186,
189 | addsubsassd 28112 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) = ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠)))) | 
| 242 | 241 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) = ((𝑟 ·s 𝐵) +s ((𝐴 ·s 𝑠) -s (𝑟 ·s 𝑠)))) | 
| 243 | 238, 240,
242 | 3brtr4d 5174 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑟 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 244 | 168, 179,
191, 218, 243 | sletrd 27808 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)))) → (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 245 | 244 | anassrs 467 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗))) → (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 246 | 245 | expr 456 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗) → (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 247 | 246 | reximdvva 3206 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵))) → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗) → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 248 | 247 | expcom 413 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) → (𝜑 → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗) → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))) | 
| 249 | 248 | com23 86 | . . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗) → (𝜑 → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))) | 
| 250 | 249 | imp 406 | . . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗)) → (𝜑 → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 251 | 152, 250 | sylan2br 595 | . . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ ( R ‘𝐴) ∧ 𝑗 ∈ ( R ‘𝐵)) ∧ (∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ∧ ∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗)) → (𝜑 → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 252 | 251 | an4s 660 | . . . . . . . . . . . . 13
⊢ (((𝑖 ∈ ( R ‘𝐴) ∧ ∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖) ∧ (𝑗 ∈ ( R ‘𝐵) ∧ ∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗)) → (𝜑 → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 253 | 252 | impcom 407 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑖 ∈ ( R ‘𝐴) ∧ ∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖) ∧ (𝑗 ∈ ( R ‘𝐵) ∧ ∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗))) → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 254 | 253 | anassrs 467 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ ∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖)) ∧ (𝑗 ∈ ( R ‘𝐵) ∧ ∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗)) → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 255 | 254 | expr 456 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ ∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖)) ∧ 𝑗 ∈ ( R ‘𝐵)) → (∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 256 | 255 | ralimdva 3166 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ ∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖)) → (∀𝑗 ∈ ( R ‘𝐵)∃𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 → ∀𝑗 ∈ ( R ‘𝐵)∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 257 | 151, 256 | mpd 15 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ ( R ‘𝐴) ∧ ∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖)) → ∀𝑗 ∈ ( R ‘𝐵)∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 258 | 257 | expr 456 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ( R ‘𝐴)) → (∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 → ∀𝑗 ∈ ( R ‘𝐵)∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 259 | 258 | ralimdva 3166 | . . . . . 6
⊢ (𝜑 → (∀𝑖 ∈ ( R ‘𝐴)∃𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 → ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 260 | 149, 259 | mpd 15 | . . . . 5
⊢ (𝜑 → ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 261 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑏 = 𝑧 → (𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ 𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 262 | 261 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑏 = 𝑧 → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 263 | 262 | rexab 3699 | . . . . . . . 8
⊢
(∃𝑧 ∈
{𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧 ↔ ∃𝑧(∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 264 |  | r19.41vv 3226 | . . . . . . . . 9
⊢
(∃𝑟 ∈
𝑅 ∃𝑠 ∈ 𝑆 (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 265 | 264 | exbii 1847 | . . . . . . . 8
⊢
(∃𝑧∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ ∃𝑧(∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 266 |  | rexcom4 3287 | . . . . . . . . 9
⊢
(∃𝑟 ∈
𝑅 ∃𝑧∃𝑠 ∈ 𝑆 (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ ∃𝑧∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 267 |  | rexcom4 3287 | . . . . . . . . . . 11
⊢
(∃𝑠 ∈
𝑆 ∃𝑧(𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ ∃𝑧∃𝑠 ∈ 𝑆 (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 268 |  | ovex 7465 | . . . . . . . . . . . . 13
⊢ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∈ V | 
| 269 |  | breq2 5146 | . . . . . . . . . . . . 13
⊢ (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ((((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧 ↔ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 270 | 268, 269 | ceqsexv 3531 | . . . . . . . . . . . 12
⊢
(∃𝑧(𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 271 | 270 | rexbii 3093 | . . . . . . . . . . 11
⊢
(∃𝑠 ∈
𝑆 ∃𝑧(𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 272 | 267, 271 | bitr3i 277 | . . . . . . . . . 10
⊢
(∃𝑧∃𝑠 ∈ 𝑆 (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 273 | 272 | rexbii 3093 | . . . . . . . . 9
⊢
(∃𝑟 ∈
𝑅 ∃𝑧∃𝑠 ∈ 𝑆 (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 274 | 266, 273 | bitr3i 277 | . . . . . . . 8
⊢
(∃𝑧∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 275 | 263, 265,
274 | 3bitr2i 299 | . . . . . . 7
⊢
(∃𝑧 ∈
{𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧 ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 276 |  | ssun2 4178 | . . . . . . . 8
⊢ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ⊆ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) | 
| 277 |  | ssrexv 4052 | . . . . . . . 8
⊢ ({𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ⊆ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) → (∃𝑧 ∈ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧 → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 278 | 276, 277 | ax-mp 5 | . . . . . . 7
⊢
(∃𝑧 ∈
{𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧 → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 279 | 275, 278 | sylbir 235 | . . . . . 6
⊢
(∃𝑟 ∈
𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 280 | 279 | 2ralimi 3122 | . . . . 5
⊢
(∀𝑖 ∈ (
R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 281 | 260, 280 | syl 17 | . . . 4
⊢ (𝜑 → ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 282 |  | ralunb 4196 | . . . . 5
⊢
(∀𝑥𝑂 ∈ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))})∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ↔ (∀𝑥𝑂 ∈ {𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))}∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ∧ ∀𝑥𝑂 ∈ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 283 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑒 = 𝑥𝑂 → (𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ↔ 𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)))) | 
| 284 | 283 | 2rexbidv 3221 | . . . . . . . 8
⊢ (𝑒 = 𝑥𝑂 → (∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ↔ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)))) | 
| 285 | 284 | ralab 3696 | . . . . . . 7
⊢
(∀𝑥𝑂 ∈ {𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))}∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ↔ ∀𝑥𝑂(∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 286 |  | r19.23v 3182 | . . . . . . . . . 10
⊢
(∀𝑔 ∈ (
L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ (∃𝑔 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 287 | 286 | ralbii 3092 | . . . . . . . . 9
⊢
(∀𝑓 ∈ (
L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑓 ∈ ( L ‘𝐴)(∃𝑔 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 288 |  | r19.23v 3182 | . . . . . . . . 9
⊢
(∀𝑓 ∈ (
L ‘𝐴)(∃𝑔 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ (∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 289 | 287, 288 | bitri 275 | . . . . . . . 8
⊢
(∀𝑓 ∈ (
L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ (∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 290 | 289 | albii 1818 | . . . . . . 7
⊢
(∀𝑥𝑂∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑥𝑂(∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 291 |  | ralcom4 3285 | . . . . . . . 8
⊢
(∀𝑓 ∈ (
L ‘𝐴)∀𝑥𝑂∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑥𝑂∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 292 |  | ralcom4 3285 | . . . . . . . . . 10
⊢
(∀𝑔 ∈ (
L ‘𝐵)∀𝑥𝑂(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑥𝑂∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 293 |  | ovex 7465 | . . . . . . . . . . . 12
⊢ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ∈ V | 
| 294 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → (𝑥𝑂 ≤s 𝑧 ↔ (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧)) | 
| 295 | 294 | rexbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → (∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ↔ ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧)) | 
| 296 | 293, 295 | ceqsalv 3520 | . . . . . . . . . . 11
⊢
(∀𝑥𝑂(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 297 | 296 | ralbii 3092 | . . . . . . . . . 10
⊢
(∀𝑔 ∈ (
L ‘𝐵)∀𝑥𝑂(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 298 | 292, 297 | bitr3i 277 | . . . . . . . . 9
⊢
(∀𝑥𝑂∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 299 | 298 | ralbii 3092 | . . . . . . . 8
⊢
(∀𝑓 ∈ (
L ‘𝐴)∀𝑥𝑂∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 300 | 291, 299 | bitr3i 277 | . . . . . . 7
⊢
(∀𝑥𝑂∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 301 | 285, 290,
300 | 3bitr2i 299 | . . . . . 6
⊢
(∀𝑥𝑂 ∈ {𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))}∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ↔ ∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧) | 
| 302 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (ℎ = 𝑥𝑂 → (ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ↔ 𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)))) | 
| 303 | 302 | 2rexbidv 3221 | . . . . . . . 8
⊢ (ℎ = 𝑥𝑂 → (∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ↔ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)))) | 
| 304 | 303 | ralab 3696 | . . . . . . 7
⊢
(∀𝑥𝑂 ∈ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ↔ ∀𝑥𝑂(∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 305 |  | r19.23v 3182 | . . . . . . . . . 10
⊢
(∀𝑗 ∈ (
R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ (∃𝑗 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 306 | 305 | ralbii 3092 | . . . . . . . . 9
⊢
(∀𝑖 ∈ (
R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑖 ∈ ( R ‘𝐴)(∃𝑗 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 307 |  | r19.23v 3182 | . . . . . . . . 9
⊢
(∀𝑖 ∈ (
R ‘𝐴)(∃𝑗 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ (∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 308 | 306, 307 | bitri 275 | . . . . . . . 8
⊢
(∀𝑖 ∈ (
R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ (∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 309 | 308 | albii 1818 | . . . . . . 7
⊢
(∀𝑥𝑂∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑥𝑂(∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 310 |  | ralcom4 3285 | . . . . . . . 8
⊢
(∀𝑖 ∈ (
R ‘𝐴)∀𝑥𝑂∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑥𝑂∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 311 |  | ralcom4 3285 | . . . . . . . . . 10
⊢
(∀𝑗 ∈ (
R ‘𝐵)∀𝑥𝑂(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑥𝑂∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧)) | 
| 312 |  | ovex 7465 | . . . . . . . . . . . 12
⊢ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ∈ V | 
| 313 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → (𝑥𝑂 ≤s 𝑧 ↔ (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 314 | 313 | rexbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → (∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ↔ ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 315 | 312, 314 | ceqsalv 3520 | . . . . . . . . . . 11
⊢
(∀𝑥𝑂(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 316 | 315 | ralbii 3092 | . . . . . . . . . 10
⊢
(∀𝑗 ∈ (
R ‘𝐵)∀𝑥𝑂(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 317 | 311, 316 | bitr3i 277 | . . . . . . . . 9
⊢
(∀𝑥𝑂∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 318 | 317 | ralbii 3092 | . . . . . . . 8
⊢
(∀𝑖 ∈ (
R ‘𝐴)∀𝑥𝑂∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 319 | 310, 318 | bitr3i 277 | . . . . . . 7
⊢
(∀𝑥𝑂∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) → ∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 320 | 304, 309,
319 | 3bitr2i 299 | . . . . . 6
⊢
(∀𝑥𝑂 ∈ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ↔ ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧) | 
| 321 | 301, 320 | anbi12i 628 | . . . . 5
⊢
((∀𝑥𝑂 ∈ {𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))}∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ∧ ∀𝑥𝑂 ∈ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) ↔ (∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧 ∧ ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 322 | 282, 321 | bitri 275 | . . . 4
⊢
(∀𝑥𝑂 ∈ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))})∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧 ↔ (∀𝑓 ∈ ( L ‘𝐴)∀𝑔 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔)) ≤s 𝑧 ∧ ∀𝑖 ∈ ( R ‘𝐴)∀𝑗 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})(((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗)) ≤s 𝑧)) | 
| 323 | 148, 281,
322 | sylanbrc 583 | . . 3
⊢ (𝜑 → ∀𝑥𝑂 ∈ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))})∃𝑧 ∈ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})𝑥𝑂 ≤s 𝑧) | 
| 324 | 2, 1 | cofcutr1d 27960 | . . . . . 6
⊢ (𝜑 → ∀𝑙 ∈ ( L ‘𝐴)∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡) | 
| 325 | 6, 5 | cofcutr2d 27961 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑚 ∈ ( R ‘𝐵)∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚) | 
| 326 | 325 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ ∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡)) → ∀𝑚 ∈ ( R ‘𝐵)∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚) | 
| 327 |  | reeanv 3228 | . . . . . . . . . . . . . . 15
⊢
(∃𝑡 ∈
𝐿 ∃𝑢 ∈ 𝑆 (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚) ↔ (∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ∧ ∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚)) | 
| 328 | 33 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐿 ⊆  No
) | 
| 329 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑡 ∈ 𝐿) | 
| 330 | 328, 329 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑡 ∈  No
) | 
| 331 | 330 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → 𝑡 ∈  No
) | 
| 332 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → 𝐵 ∈  No
) | 
| 333 | 331, 332 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (𝑡 ·s 𝐵) ∈  No
) | 
| 334 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → 𝐴 ∈  No
) | 
| 335 | 181 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑆 ⊆  No
) | 
| 336 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑢 ∈ 𝑆) | 
| 337 | 335, 336 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝑢 ∈  No
) | 
| 338 | 337 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → 𝑢 ∈  No
) | 
| 339 | 334, 338 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (𝐴 ·s 𝑢) ∈  No
) | 
| 340 | 333, 339 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → ((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) ∈  No
) | 
| 341 | 331, 338 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (𝑡 ·s 𝑢) ∈  No
) | 
| 342 | 340, 341 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈  No
) | 
| 343 | 342 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈  No
) | 
| 344 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝑙 ∈ ( L ‘𝐴)) | 
| 345 | 16, 344 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝑙 ∈  No
) | 
| 346 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝐵 ∈  No
) | 
| 347 | 345, 346 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → (𝑙 ·s 𝐵) ∈  No
) | 
| 348 | 347 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (𝑙 ·s 𝐵) ∈  No
) | 
| 349 | 348, 339 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → ((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) ∈  No
) | 
| 350 | 345 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → 𝑙 ∈  No
) | 
| 351 | 350, 338 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (𝑙 ·s 𝑢) ∈  No
) | 
| 352 | 349, 351 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑙 ·s 𝑢)) ∈  No
) | 
| 353 | 352 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑙 ·s 𝑢)) ∈  No
) | 
| 354 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝐴 ∈  No
) | 
| 355 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝑚 ∈ ( R ‘𝐵)) | 
| 356 | 160, 355 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝑚 ∈  No
) | 
| 357 | 354, 356 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → (𝐴 ·s 𝑚) ∈  No
) | 
| 358 | 357 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (𝐴 ·s 𝑚) ∈  No
) | 
| 359 | 348, 358 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → ((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) ∈  No
) | 
| 360 | 345, 356 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → (𝑙 ·s 𝑚) ∈  No
) | 
| 361 | 360 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (𝑙 ·s 𝑚) ∈  No
) | 
| 362 | 359, 361 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ∈  No
) | 
| 363 | 362 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ∈  No
) | 
| 364 | 345 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝑙 ∈  No
) | 
| 365 | 331 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝑡 ∈  No
) | 
| 366 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝐵 ∈  No
) | 
| 367 | 338 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝑢 ∈  No
) | 
| 368 |  | simprrl 780 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚))) → 𝑙 ≤s 𝑡) | 
| 369 | 368 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝑙 ≤s 𝑡) | 
| 370 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 ∈  No
) | 
| 371 |  | scutcut 27847 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑀 <<s 𝑆 → ((𝑀 |s 𝑆) ∈  No 
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) | 
| 372 | 6, 371 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → ((𝑀 |s 𝑆) ∈  No 
∧ 𝑀 <<s {(𝑀 |s 𝑆)} ∧ {(𝑀 |s 𝑆)} <<s 𝑆)) | 
| 373 | 372 | simp3d 1144 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → {(𝑀 |s 𝑆)} <<s 𝑆) | 
| 374 | 373 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → {(𝑀 |s 𝑆)} <<s 𝑆) | 
| 375 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑀 |s 𝑆) ∈ V | 
| 376 | 375 | snid 4661 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 |s 𝑆) ∈ {(𝑀 |s 𝑆)} | 
| 377 | 5, 376 | eqeltrdi 2848 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → 𝐵 ∈ {(𝑀 |s 𝑆)}) | 
| 378 | 377 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 ∈ {(𝑀 |s 𝑆)}) | 
| 379 | 374, 378,
336 | ssltsepcd 27840 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 <s 𝑢) | 
| 380 | 370, 337,
379 | sltled 27815 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → 𝐵 ≤s 𝑢) | 
| 381 | 380 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → 𝐵 ≤s 𝑢) | 
| 382 | 381 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝐵 ≤s 𝑢) | 
| 383 | 364, 365,
366, 367, 369, 382 | slemuld 28165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → ((𝑙 ·s 𝑢) -s (𝑙 ·s 𝐵)) ≤s ((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵))) | 
| 384 | 351, 348,
341, 333 | slesubsub2bd 28118 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝑢) -s (𝑙 ·s 𝐵)) ≤s ((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) ↔ ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ≤s ((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)))) | 
| 385 | 333, 341 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → ((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ∈  No
) | 
| 386 | 348, 351 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → ((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)) ∈  No
) | 
| 387 | 385, 386,
339 | sleadd1d 28029 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) ≤s ((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)) ↔ (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)) +s (𝐴 ·s 𝑢)))) | 
| 388 | 384, 387 | bitrd 279 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝑢) -s (𝑙 ·s 𝐵)) ≤s ((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) ↔ (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)) +s (𝐴 ·s 𝑢)))) | 
| 389 | 388 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑙 ·s 𝑢) -s (𝑙 ·s 𝐵)) ≤s ((𝑡 ·s 𝑢) -s (𝑡 ·s 𝐵)) ↔ (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)) +s (𝐴 ·s 𝑢)))) | 
| 390 | 383, 389 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)) +s (𝐴 ·s 𝑢))) | 
| 391 | 333, 339,
341 | addsubsd 28113 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) = (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))) | 
| 392 | 391 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) = (((𝑡 ·s 𝐵) -s (𝑡 ·s 𝑢)) +s (𝐴 ·s 𝑢))) | 
| 393 | 348, 339,
351 | addsubsd 28113 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑙 ·s 𝑢)) = (((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)) +s (𝐴 ·s 𝑢))) | 
| 394 | 393 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑙 ·s 𝑢)) = (((𝑙 ·s 𝐵) -s (𝑙 ·s 𝑢)) +s (𝐴 ·s 𝑢))) | 
| 395 | 390, 392,
394 | 3brtr4d 5174 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑙 ·s 𝑢))) | 
| 396 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝐴 ∈  No
) | 
| 397 | 356 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝑚 ∈  No
) | 
| 398 |  | ssltleft 27910 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐴 ∈ 
No  → ( L ‘𝐴) <<s {𝐴}) | 
| 399 | 4, 398 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → ( L ‘𝐴) <<s {𝐴}) | 
| 400 | 399 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → ( L ‘𝐴) <<s {𝐴}) | 
| 401 |  | snidg 4659 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐴 ∈ 
No  → 𝐴 ∈
{𝐴}) | 
| 402 | 4, 401 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝐴 ∈ {𝐴}) | 
| 403 | 402 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝐴 ∈ {𝐴}) | 
| 404 | 400, 344,
403 | ssltsepcd 27840 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝑙 <s 𝐴) | 
| 405 | 345, 354,
404 | sltled 27815 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → 𝑙 ≤s 𝐴) | 
| 406 | 405 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝑙 ≤s 𝐴) | 
| 407 |  | simprrr 781 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚))) → 𝑢 ≤s 𝑚) | 
| 408 | 407 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → 𝑢 ≤s 𝑚) | 
| 409 | 364, 396,
367, 397, 406, 408 | slemuld 28165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → ((𝑙 ·s 𝑚) -s (𝑙 ·s 𝑢)) ≤s ((𝐴 ·s 𝑚) -s (𝐴 ·s 𝑢))) | 
| 410 | 361, 358,
351, 339 | slesubsub3bd 28119 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝑚) -s (𝑙 ·s 𝑢)) ≤s ((𝐴 ·s 𝑚) -s (𝐴 ·s 𝑢)) ↔ ((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢)) ≤s ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚)))) | 
| 411 | 339, 351 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → ((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢)) ∈  No
) | 
| 412 | 358, 361 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚)) ∈  No
) | 
| 413 | 411, 412,
348 | sleadd2d 28030 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢)) ≤s ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚)) ↔ ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢))) ≤s ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚))))) | 
| 414 | 410, 413 | bitrd 279 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝑚) -s (𝑙 ·s 𝑢)) ≤s ((𝐴 ·s 𝑚) -s (𝐴 ·s 𝑢)) ↔ ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢))) ≤s ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚))))) | 
| 415 | 414 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑙 ·s 𝑚) -s (𝑙 ·s 𝑢)) ≤s ((𝐴 ·s 𝑚) -s (𝐴 ·s 𝑢)) ↔ ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢))) ≤s ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚))))) | 
| 416 | 409, 415 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢))) ≤s ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚)))) | 
| 417 | 348, 339,
351 | addsubsassd 28112 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑙 ·s 𝑢)) = ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢)))) | 
| 418 | 417 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑙 ·s 𝑢)) = ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑢) -s (𝑙 ·s 𝑢)))) | 
| 419 | 348, 358,
361 | addsubsassd 28112 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) = ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚)))) | 
| 420 | 419 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) = ((𝑙 ·s 𝐵) +s ((𝐴 ·s 𝑚) -s (𝑙 ·s 𝑚)))) | 
| 421 | 416, 418,
420 | 3brtr4d 5174 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑙 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 422 | 343, 353,
363, 395, 421 | sletrd 27808 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 423 | 422 | anassrs 467 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) ∧ ((𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆) ∧ (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 424 | 423 | expr 456 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) ∧ (𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆)) → ((𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 425 | 424 | reximdvva 3206 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵))) → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚) → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 426 | 425 | expcom 413 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) → (𝜑 → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚) → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))))) | 
| 427 | 426 | com23 86 | . . . . . . . . . . . . . . . 16
⊢ ((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚) → (𝜑 → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))))) | 
| 428 | 427 | imp 406 | . . . . . . . . . . . . . . 15
⊢ (((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚)) → (𝜑 → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 429 | 327, 428 | sylan2br 595 | . . . . . . . . . . . . . 14
⊢ (((𝑙 ∈ ( L ‘𝐴) ∧ 𝑚 ∈ ( R ‘𝐵)) ∧ (∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ∧ ∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚)) → (𝜑 → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 430 | 429 | an4s 660 | . . . . . . . . . . . . 13
⊢ (((𝑙 ∈ ( L ‘𝐴) ∧ ∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡) ∧ (𝑚 ∈ ( R ‘𝐵) ∧ ∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚)) → (𝜑 → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 431 | 430 | impcom 407 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑙 ∈ ( L ‘𝐴) ∧ ∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡) ∧ (𝑚 ∈ ( R ‘𝐵) ∧ ∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚))) → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 432 | 431 | anassrs 467 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ ∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡)) ∧ (𝑚 ∈ ( R ‘𝐵) ∧ ∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚)) → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 433 | 432 | expr 456 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ ∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡)) ∧ 𝑚 ∈ ( R ‘𝐵)) → (∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 → ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 434 | 433 | ralimdva 3166 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ ∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡)) → (∀𝑚 ∈ ( R ‘𝐵)∃𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 → ∀𝑚 ∈ ( R ‘𝐵)∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 435 | 326, 434 | mpd 15 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑙 ∈ ( L ‘𝐴) ∧ ∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡)) → ∀𝑚 ∈ ( R ‘𝐵)∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 436 | 435 | expr 456 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑙 ∈ ( L ‘𝐴)) → (∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 → ∀𝑚 ∈ ( R ‘𝐵)∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 437 | 436 | ralimdva 3166 | . . . . . 6
⊢ (𝜑 → (∀𝑙 ∈ ( L ‘𝐴)∃𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 → ∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 438 | 324, 437 | mpd 15 | . . . . 5
⊢ (𝜑 → ∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 439 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑐 = 𝑧 → (𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ 𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 440 | 439 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑐 = 𝑧 → (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 441 | 440 | rexab 3699 | . . . . . . . 8
⊢
(∃𝑧 ∈
{𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))}𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ↔ ∃𝑧(∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 442 |  | r19.41vv 3226 | . . . . . . . . 9
⊢
(∃𝑡 ∈
𝐿 ∃𝑢 ∈ 𝑆 (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ (∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 443 | 442 | exbii 1847 | . . . . . . . 8
⊢
(∃𝑧∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ ∃𝑧(∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 444 |  | rexcom4 3287 | . . . . . . . . 9
⊢
(∃𝑡 ∈
𝐿 ∃𝑧∃𝑢 ∈ 𝑆 (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ ∃𝑧∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 445 |  | rexcom4 3287 | . . . . . . . . . . 11
⊢
(∃𝑢 ∈
𝑆 ∃𝑧(𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ ∃𝑧∃𝑢 ∈ 𝑆 (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 446 |  | ovex 7465 | . . . . . . . . . . . . 13
⊢ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈ V | 
| 447 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ↔ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 448 | 446, 447 | ceqsexv 3531 | . . . . . . . . . . . 12
⊢
(∃𝑧(𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 449 | 448 | rexbii 3093 | . . . . . . . . . . 11
⊢
(∃𝑢 ∈
𝑆 ∃𝑧(𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 450 | 445, 449 | bitr3i 277 | . . . . . . . . . 10
⊢
(∃𝑧∃𝑢 ∈ 𝑆 (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 451 | 450 | rexbii 3093 | . . . . . . . . 9
⊢
(∃𝑡 ∈
𝐿 ∃𝑧∃𝑢 ∈ 𝑆 (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 452 | 444, 451 | bitr3i 277 | . . . . . . . 8
⊢
(∃𝑧∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (𝑧 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∧ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 453 | 441, 443,
452 | 3bitr2i 299 | . . . . . . 7
⊢
(∃𝑧 ∈
{𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))}𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 454 |  | ssun1 4177 | . . . . . . . 8
⊢ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ⊆ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) | 
| 455 |  | ssrexv 4052 | . . . . . . . 8
⊢ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ⊆ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (∃𝑧 ∈ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))}𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 456 | 454, 455 | ax-mp 5 | . . . . . . 7
⊢
(∃𝑧 ∈
{𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))}𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 457 | 453, 456 | sylbir 235 | . . . . . 6
⊢
(∃𝑡 ∈
𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 458 | 457 | 2ralimi 3122 | . . . . 5
⊢
(∀𝑙 ∈ (
L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 459 | 438, 458 | syl 17 | . . . 4
⊢ (𝜑 → ∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 460 | 2, 1 | cofcutr2d 27961 | . . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ( R ‘𝐴)∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥) | 
| 461 | 6, 5 | cofcutr1d 27960 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ ( L ‘𝐵)∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤) | 
| 462 | 461 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ ∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥)) → ∀𝑦 ∈ ( L ‘𝐵)∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤) | 
| 463 |  | reeanv 3228 | . . . . . . . . . . . . . . 15
⊢
(∃𝑣 ∈
𝑅 ∃𝑤 ∈ 𝑀 (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤) ↔ (∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ∧ ∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤)) | 
| 464 | 170 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑅 ⊆  No
) | 
| 465 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑣 ∈ 𝑅) | 
| 466 | 464, 465 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑣 ∈  No
) | 
| 467 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐵 ∈  No
) | 
| 468 | 466, 467 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑣 ·s 𝐵) ∈  No
) | 
| 469 | 468 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (𝑣 ·s 𝐵) ∈  No
) | 
| 470 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝐴 ∈  No
) | 
| 471 | 44 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑀 ⊆  No
) | 
| 472 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑤 ∈ 𝑀) | 
| 473 | 471, 472 | sseldd 3983 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → 𝑤 ∈  No
) | 
| 474 | 470, 473 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝐴 ·s 𝑤) ∈  No
) | 
| 475 | 474 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (𝐴 ·s 𝑤) ∈  No
) | 
| 476 | 469, 475 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) ∈  No
) | 
| 477 | 466, 473 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → (𝑣 ·s 𝑤) ∈  No
) | 
| 478 | 477 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (𝑣 ·s 𝑤) ∈  No
) | 
| 479 | 476, 478 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈  No
) | 
| 480 | 479 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈  No
) | 
| 481 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → 𝐴 ∈  No
) | 
| 482 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝑦 ∈ ( L ‘𝐵)) | 
| 483 | 23, 482 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝑦 ∈  No
) | 
| 484 | 483 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → 𝑦 ∈  No
) | 
| 485 | 481, 484 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (𝐴 ·s 𝑦) ∈  No
) | 
| 486 | 469, 485 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) ∈  No
) | 
| 487 | 466 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → 𝑣 ∈  No
) | 
| 488 | 487, 484 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (𝑣 ·s 𝑦) ∈  No
) | 
| 489 | 486, 488 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑣 ·s 𝑦)) ∈  No
) | 
| 490 | 489 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑣 ·s 𝑦)) ∈  No
) | 
| 491 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝑥 ∈ ( R ‘𝐴)) | 
| 492 | 153, 491 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝑥 ∈  No
) | 
| 493 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝐵 ∈  No
) | 
| 494 | 492, 493 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → (𝑥 ·s 𝐵) ∈  No
) | 
| 495 | 494 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (𝑥 ·s 𝐵) ∈  No
) | 
| 496 | 495, 485 | addscld 28014 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → ((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) ∈  No
) | 
| 497 | 492, 483 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → (𝑥 ·s 𝑦) ∈  No
) | 
| 498 | 497 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (𝑥 ·s 𝑦) ∈  No
) | 
| 499 | 496, 498 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ∈  No
) | 
| 500 | 499 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ∈  No
) | 
| 501 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝐴 ∈  No
) | 
| 502 | 487 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝑣 ∈  No
) | 
| 503 | 483 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝑦 ∈  No
) | 
| 504 | 473 | adantrl 716 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → 𝑤 ∈  No
) | 
| 505 | 504 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝑤 ∈  No
) | 
| 506 | 1 | sneqd 4637 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → {𝐴} = {(𝐿 |s 𝑅)}) | 
| 507 | 506, 222 | eqbrtrd 5164 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → {𝐴} <<s 𝑅) | 
| 508 | 507 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → {𝐴} <<s 𝑅) | 
| 509 | 481, 401 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → 𝐴 ∈ {𝐴}) | 
| 510 |  | simprrl 780 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → 𝑣 ∈ 𝑅) | 
| 511 | 508, 509,
510 | ssltsepcd 27840 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → 𝐴 <s 𝑣) | 
| 512 | 481, 487,
511 | sltled 27815 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → 𝐴 ≤s 𝑣) | 
| 513 | 512 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝐴 ≤s 𝑣) | 
| 514 |  | simprrr 781 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤))) → 𝑦 ≤s 𝑤) | 
| 515 | 514 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝑦 ≤s 𝑤) | 
| 516 | 501, 502,
503, 505, 513, 515 | slemuld 28165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → ((𝐴 ·s 𝑤) -s (𝐴 ·s 𝑦)) ≤s ((𝑣 ·s 𝑤) -s (𝑣 ·s 𝑦))) | 
| 517 | 475, 478,
485, 488 | slesubsubbd 28117 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝐴 ·s 𝑤) -s (𝐴 ·s 𝑦)) ≤s ((𝑣 ·s 𝑤) -s (𝑣 ·s 𝑦)) ↔ ((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤)) ≤s ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦)))) | 
| 518 | 475, 478 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → ((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤)) ∈  No
) | 
| 519 | 485, 488 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦)) ∈  No
) | 
| 520 | 518, 519,
469 | sleadd2d 28030 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤)) ≤s ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦)) ↔ ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤))) ≤s ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦))))) | 
| 521 | 517, 520 | bitrd 279 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝐴 ·s 𝑤) -s (𝐴 ·s 𝑦)) ≤s ((𝑣 ·s 𝑤) -s (𝑣 ·s 𝑦)) ↔ ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤))) ≤s ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦))))) | 
| 522 | 521 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝐴 ·s 𝑤) -s (𝐴 ·s 𝑦)) ≤s ((𝑣 ·s 𝑤) -s (𝑣 ·s 𝑦)) ↔ ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤))) ≤s ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦))))) | 
| 523 | 516, 522 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤))) ≤s ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦)))) | 
| 524 | 469, 475,
478 | addsubsassd 28112 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) = ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤)))) | 
| 525 | 524 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) = ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑤) -s (𝑣 ·s 𝑤)))) | 
| 526 | 469, 485,
488 | addsubsassd 28112 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑣 ·s 𝑦)) = ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦)))) | 
| 527 | 526 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑣 ·s 𝑦)) = ((𝑣 ·s 𝐵) +s ((𝐴 ·s 𝑦) -s (𝑣 ·s 𝑦)))) | 
| 528 | 523, 525,
527 | 3brtr4d 5174 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑣 ·s 𝑦))) | 
| 529 | 492 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝑥 ∈  No
) | 
| 530 | 8 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝐵 ∈  No
) | 
| 531 |  | simprrl 780 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤))) → 𝑣 ≤s 𝑥) | 
| 532 | 531 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝑣 ≤s 𝑥) | 
| 533 | 493, 61 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → ( L ‘𝐵) <<s {𝐵}) | 
| 534 | 65 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝐵 ∈ {𝐵}) | 
| 535 | 533, 482,
534 | ssltsepcd 27840 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝑦 <s 𝐵) | 
| 536 | 483, 493,
535 | sltled 27815 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝑦 ≤s 𝐵) | 
| 537 | 536 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → 𝑦 ≤s 𝐵) | 
| 538 | 502, 529,
503, 530, 532, 537 | slemuld 28165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑦)) ≤s ((𝑥 ·s 𝐵) -s (𝑥 ·s 𝑦))) | 
| 539 | 469, 488 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑦)) ∈  No
) | 
| 540 | 539 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → ((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑦)) ∈  No
) | 
| 541 | 495, 498 | subscld 28094 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → ((𝑥 ·s 𝐵) -s (𝑥 ·s 𝑦)) ∈  No
) | 
| 542 | 541 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → ((𝑥 ·s 𝐵) -s (𝑥 ·s 𝑦)) ∈  No
) | 
| 543 | 485 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (𝐴 ·s 𝑦) ∈  No
) | 
| 544 | 540, 542,
543 | sleadd1d 28029 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑦)) ≤s ((𝑥 ·s 𝐵) -s (𝑥 ·s 𝑦)) ↔ (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑦)) +s (𝐴 ·s 𝑦)) ≤s (((𝑥 ·s 𝐵) -s (𝑥 ·s 𝑦)) +s (𝐴 ·s 𝑦)))) | 
| 545 | 538, 544 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑦)) +s (𝐴 ·s 𝑦)) ≤s (((𝑥 ·s 𝐵) -s (𝑥 ·s 𝑦)) +s (𝐴 ·s 𝑦))) | 
| 546 | 469, 485,
488 | addsubsd 28113 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑣 ·s 𝑦)) = (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑦)) +s (𝐴 ·s 𝑦))) | 
| 547 | 546 | adantrrr 725 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑣 ·s 𝑦)) = (((𝑣 ·s 𝐵) -s (𝑣 ·s 𝑦)) +s (𝐴 ·s 𝑦))) | 
| 548 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → 𝐴 ∈  No
) | 
| 549 | 548, 483 | mulscld 28162 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → (𝐴 ·s 𝑦) ∈  No
) | 
| 550 | 494, 549,
497 | addsubsd 28113 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) = (((𝑥 ·s 𝐵) -s (𝑥 ·s 𝑦)) +s (𝐴 ·s 𝑦))) | 
| 551 | 550 | adantrr 717 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) = (((𝑥 ·s 𝐵) -s (𝑥 ·s 𝑦)) +s (𝐴 ·s 𝑦))) | 
| 552 | 545, 547,
551 | 3brtr4d 5174 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑣 ·s 𝑦)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 553 | 480, 490,
500, 528, 552 | sletrd 27808 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 554 | 553 | anassrs 467 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) ∧ ((𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀) ∧ (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 555 | 554 | expr 456 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) ∧ (𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀)) → ((𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 556 | 555 | reximdvva 3206 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵))) → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤) → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 557 | 556 | expcom 413 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝜑 → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤) → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))))) | 
| 558 | 557 | com23 86 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤) → (𝜑 → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))))) | 
| 559 | 558 | imp 406 | . . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤)) → (𝜑 → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 560 | 463, 559 | sylan2br 595 | . . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ( R ‘𝐴) ∧ 𝑦 ∈ ( L ‘𝐵)) ∧ (∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ∧ ∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤)) → (𝜑 → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 561 | 560 | an4s 660 | . . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ( R ‘𝐴) ∧ ∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥) ∧ (𝑦 ∈ ( L ‘𝐵) ∧ ∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤)) → (𝜑 → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 562 | 561 | impcom 407 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑥 ∈ ( R ‘𝐴) ∧ ∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥) ∧ (𝑦 ∈ ( L ‘𝐵) ∧ ∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤))) → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 563 | 562 | anassrs 467 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ ∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥)) ∧ (𝑦 ∈ ( L ‘𝐵) ∧ ∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤)) → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 564 | 563 | expr 456 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ ∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥)) ∧ 𝑦 ∈ ( L ‘𝐵)) → (∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 → ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 565 | 564 | ralimdva 3166 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ ∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥)) → (∀𝑦 ∈ ( L ‘𝐵)∃𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 → ∀𝑦 ∈ ( L ‘𝐵)∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 566 | 462, 565 | mpd 15 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ( R ‘𝐴) ∧ ∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥)) → ∀𝑦 ∈ ( L ‘𝐵)∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 567 | 566 | expr 456 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ( R ‘𝐴)) → (∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 → ∀𝑦 ∈ ( L ‘𝐵)∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 568 | 567 | ralimdva 3166 | . . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ ( R ‘𝐴)∃𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 → ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 569 | 460, 568 | mpd 15 | . . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 570 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑑 = 𝑧 → (𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ 𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 571 | 570 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑑 = 𝑧 → (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 572 | 571 | rexab 3699 | . . . . . . . 8
⊢
(∃𝑧 ∈
{𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ↔ ∃𝑧(∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 573 |  | r19.41vv 3226 | . . . . . . . . 9
⊢
(∃𝑣 ∈
𝑅 ∃𝑤 ∈ 𝑀 (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ (∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 574 | 573 | exbii 1847 | . . . . . . . 8
⊢
(∃𝑧∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ ∃𝑧(∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 575 |  | rexcom4 3287 | . . . . . . . . 9
⊢
(∃𝑣 ∈
𝑅 ∃𝑧∃𝑤 ∈ 𝑀 (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ ∃𝑧∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 576 |  | rexcom4 3287 | . . . . . . . . . . 11
⊢
(∃𝑤 ∈
𝑀 ∃𝑧(𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ ∃𝑧∃𝑤 ∈ 𝑀 (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 577 |  | ovex 7465 | . . . . . . . . . . . . 13
⊢ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈ V | 
| 578 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ↔ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 579 | 577, 578 | ceqsexv 3531 | . . . . . . . . . . . 12
⊢
(∃𝑧(𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 580 | 579 | rexbii 3093 | . . . . . . . . . . 11
⊢
(∃𝑤 ∈
𝑀 ∃𝑧(𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 581 | 576, 580 | bitr3i 277 | . . . . . . . . . 10
⊢
(∃𝑧∃𝑤 ∈ 𝑀 (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 582 | 581 | rexbii 3093 | . . . . . . . . 9
⊢
(∃𝑣 ∈
𝑅 ∃𝑧∃𝑤 ∈ 𝑀 (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 583 | 575, 582 | bitr3i 277 | . . . . . . . 8
⊢
(∃𝑧∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (𝑧 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∧ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 584 | 572, 574,
583 | 3bitr2i 299 | . . . . . . 7
⊢
(∃𝑧 ∈
{𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 585 |  | ssun2 4178 | . . . . . . . 8
⊢ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ⊆ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) | 
| 586 |  | ssrexv 4052 | . . . . . . . 8
⊢ ({𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ⊆ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) → (∃𝑧 ∈ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 587 | 585, 586 | ax-mp 5 | . . . . . . 7
⊢
(∃𝑧 ∈
{𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 588 | 584, 587 | sylbir 235 | . . . . . 6
⊢
(∃𝑣 ∈
𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 589 | 588 | 2ralimi 3122 | . . . . 5
⊢
(∀𝑥 ∈ (
R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 590 | 569, 589 | syl 17 | . . . 4
⊢ (𝜑 → ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 591 |  | ralunb 4196 | . . . . 5
⊢
(∀𝑥𝑂 ∈ ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ↔ (∀𝑥𝑂 ∈
{𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))}∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ∧ ∀𝑥𝑂 ∈
{𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 592 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑘 = 𝑥𝑂 → (𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ↔ 𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 593 | 592 | 2rexbidv 3221 | . . . . . . . 8
⊢ (𝑘 = 𝑥𝑂 → (∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ↔ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 594 | 593 | ralab 3696 | . . . . . . 7
⊢
(∀𝑥𝑂 ∈ {𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))}∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ↔ ∀𝑥𝑂(∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 595 |  | r19.23v 3182 | . . . . . . . . . 10
⊢
(∀𝑚 ∈ (
R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ (∃𝑚 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 596 | 595 | ralbii 3092 | . . . . . . . . 9
⊢
(∀𝑙 ∈ (
L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑙 ∈ ( L ‘𝐴)(∃𝑚 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 597 |  | r19.23v 3182 | . . . . . . . . 9
⊢
(∀𝑙 ∈ (
L ‘𝐴)(∃𝑚 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ (∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 598 | 596, 597 | bitri 275 | . . . . . . . 8
⊢
(∀𝑙 ∈ (
L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ (∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 599 | 598 | albii 1818 | . . . . . . 7
⊢
(∀𝑥𝑂∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥𝑂(∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 600 |  | ralcom4 3285 | . . . . . . . 8
⊢
(∀𝑙 ∈ (
L ‘𝐴)∀𝑥𝑂∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥𝑂∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 601 |  | ralcom4 3285 | . . . . . . . . . 10
⊢
(∀𝑚 ∈ (
R ‘𝐵)∀𝑥𝑂(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥𝑂∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 602 |  | ovex 7465 | . . . . . . . . . . . 12
⊢ (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ∈ V | 
| 603 |  | breq2 5146 | . . . . . . . . . . . . 13
⊢ (𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → (𝑧 ≤s 𝑥𝑂 ↔ 𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 604 | 603 | rexbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → (∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ↔ ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)))) | 
| 605 | 602, 604 | ceqsalv 3520 | . . . . . . . . . . 11
⊢
(∀𝑥𝑂(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 606 | 605 | ralbii 3092 | . . . . . . . . . 10
⊢
(∀𝑚 ∈ (
R ‘𝐵)∀𝑥𝑂(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 607 | 601, 606 | bitr3i 277 | . . . . . . . . 9
⊢
(∀𝑥𝑂∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 608 | 607 | ralbii 3092 | . . . . . . . 8
⊢
(∀𝑙 ∈ (
L ‘𝐴)∀𝑥𝑂∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 609 | 600, 608 | bitr3i 277 | . . . . . . 7
⊢
(∀𝑥𝑂∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)(𝑥𝑂 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 610 | 594, 599,
609 | 3bitr2i 299 | . . . . . 6
⊢
(∀𝑥𝑂 ∈ {𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))}∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ↔ ∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))) | 
| 611 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑛 = 𝑥𝑂 → (𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ↔ 𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 612 | 611 | 2rexbidv 3221 | . . . . . . . 8
⊢ (𝑛 = 𝑥𝑂 → (∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ↔ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 613 | 612 | ralab 3696 | . . . . . . 7
⊢
(∀𝑥𝑂 ∈ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ↔ ∀𝑥𝑂(∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 614 |  | r19.23v 3182 | . . . . . . . . . 10
⊢
(∀𝑦 ∈ (
L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ (∃𝑦 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 615 | 614 | ralbii 3092 | . . . . . . . . 9
⊢
(∀𝑥 ∈ (
R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥 ∈ ( R ‘𝐴)(∃𝑦 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 616 |  | r19.23v 3182 | . . . . . . . . 9
⊢
(∀𝑥 ∈ (
R ‘𝐴)(∃𝑦 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ (∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 617 | 615, 616 | bitri 275 | . . . . . . . 8
⊢
(∀𝑥 ∈ (
R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ (∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 618 | 617 | albii 1818 | . . . . . . 7
⊢
(∀𝑥𝑂∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥𝑂(∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 619 |  | ralcom4 3285 | . . . . . . . 8
⊢
(∀𝑥 ∈ (
R ‘𝐴)∀𝑥𝑂∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥𝑂∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 620 |  | ralcom4 3285 | . . . . . . . . . 10
⊢
(∀𝑦 ∈ (
L ‘𝐵)∀𝑥𝑂(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥𝑂∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂)) | 
| 621 |  | ovex 7465 | . . . . . . . . . . . 12
⊢ (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) ∈ V | 
| 622 |  | breq2 5146 | . . . . . . . . . . . . 13
⊢ (𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → (𝑧 ≤s 𝑥𝑂 ↔ 𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 623 | 622 | rexbidv 3178 | . . . . . . . . . . . 12
⊢ (𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → (∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ↔ ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 624 | 621, 623 | ceqsalv 3520 | . . . . . . . . . . 11
⊢
(∀𝑥𝑂(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 625 | 624 | ralbii 3092 | . . . . . . . . . 10
⊢
(∀𝑦 ∈ (
L ‘𝐵)∀𝑥𝑂(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 626 | 620, 625 | bitr3i 277 | . . . . . . . . 9
⊢
(∀𝑥𝑂∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 627 | 626 | ralbii 3092 | . . . . . . . 8
⊢
(∀𝑥 ∈ (
R ‘𝐴)∀𝑥𝑂∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 628 | 619, 627 | bitr3i 277 | . . . . . . 7
⊢
(∀𝑥𝑂∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)(𝑥𝑂 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)) → ∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 629 | 613, 618,
628 | 3bitr2i 299 | . . . . . 6
⊢
(∀𝑥𝑂 ∈ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ↔ ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))) | 
| 630 | 610, 629 | anbi12i 628 | . . . . 5
⊢
((∀𝑥𝑂 ∈ {𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))}∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ∧ ∀𝑥𝑂 ∈
{𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) ↔ (∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ∧ ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 631 | 591, 630 | bitri 275 | . . . 4
⊢
(∀𝑥𝑂 ∈ ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂 ↔ (∀𝑙 ∈ ( L ‘𝐴)∀𝑚 ∈ ( R ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚)) ∧ ∀𝑥 ∈ ( R ‘𝐴)∀𝑦 ∈ ( L ‘𝐵)∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦)))) | 
| 632 | 459, 590,
631 | sylanbrc 583 | . . 3
⊢ (𝜑 → ∀𝑥𝑂 ∈ ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})∃𝑧 ∈ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})𝑧 ≤s 𝑥𝑂) | 
| 633 | 2, 6, 1, 5 | ssltmul1 28174 | . . . 4
⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)}) | 
| 634 | 10 | sneqd 4637 | . . . 4
⊢ (𝜑 → {(𝐴 ·s 𝐵)} = {(({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))}) | 
| 635 | 633, 634 | breqtrd 5168 | . . 3
⊢ (𝜑 → ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))}) | 
| 636 | 2, 6, 1, 5 | ssltmul2 28175 | . . . 4
⊢ (𝜑 → {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | 
| 637 | 634, 636 | eqbrtrrd 5166 | . . 3
⊢ (𝜑 → {(({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))} <<s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | 
| 638 | 11, 323, 632, 635, 637 | cofcut1d 27956 | . 2
⊢ (𝜑 → (({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑗 ∈ ( R ‘𝐵)ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ ( L ‘𝐴)∃𝑚 ∈ ( R ‘𝐵)𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑛 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) | 
| 639 | 10, 638 | eqtrd 2776 | 1
⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |