MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpasch Structured version   Visualization version   GIF version

Theorem axpasch 27309
Description: The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axpasch ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝑁

Proof of Theorem axpasch
Dummy variables 𝑖 𝑞 𝑟 𝑠 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axpaschlem 27308 . . . . . . . . . 10 ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
213ad2ant3 1134 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
3 simp1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑞 = ((1 − 𝑟) · (1 − 𝑡)))
43oveq1d 7290 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑞 · (𝐴𝑖)) = (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)))
54eqcomd 2744 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = (𝑞 · (𝐴𝑖)))
6 simp2 1136 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑟 = ((1 − 𝑞) · (1 − 𝑠)))
76oveq1d 7290 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑟 · (𝐵𝑖)) = (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)))
85, 7oveq12d 7293 . . . . . . . . . . . . . . . 16 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))))
9 simp3 1137 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))
109oveq1d 7290 . . . . . . . . . . . . . . . 16 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = (((1 − 𝑞) · 𝑠) · (𝐶𝑖)))
118, 10oveq12d 7293 . . . . . . . . . . . . . . 15 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
12113ad2ant3 1134 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
1312adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
14 1re 10975 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
15 simpl2l 1225 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
16 elicc01 13198 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (0[,]1) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟 ≤ 1))
1716simp1bi 1144 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ (0[,]1) → 𝑟 ∈ ℝ)
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
19 resubcl 11285 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (1 − 𝑟) ∈ ℝ)
2014, 18, 19sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
2120recnd 11003 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℂ)
22 simp13l 1287 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑡 ∈ (0[,]1))
2322adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
24 elicc01 13198 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
2524simp1bi 1144 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
27 resubcl 11285 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
2814, 26, 27sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
29 simp121 1304 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐴 ∈ (𝔼‘𝑁))
30 fveere 27269 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3228, 31remulcld 11005 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℝ)
3332recnd 11003 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℂ)
34 simp123 1306 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐶 ∈ (𝔼‘𝑁))
35 fveere 27269 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3634, 35sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3726, 36remulcld 11005 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
3837recnd 11003 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
3921, 33, 38adddid 10999 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4028recnd 11003 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ)
4131recnd 11003 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
4221, 40, 41mulassd 10998 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = ((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))))
4326recnd 11003 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
44 fveecn 27270 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4534, 44sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4621, 43, 45mulassd 10998 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = ((1 − 𝑟) · (𝑡 · (𝐶𝑖))))
4742, 46oveq12d 7293 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4839, 47eqtr4d 2781 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
4948oveq1d 7290 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))))
5020, 28remulcld 11005 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (1 − 𝑡)) ∈ ℝ)
5150, 31remulcld 11005 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℝ)
5251recnd 11003 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℂ)
5320, 26remulcld 11005 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · 𝑡) ∈ ℝ)
5453, 36remulcld 11005 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℝ)
5554recnd 11003 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℂ)
56 simp122 1305 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐵 ∈ (𝔼‘𝑁))
57 fveere 27269 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5856, 57sylan 580 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5918, 58remulcld 11005 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℝ)
6059recnd 11003 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℂ)
6152, 55, 60add32d 11202 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
6249, 61eqtrd 2778 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
63 simpl2r 1226 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ (0[,]1))
64 elicc01 13198 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ (0[,]1) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞𝑞 ≤ 1))
6564simp1bi 1144 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (0[,]1) → 𝑞 ∈ ℝ)
6663, 65syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ ℝ)
67 resubcl 11285 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑞 ∈ ℝ) → (1 − 𝑞) ∈ ℝ)
6814, 66, 67sylancr 587 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℝ)
69 simp13r 1288 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑠 ∈ (0[,]1))
7069adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ (0[,]1))
71 elicc01 13198 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (0[,]1) ↔ (𝑠 ∈ ℝ ∧ 0 ≤ 𝑠𝑠 ≤ 1))
7271simp1bi 1144 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℝ)
7370, 72syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
74 resubcl 11285 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (1 − 𝑠) ∈ ℝ)
7514, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℝ)
7675, 58remulcld 11005 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℝ)
7768, 76remulcld 11005 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℝ)
7877recnd 11003 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℂ)
7973, 36remulcld 11005 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℝ)
8068, 79remulcld 11005 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℝ)
8180recnd 11003 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℂ)
8266, 31remulcld 11005 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℝ)
8382recnd 11003 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℂ)
8478, 81, 83add32d 11202 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8568recnd 11003 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℂ)
8676recnd 11003 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℂ)
8779recnd 11003 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℂ)
8885, 86, 87adddid 10999 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8988oveq1d 7290 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
9075recnd 11003 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℂ)
9158recnd 11003 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
9285, 90, 91mulassd 10998 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)) = ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))))
9392oveq2d 7291 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖)))))
9483, 78, 93comraddd 11189 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))))
9573recnd 11003 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
9685, 95, 45mulassd 10998 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · 𝑠) · (𝐶𝑖)) = ((1 − 𝑞) · (𝑠 · (𝐶𝑖))))
9794, 96oveq12d 7293 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
9884, 89, 973eqtr4d 2788 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
9913, 62, 983eqtr4d 2788 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
10099ralrimiva 3103 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
1011003expia 1120 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
102101reximdvva 3206 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
1032, 102mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
104 simplrl 774 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
105104, 17syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
10614, 105, 19sylancr 587 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
107 simpl3l 1227 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝑡 ∈ (0[,]1))
108107adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
109108, 25syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
11014, 109, 27sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
111 simpl21 1250 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐴 ∈ (𝔼‘𝑁))
112 fveere 27269 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
113111, 112sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
114110, 113remulcld 11005 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑘)) ∈ ℝ)
115 simpl23 1252 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐶 ∈ (𝔼‘𝑁))
116 fveere 27269 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
117115, 116sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
118109, 117remulcld 11005 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑘)) ∈ ℝ)
119114, 118readdcld 11004 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) ∈ ℝ)
120106, 119remulcld 11005 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) ∈ ℝ)
121 simpl22 1251 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐵 ∈ (𝔼‘𝑁))
122 fveere 27269 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
123121, 122sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
124105, 123remulcld 11005 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑘)) ∈ ℝ)
125120, 124readdcld 11004 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
126125ralrimiva 3103 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
127126anassrs 468 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
128 simpll1 1211 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
129 mptelee 27263 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
130128, 129syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
131127, 130mpbird 256 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁))
132 fveq1 6773 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖))
133 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
134133oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐴𝑘)) = ((1 − 𝑡) · (𝐴𝑖)))
135 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
136135oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
137134, 136oveq12d 7293 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))
138137oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
139 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
140139oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑟 · (𝐵𝑘)) = (𝑟 · (𝐵𝑖)))
141138, 140oveq12d 7293 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
142 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))
143 ovex 7308 . . . . . . . . . . . . . . . . . . 19 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∈ V
144141, 142, 143fvmpt 6875 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
145132, 144sylan9eq 2798 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
146145eqeq1d 2740 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
147145eqeq1d 2740 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
148146, 147anbi12d 631 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
149 eqid 2738 . . . . . . . . . . . . . . . 16 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))
150149biantrur 531 . . . . . . . . . . . . . . 15 ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
151148, 150bitr4di 289 . . . . . . . . . . . . . 14 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
152151ralbidva 3111 . . . . . . . . . . . . 13 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
153152rspcev 3561 . . . . . . . . . . . 12 (((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
154153ex 413 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
155131, 154syl 17 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
156155reximdva 3203 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
157156reximdva 3203 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
158103, 157mpd 15 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
159 rexcom 3234 . . . . . . . . 9 (∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
160159rexbii 3181 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
161 rexcom 3234 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
162160, 161bitri 274 . . . . . . 7 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
163158, 162sylib 217 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
164 oveq2 7283 . . . . . . . . . . . . 13 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((1 − 𝑟) · (𝐷𝑖)) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
165164oveq1d 7290 . . . . . . . . . . . 12 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
166165eqeq2d 2749 . . . . . . . . . . 11 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
167 oveq2 7283 . . . . . . . . . . . . 13 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((1 − 𝑞) · (𝐸𝑖)) = ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
168167oveq1d 7290 . . . . . . . . . . . 12 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
169168eqeq2d 2749 . . . . . . . . . . 11 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
170166, 169bi2anan9 636 . . . . . . . . . 10 (((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
171170ralimi 3087 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
172 ralbi 3089 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
173171, 172syl 17 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
174173rexbidv 3226 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
1751742rexbidv 3229 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
176163, 175syl5ibrcom 246 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1771763expia 1120 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))))
178177rexlimdvv 3222 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1791783adant3 1131 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
180 simp3l 1200 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
181 simp21 1205 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
182 simp23 1207 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
183 brbtwn 27267 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
184180, 181, 182, 183syl3anc 1370 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
185 simp3r 1201 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
186 simp22 1206 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
187 brbtwn 27267 . . . . 5 ((𝐸 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
188185, 186, 182, 187syl3anc 1370 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
189184, 188anbi12d 631 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
190 r19.26 3095 . . . . 5 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
1911902rexbii 3182 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
192 reeanv 3294 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
193191, 192bitri 274 . . 3 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
194189, 193bitr4di 289 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
195 simpr 485 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
196 simpl3l 1227 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
197 simpl22 1251 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
198 brbtwn 27267 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
199195, 196, 197, 198syl3anc 1370 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
200 simpl3r 1228 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
201 simpl21 1250 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
202 brbtwn 27267 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
203195, 200, 201, 202syl3anc 1370 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
204199, 203anbi12d 631 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
205 r19.26 3095 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
2062052rexbii 3182 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
207 reeanv 3294 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
208206, 207bitri 274 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
209204, 208bitr4di 289 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
210209rexbidva 3225 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
211179, 194, 2103imtr4d 294 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cop 4567   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cmin 11205  cn 11973  [,]cicc 13082  ...cfz 13239  𝔼cee 27256   Btwn cbtwn 27257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-z 12320  df-uz 12583  df-icc 13086  df-fz 13240  df-ee 27259  df-btwn 27260
This theorem is referenced by:  eengtrkg  27354  btwncomim  34315  btwnswapid  34319  btwnintr  34321  btwnexch3  34322  trisegint  34330  btwnconn1lem13  34401
  Copyright terms: Public domain W3C validator