MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpasch Structured version   Visualization version   GIF version

Theorem axpasch 28920
Description: The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axpasch ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝐵   𝑥,𝐸   𝑥,𝐶   𝑥,𝐷

Proof of Theorem axpasch
Dummy variables 𝑖 𝑘 𝑞 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axpaschlem 28919 . . . . . . . . . 10 ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
213ad2ant3 1135 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
3 simp1 1136 . . . . . . . . . . . . . . . . . . 19 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑞 = ((1 − 𝑟) · (1 − 𝑡)))
43oveq1d 7420 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑞 · (𝐴𝑖)) = (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)))
54eqcomd 2741 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = (𝑞 · (𝐴𝑖)))
6 simp2 1137 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑟 = ((1 − 𝑞) · (1 − 𝑠)))
76oveq1d 7420 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑟 · (𝐵𝑖)) = (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)))
85, 7oveq12d 7423 . . . . . . . . . . . . . . . 16 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))))
9 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))
109oveq1d 7420 . . . . . . . . . . . . . . . 16 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = (((1 − 𝑞) · 𝑠) · (𝐶𝑖)))
118, 10oveq12d 7423 . . . . . . . . . . . . . . 15 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
12113ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
1312adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
14 1re 11235 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
15 simpl2l 1227 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
16 elicc01 13483 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (0[,]1) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟 ≤ 1))
1716simp1bi 1145 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ (0[,]1) → 𝑟 ∈ ℝ)
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
19 resubcl 11547 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (1 − 𝑟) ∈ ℝ)
2014, 18, 19sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
2120recnd 11263 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℂ)
22 simp13l 1289 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑡 ∈ (0[,]1))
2322adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
24 elicc01 13483 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
2524simp1bi 1145 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
27 resubcl 11547 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
2814, 26, 27sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
29 simp121 1306 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐴 ∈ (𝔼‘𝑁))
30 fveere 28880 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3228, 31remulcld 11265 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℝ)
3332recnd 11263 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℂ)
34 simp123 1308 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐶 ∈ (𝔼‘𝑁))
35 fveere 28880 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3634, 35sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3726, 36remulcld 11265 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
3837recnd 11263 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
3921, 33, 38adddid 11259 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4028recnd 11263 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ)
4131recnd 11263 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
4221, 40, 41mulassd 11258 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = ((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))))
4326recnd 11263 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
44 fveecn 28881 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4534, 44sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4621, 43, 45mulassd 11258 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = ((1 − 𝑟) · (𝑡 · (𝐶𝑖))))
4742, 46oveq12d 7423 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4839, 47eqtr4d 2773 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
4948oveq1d 7420 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))))
5020, 28remulcld 11265 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (1 − 𝑡)) ∈ ℝ)
5150, 31remulcld 11265 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℝ)
5251recnd 11263 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℂ)
5320, 26remulcld 11265 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · 𝑡) ∈ ℝ)
5453, 36remulcld 11265 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℝ)
5554recnd 11263 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℂ)
56 simp122 1307 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐵 ∈ (𝔼‘𝑁))
57 fveere 28880 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5856, 57sylan 580 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5918, 58remulcld 11265 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℝ)
6059recnd 11263 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℂ)
6152, 55, 60add32d 11463 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
6249, 61eqtrd 2770 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
63 simpl2r 1228 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ (0[,]1))
64 elicc01 13483 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ (0[,]1) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞𝑞 ≤ 1))
6564simp1bi 1145 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (0[,]1) → 𝑞 ∈ ℝ)
6663, 65syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ ℝ)
67 resubcl 11547 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑞 ∈ ℝ) → (1 − 𝑞) ∈ ℝ)
6814, 66, 67sylancr 587 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℝ)
69 simp13r 1290 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑠 ∈ (0[,]1))
7069adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ (0[,]1))
71 elicc01 13483 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (0[,]1) ↔ (𝑠 ∈ ℝ ∧ 0 ≤ 𝑠𝑠 ≤ 1))
7271simp1bi 1145 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℝ)
7370, 72syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
74 resubcl 11547 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (1 − 𝑠) ∈ ℝ)
7514, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℝ)
7675, 58remulcld 11265 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℝ)
7768, 76remulcld 11265 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℝ)
7877recnd 11263 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℂ)
7973, 36remulcld 11265 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℝ)
8068, 79remulcld 11265 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℝ)
8180recnd 11263 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℂ)
8266, 31remulcld 11265 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℝ)
8382recnd 11263 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℂ)
8478, 81, 83add32d 11463 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8568recnd 11263 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℂ)
8676recnd 11263 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℂ)
8779recnd 11263 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℂ)
8885, 86, 87adddid 11259 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8988oveq1d 7420 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
9075recnd 11263 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℂ)
9158recnd 11263 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
9285, 90, 91mulassd 11258 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)) = ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))))
9392oveq2d 7421 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖)))))
9483, 78, 93comraddd 11449 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))))
9573recnd 11263 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
9685, 95, 45mulassd 11258 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · 𝑠) · (𝐶𝑖)) = ((1 − 𝑞) · (𝑠 · (𝐶𝑖))))
9794, 96oveq12d 7423 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
9884, 89, 973eqtr4d 2780 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
9913, 62, 983eqtr4d 2780 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
10099ralrimiva 3132 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
1011003expia 1121 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
102101reximdvva 3192 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
1032, 102mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
104 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
105104, 17syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
10614, 105, 19sylancr 587 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
107 simpl3l 1229 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝑡 ∈ (0[,]1))
108107adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
109108, 25syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
11014, 109, 27sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
111 simpl21 1252 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐴 ∈ (𝔼‘𝑁))
112 fveere 28880 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
113111, 112sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
114110, 113remulcld 11265 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑘)) ∈ ℝ)
115 simpl23 1254 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐶 ∈ (𝔼‘𝑁))
116 fveere 28880 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
117115, 116sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
118109, 117remulcld 11265 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑘)) ∈ ℝ)
119114, 118readdcld 11264 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) ∈ ℝ)
120106, 119remulcld 11265 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) ∈ ℝ)
121 simpl22 1253 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐵 ∈ (𝔼‘𝑁))
122 fveere 28880 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
123121, 122sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
124105, 123remulcld 11265 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑘)) ∈ ℝ)
125120, 124readdcld 11264 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
126125ralrimiva 3132 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
127126anassrs 467 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
128 simpll1 1213 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
129 mptelee 28874 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
130128, 129syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
131127, 130mpbird 257 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁))
132 fveq1 6875 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖))
133 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
134133oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐴𝑘)) = ((1 − 𝑡) · (𝐴𝑖)))
135 fveq2 6876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
136135oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
137134, 136oveq12d 7423 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))
138137oveq2d 7421 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
139 fveq2 6876 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
140139oveq2d 7421 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑟 · (𝐵𝑘)) = (𝑟 · (𝐵𝑖)))
141138, 140oveq12d 7423 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
142 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))
143 ovex 7438 . . . . . . . . . . . . . . . . . . 19 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∈ V
144141, 142, 143fvmpt 6986 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
145132, 144sylan9eq 2790 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
146145eqeq1d 2737 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
147145eqeq1d 2737 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
148146, 147anbi12d 632 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
149 eqid 2735 . . . . . . . . . . . . . . . 16 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))
150149biantrur 530 . . . . . . . . . . . . . . 15 ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
151148, 150bitr4di 289 . . . . . . . . . . . . . 14 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
152151ralbidva 3161 . . . . . . . . . . . . 13 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
153152rspcev 3601 . . . . . . . . . . . 12 (((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
154153ex 412 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
155131, 154syl 17 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
156155reximdva 3153 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
157156reximdva 3153 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
158103, 157mpd 15 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
159 rexcom 3271 . . . . . . . . 9 (∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
160159rexbii 3083 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
161 rexcom 3271 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
162160, 161bitri 275 . . . . . . 7 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
163158, 162sylib 218 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
164 oveq2 7413 . . . . . . . . . . . . 13 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((1 − 𝑟) · (𝐷𝑖)) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
165164oveq1d 7420 . . . . . . . . . . . 12 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
166165eqeq2d 2746 . . . . . . . . . . 11 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
167 oveq2 7413 . . . . . . . . . . . . 13 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((1 − 𝑞) · (𝐸𝑖)) = ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
168167oveq1d 7420 . . . . . . . . . . . 12 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
169168eqeq2d 2746 . . . . . . . . . . 11 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
170166, 169bi2anan9 638 . . . . . . . . . 10 (((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
171170ralimi 3073 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
172 ralbi 3092 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
173171, 172syl 17 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
174173rexbidv 3164 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
1751742rexbidv 3206 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
176163, 175syl5ibrcom 247 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1771763expia 1121 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))))
178177rexlimdvv 3197 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1791783adant3 1132 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
180 simp3l 1202 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
181 simp21 1207 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
182 simp23 1209 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
183 brbtwn 28878 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
184180, 181, 182, 183syl3anc 1373 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
185 simp3r 1203 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
186 simp22 1208 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
187 brbtwn 28878 . . . . 5 ((𝐸 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
188185, 186, 182, 187syl3anc 1373 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
189184, 188anbi12d 632 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
190 r19.26 3098 . . . . 5 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
1911902rexbii 3116 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
192 reeanv 3213 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
193191, 192bitri 275 . . 3 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
194189, 193bitr4di 289 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
195 simpr 484 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
196 simpl3l 1229 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
197 simpl22 1253 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
198 brbtwn 28878 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
199195, 196, 197, 198syl3anc 1373 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
200 simpl3r 1230 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
201 simpl21 1252 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
202 brbtwn 28878 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
203195, 200, 201, 202syl3anc 1373 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
204199, 203anbi12d 632 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
205 r19.26 3098 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
2062052rexbii 3116 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
207 reeanv 3213 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
208206, 207bitri 275 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
209204, 208bitr4di 289 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
210209rexbidva 3162 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
211179, 194, 2103imtr4d 294 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cop 4607   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  cmin 11466  cn 12240  [,]cicc 13365  ...cfz 13524  𝔼cee 28867   Btwn cbtwn 28868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-z 12589  df-uz 12853  df-icc 13369  df-fz 13525  df-ee 28870  df-btwn 28871
This theorem is referenced by:  eengtrkg  28965  btwncomim  36031  btwnswapid  36035  btwnintr  36037  btwnexch3  36038  trisegint  36046  btwnconn1lem13  36117
  Copyright terms: Public domain W3C validator