MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpasch Structured version   Visualization version   GIF version

Theorem axpasch 26654
Description: The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axpasch ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝑁

Proof of Theorem axpasch
Dummy variables 𝑖 𝑞 𝑟 𝑠 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axpaschlem 26653 . . . . . . . . . 10 ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
213ad2ant3 1127 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
3 simp1 1128 . . . . . . . . . . . . . . . . . . 19 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑞 = ((1 − 𝑟) · (1 − 𝑡)))
43oveq1d 7160 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑞 · (𝐴𝑖)) = (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)))
54eqcomd 2824 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = (𝑞 · (𝐴𝑖)))
6 simp2 1129 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑟 = ((1 − 𝑞) · (1 − 𝑠)))
76oveq1d 7160 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑟 · (𝐵𝑖)) = (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)))
85, 7oveq12d 7163 . . . . . . . . . . . . . . . 16 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))))
9 simp3 1130 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))
109oveq1d 7160 . . . . . . . . . . . . . . . 16 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = (((1 − 𝑞) · 𝑠) · (𝐶𝑖)))
118, 10oveq12d 7163 . . . . . . . . . . . . . . 15 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
12113ad2ant3 1127 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
1312adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
14 1re 10629 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
15 simpl2l 1218 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
16 elicc01 12842 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (0[,]1) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟 ≤ 1))
1716simp1bi 1137 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ (0[,]1) → 𝑟 ∈ ℝ)
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
19 resubcl 10938 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (1 − 𝑟) ∈ ℝ)
2014, 18, 19sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
2120recnd 10657 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℂ)
22 simp13l 1280 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑡 ∈ (0[,]1))
2322adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
24 elicc01 12842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
2524simp1bi 1137 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
27 resubcl 10938 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
2814, 26, 27sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
29 simp121 1297 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐴 ∈ (𝔼‘𝑁))
30 fveere 26614 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3228, 31remulcld 10659 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℝ)
3332recnd 10657 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℂ)
34 simp123 1299 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐶 ∈ (𝔼‘𝑁))
35 fveere 26614 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3634, 35sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3726, 36remulcld 10659 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
3837recnd 10657 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
3921, 33, 38adddid 10653 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4028recnd 10657 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ)
4131recnd 10657 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
4221, 40, 41mulassd 10652 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = ((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))))
4326recnd 10657 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
44 fveecn 26615 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4534, 44sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4621, 43, 45mulassd 10652 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = ((1 − 𝑟) · (𝑡 · (𝐶𝑖))))
4742, 46oveq12d 7163 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4839, 47eqtr4d 2856 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
4948oveq1d 7160 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))))
5020, 28remulcld 10659 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (1 − 𝑡)) ∈ ℝ)
5150, 31remulcld 10659 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℝ)
5251recnd 10657 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℂ)
5320, 26remulcld 10659 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · 𝑡) ∈ ℝ)
5453, 36remulcld 10659 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℝ)
5554recnd 10657 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℂ)
56 simp122 1298 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐵 ∈ (𝔼‘𝑁))
57 fveere 26614 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5856, 57sylan 580 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5918, 58remulcld 10659 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℝ)
6059recnd 10657 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℂ)
6152, 55, 60add32d 10855 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
6249, 61eqtrd 2853 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
63 simpl2r 1219 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ (0[,]1))
64 elicc01 12842 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ (0[,]1) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞𝑞 ≤ 1))
6564simp1bi 1137 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (0[,]1) → 𝑞 ∈ ℝ)
6663, 65syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ ℝ)
67 resubcl 10938 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑞 ∈ ℝ) → (1 − 𝑞) ∈ ℝ)
6814, 66, 67sylancr 587 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℝ)
69 simp13r 1281 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑠 ∈ (0[,]1))
7069adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ (0[,]1))
71 elicc01 12842 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (0[,]1) ↔ (𝑠 ∈ ℝ ∧ 0 ≤ 𝑠𝑠 ≤ 1))
7271simp1bi 1137 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℝ)
7370, 72syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
74 resubcl 10938 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (1 − 𝑠) ∈ ℝ)
7514, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℝ)
7675, 58remulcld 10659 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℝ)
7768, 76remulcld 10659 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℝ)
7877recnd 10657 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℂ)
7973, 36remulcld 10659 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℝ)
8068, 79remulcld 10659 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℝ)
8180recnd 10657 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℂ)
8266, 31remulcld 10659 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℝ)
8382recnd 10657 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℂ)
8478, 81, 83add32d 10855 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8568recnd 10657 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℂ)
8676recnd 10657 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℂ)
8779recnd 10657 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℂ)
8885, 86, 87adddid 10653 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8988oveq1d 7160 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
9075recnd 10657 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℂ)
9158recnd 10657 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
9285, 90, 91mulassd 10652 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)) = ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))))
9392oveq2d 7161 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖)))))
9483, 78, 93comraddd 10842 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))))
9573recnd 10657 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
9685, 95, 45mulassd 10652 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · 𝑠) · (𝐶𝑖)) = ((1 − 𝑞) · (𝑠 · (𝐶𝑖))))
9794, 96oveq12d 7163 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
9884, 89, 973eqtr4d 2863 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
9913, 62, 983eqtr4d 2863 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
10099ralrimiva 3179 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
1011003expia 1113 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
102101reximdvva 3274 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
1032, 102mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
104 simplrl 773 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
105104, 17syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
10614, 105, 19sylancr 587 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
107 simpl3l 1220 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝑡 ∈ (0[,]1))
108107adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
109108, 25syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
11014, 109, 27sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
111 simpl21 1243 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐴 ∈ (𝔼‘𝑁))
112 fveere 26614 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
113111, 112sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
114110, 113remulcld 10659 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑘)) ∈ ℝ)
115 simpl23 1245 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐶 ∈ (𝔼‘𝑁))
116 fveere 26614 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
117115, 116sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
118109, 117remulcld 10659 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑘)) ∈ ℝ)
119114, 118readdcld 10658 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) ∈ ℝ)
120106, 119remulcld 10659 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) ∈ ℝ)
121 simpl22 1244 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐵 ∈ (𝔼‘𝑁))
122 fveere 26614 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
123121, 122sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
124105, 123remulcld 10659 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑘)) ∈ ℝ)
125120, 124readdcld 10658 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
126125ralrimiva 3179 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
127126anassrs 468 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
128 simpll1 1204 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
129 mptelee 26608 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
130128, 129syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
131127, 130mpbird 258 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁))
132 fveq1 6662 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖))
133 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
134133oveq2d 7161 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐴𝑘)) = ((1 − 𝑡) · (𝐴𝑖)))
135 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
136135oveq2d 7161 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
137134, 136oveq12d 7163 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))
138137oveq2d 7161 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
139 fveq2 6663 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
140139oveq2d 7161 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑟 · (𝐵𝑘)) = (𝑟 · (𝐵𝑖)))
141138, 140oveq12d 7163 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
142 eqid 2818 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))
143 ovex 7178 . . . . . . . . . . . . . . . . . . 19 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∈ V
144141, 142, 143fvmpt 6761 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
145132, 144sylan9eq 2873 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
146145eqeq1d 2820 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
147145eqeq1d 2820 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
148146, 147anbi12d 630 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
149 eqid 2818 . . . . . . . . . . . . . . . 16 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))
150149biantrur 531 . . . . . . . . . . . . . . 15 ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
151148, 150syl6bbr 290 . . . . . . . . . . . . . 14 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
152151ralbidva 3193 . . . . . . . . . . . . 13 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
153152rspcev 3620 . . . . . . . . . . . 12 (((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
154153ex 413 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
155131, 154syl 17 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
156155reximdva 3271 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
157156reximdva 3271 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
158103, 157mpd 15 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
159 rexcom 3352 . . . . . . . . 9 (∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
160159rexbii 3244 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
161 rexcom 3352 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
162160, 161bitri 276 . . . . . . 7 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
163158, 162sylib 219 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
164 oveq2 7153 . . . . . . . . . . . . 13 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((1 − 𝑟) · (𝐷𝑖)) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
165164oveq1d 7160 . . . . . . . . . . . 12 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
166165eqeq2d 2829 . . . . . . . . . . 11 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
167 oveq2 7153 . . . . . . . . . . . . 13 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((1 − 𝑞) · (𝐸𝑖)) = ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
168167oveq1d 7160 . . . . . . . . . . . 12 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
169168eqeq2d 2829 . . . . . . . . . . 11 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
170166, 169bi2anan9 635 . . . . . . . . . 10 (((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
171170ralimi 3157 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
172 ralbi 3164 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
173171, 172syl 17 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
174173rexbidv 3294 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
1751742rexbidv 3297 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
176163, 175syl5ibrcom 248 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1771763expia 1113 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))))
178177rexlimdvv 3290 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1791783adant3 1124 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
180 simp3l 1193 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
181 simp21 1198 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
182 simp23 1200 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
183 brbtwn 26612 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
184180, 181, 182, 183syl3anc 1363 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
185 simp3r 1194 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
186 simp22 1199 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
187 brbtwn 26612 . . . . 5 ((𝐸 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
188185, 186, 182, 187syl3anc 1363 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
189184, 188anbi12d 630 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
190 r19.26 3167 . . . . 5 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
1911902rexbii 3245 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
192 reeanv 3365 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
193191, 192bitri 276 . . 3 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
194189, 193syl6bbr 290 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
195 simpr 485 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
196 simpl3l 1220 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
197 simpl22 1244 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
198 brbtwn 26612 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
199195, 196, 197, 198syl3anc 1363 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
200 simpl3r 1221 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
201 simpl21 1243 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
202 brbtwn 26612 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
203195, 200, 201, 202syl3anc 1363 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
204199, 203anbi12d 630 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
205 r19.26 3167 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
2062052rexbii 3245 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
207 reeanv 3365 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
208206, 207bitri 276 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
209204, 208syl6bbr 290 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
210209rexbidva 3293 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
211179, 194, 2103imtr4d 295 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  cop 4563   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cle 10664  cmin 10858  cn 11626  [,]cicc 12729  ...cfz 12880  𝔼cee 26601   Btwn cbtwn 26602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-z 11970  df-uz 12232  df-icc 12733  df-fz 12881  df-ee 26604  df-btwn 26605
This theorem is referenced by:  eengtrkg  26699  btwncomim  33371  btwnswapid  33375  btwnintr  33377  btwnexch3  33378  trisegint  33386  btwnconn1lem13  33457
  Copyright terms: Public domain W3C validator