MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpasch Structured version   Visualization version   GIF version

Theorem axpasch 26660
Description: The inner Pasch axiom. Take a triangle 𝐴𝐶𝐸, a point 𝐷 on 𝐴𝐶, and a point 𝐵 extending 𝐶𝐸. Then 𝐴𝐸 and 𝐷𝐵 intersect at some point 𝑥. Axiom A7 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axpasch ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝑁

Proof of Theorem axpasch
Dummy variables 𝑖 𝑞 𝑟 𝑠 𝑡 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axpaschlem 26659 . . . . . . . . . 10 ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
213ad2ant3 1129 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)))
3 simp1 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑞 = ((1 − 𝑟) · (1 − 𝑡)))
43oveq1d 7165 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑞 · (𝐴𝑖)) = (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)))
54eqcomd 2832 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = (𝑞 · (𝐴𝑖)))
6 simp2 1131 . . . . . . . . . . . . . . . . . 18 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → 𝑟 = ((1 − 𝑞) · (1 − 𝑠)))
76oveq1d 7165 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (𝑟 · (𝐵𝑖)) = (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)))
85, 7oveq12d 7168 . . . . . . . . . . . . . . . 16 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))))
9 simp3 1132 . . . . . . . . . . . . . . . . 17 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))
109oveq1d 7165 . . . . . . . . . . . . . . . 16 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = (((1 − 𝑞) · 𝑠) · (𝐶𝑖)))
118, 10oveq12d 7168 . . . . . . . . . . . . . . 15 ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
12113ad2ant3 1129 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
1312adantr 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
14 1re 10635 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
15 simpl2l 1220 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
16 elicc01 12849 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (0[,]1) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟 ≤ 1))
1716simp1bi 1139 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ (0[,]1) → 𝑟 ∈ ℝ)
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
19 resubcl 10944 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (1 − 𝑟) ∈ ℝ)
2014, 18, 19sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
2120recnd 10663 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℂ)
22 simp13l 1282 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑡 ∈ (0[,]1))
2322adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
24 elicc01 12849 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ (0[,]1) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡𝑡 ≤ 1))
2524simp1bi 1139 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℝ)
2623, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
27 resubcl 10944 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (1 − 𝑡) ∈ ℝ)
2814, 26, 27sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
29 simp121 1299 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐴 ∈ (𝔼‘𝑁))
30 fveere 26620 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3129, 30sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
3228, 31remulcld 10665 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℝ)
3332recnd 10663 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑖)) ∈ ℂ)
34 simp123 1301 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐶 ∈ (𝔼‘𝑁))
35 fveere 26620 . . . . . . . . . . . . . . . . . . . 20 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3634, 35sylan 580 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
3726, 36remulcld 10665 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℝ)
3837recnd 10663 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑖)) ∈ ℂ)
3921, 33, 38adddid 10659 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4028recnd 10663 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ)
4131recnd 10663 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
4221, 40, 41mulassd 10658 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) = ((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))))
4326recnd 10663 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
44 fveecn 26621 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4534, 44sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
4621, 43, 45mulassd 10658 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) = ((1 − 𝑟) · (𝑡 · (𝐶𝑖))))
4742, 46oveq12d 7168 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) = (((1 − 𝑟) · ((1 − 𝑡) · (𝐴𝑖))) + ((1 − 𝑟) · (𝑡 · (𝐶𝑖)))))
4839, 47eqtr4d 2864 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) = ((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
4948oveq1d 7165 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))))
5020, 28remulcld 10665 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · (1 − 𝑡)) ∈ ℝ)
5150, 31remulcld 10665 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℝ)
5251recnd 10663 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) ∈ ℂ)
5320, 26remulcld 10665 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑟) · 𝑡) ∈ ℝ)
5453, 36remulcld 10665 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℝ)
5554recnd 10663 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · 𝑡) · (𝐶𝑖)) ∈ ℂ)
56 simp122 1300 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝐵 ∈ (𝔼‘𝑁))
57 fveere 26620 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5856, 57sylan 580 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℝ)
5918, 58remulcld 10665 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℝ)
6059recnd 10663 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑖)) ∈ ℂ)
6152, 55, 60add32d 10861 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
6249, 61eqtrd 2861 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((((1 − 𝑟) · (1 − 𝑡)) · (𝐴𝑖)) + (𝑟 · (𝐵𝑖))) + (((1 − 𝑟) · 𝑡) · (𝐶𝑖))))
63 simpl2r 1221 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ (0[,]1))
64 elicc01 12849 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ (0[,]1) ↔ (𝑞 ∈ ℝ ∧ 0 ≤ 𝑞𝑞 ≤ 1))
6564simp1bi 1139 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ (0[,]1) → 𝑞 ∈ ℝ)
6663, 65syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑞 ∈ ℝ)
67 resubcl 10944 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑞 ∈ ℝ) → (1 − 𝑞) ∈ ℝ)
6814, 66, 67sylancr 587 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℝ)
69 simp13r 1283 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → 𝑠 ∈ (0[,]1))
7069adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ (0[,]1))
71 elicc01 12849 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (0[,]1) ↔ (𝑠 ∈ ℝ ∧ 0 ≤ 𝑠𝑠 ≤ 1))
7271simp1bi 1139 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (0[,]1) → 𝑠 ∈ ℝ)
7370, 72syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
74 resubcl 10944 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (1 − 𝑠) ∈ ℝ)
7514, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℝ)
7675, 58remulcld 10665 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℝ)
7768, 76remulcld 10665 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℝ)
7877recnd 10663 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) ∈ ℂ)
7973, 36remulcld 10665 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℝ)
8068, 79remulcld 10665 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℝ)
8180recnd 10663 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (𝑠 · (𝐶𝑖))) ∈ ℂ)
8266, 31remulcld 10665 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℝ)
8382recnd 10663 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑞 · (𝐴𝑖)) ∈ ℂ)
8478, 81, 83add32d 10861 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8568recnd 10663 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑞) ∈ ℂ)
8676recnd 10663 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑠) · (𝐵𝑖)) ∈ ℂ)
8779recnd 10663 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑠 · (𝐶𝑖)) ∈ ℂ)
8885, 86, 87adddid 10659 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
8988oveq1d 7165 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
9075recnd 10663 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑠) ∈ ℂ)
9158recnd 10663 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
9285, 90, 91mulassd 10658 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖)) = ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))))
9392oveq2d 7166 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = ((𝑞 · (𝐴𝑖)) + ((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖)))))
9483, 78, 93comraddd 10848 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) = (((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))))
9573recnd 10663 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
9685, 95, 45mulassd 10658 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · 𝑠) · (𝐶𝑖)) = ((1 − 𝑞) · (𝑠 · (𝐶𝑖))))
9794, 96oveq12d 7168 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))) = ((((1 − 𝑞) · ((1 − 𝑠) · (𝐵𝑖))) + (𝑞 · (𝐴𝑖))) + ((1 − 𝑞) · (𝑠 · (𝐶𝑖)))))
9884, 89, 973eqtr4d 2871 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) = (((𝑞 · (𝐴𝑖)) + (((1 − 𝑞) · (1 − 𝑠)) · (𝐵𝑖))) + (((1 − 𝑞) · 𝑠) · (𝐶𝑖))))
9913, 62, 983eqtr4d 2871 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
10099ralrimiva 3187 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1)) ∧ (𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠))) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
1011003expia 1115 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ((𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
102101reximdvva 3282 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(𝑞 = ((1 − 𝑟) · (1 − 𝑡)) ∧ 𝑟 = ((1 − 𝑞) · (1 − 𝑠)) ∧ ((1 − 𝑟) · 𝑡) = ((1 − 𝑞) · 𝑠)) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
1032, 102mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
104 simplrl 773 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ (0[,]1))
105104, 17syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑟 ∈ ℝ)
10614, 105, 19sylancr 587 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑟) ∈ ℝ)
107 simpl3l 1222 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝑡 ∈ (0[,]1))
108107adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ (0[,]1))
109108, 25syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → 𝑡 ∈ ℝ)
11014, 109, 27sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℝ)
111 simpl21 1245 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐴 ∈ (𝔼‘𝑁))
112 fveere 26620 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
113111, 112sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℝ)
114110, 113remulcld 10665 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝐴𝑘)) ∈ ℝ)
115 simpl23 1247 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐶 ∈ (𝔼‘𝑁))
116 fveere 26620 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
117115, 116sylan 580 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐶𝑘) ∈ ℝ)
118109, 117remulcld 10665 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑡 · (𝐶𝑘)) ∈ ℝ)
119114, 118readdcld 10664 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) ∈ ℝ)
120106, 119remulcld 10665 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) ∈ ℝ)
121 simpl22 1246 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → 𝐵 ∈ (𝔼‘𝑁))
122 fveere 26620 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
123121, 122sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝐵𝑘) ∈ ℝ)
124105, 123remulcld 10665 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (𝑟 · (𝐵𝑘)) ∈ ℝ)
125120, 124readdcld 10664 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) ∧ 𝑘 ∈ (1...𝑁)) → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
126125ralrimiva 3187 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ (𝑟 ∈ (0[,]1) ∧ 𝑞 ∈ (0[,]1))) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
127126anassrs 468 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ)
128 simpll1 1206 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → 𝑁 ∈ ℕ)
129 mptelee 26614 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
130128, 129syl 17 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) ∈ ℝ))
131127, 130mpbird 258 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁))
132 fveq1 6668 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖))
133 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
134133oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → ((1 − 𝑡) · (𝐴𝑘)) = ((1 − 𝑡) · (𝐴𝑖)))
135 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝐶𝑘) = (𝐶𝑖))
136135oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑡 · (𝐶𝑘)) = (𝑡 · (𝐶𝑖)))
137134, 136oveq12d 7168 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘))) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))))
138137oveq2d 7166 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
139 fveq2 6669 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
140139oveq2d 7166 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑟 · (𝐵𝑘)) = (𝑟 · (𝐵𝑖)))
141138, 140oveq12d 7168 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
142 eqid 2826 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))
143 ovex 7183 . . . . . . . . . . . . . . . . . . 19 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∈ V
144141, 142, 143fvmpt 6767 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑁) → ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘))))‘𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
145132, 144sylan9eq 2881 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
146145eqeq1d 2828 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
147145eqeq1d 2828 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
148146, 147anbi12d 630 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
149 eqid 2826 . . . . . . . . . . . . . . . 16 (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))
150149biantrur 531 . . . . . . . . . . . . . . 15 ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) ↔ ((((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
151148, 150syl6bbr 290 . . . . . . . . . . . . . 14 ((𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
152151ralbidva 3201 . . . . . . . . . . . . 13 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
153152rspcev 3627 . . . . . . . . . . . 12 (((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
154153ex 413 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ↦ (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑘)) + (𝑡 · (𝐶𝑘)))) + (𝑟 · (𝐵𝑘)))) ∈ (𝔼‘𝑁) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
155131, 154syl 17 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) ∧ 𝑞 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
156155reximdva 3279 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) ∧ 𝑟 ∈ (0[,]1)) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
157156reximdva 3279 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
158103, 157mpd 15 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
159 rexcom 3360 . . . . . . . . 9 (∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
160159rexbii 3252 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
161 rexcom 3360 . . . . . . . 8 (∃𝑟 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
162160, 161bitri 276 . . . . . . 7 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∃𝑥 ∈ (𝔼‘𝑁)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
163158, 162sylib 219 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
164 oveq2 7158 . . . . . . . . . . . . 13 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((1 − 𝑟) · (𝐷𝑖)) = ((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
165164oveq1d 7165 . . . . . . . . . . . 12 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))))
166165eqeq2d 2837 . . . . . . . . . . 11 ((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖)))))
167 oveq2 7158 . . . . . . . . . . . . 13 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((1 − 𝑞) · (𝐸𝑖)) = ((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
168167oveq1d 7165 . . . . . . . . . . . 12 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))
169168eqeq2d 2837 . . . . . . . . . . 11 ((𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))) → ((𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))) ↔ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖)))))
170166, 169bi2anan9 635 . . . . . . . . . 10 (((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
171170ralimi 3165 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
172 ralbi 3172 . . . . . . . . 9 (∀𝑖 ∈ (1...𝑁)(((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
173171, 172syl 17 . . . . . . . 8 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
174173rexbidv 3302 . . . . . . 7 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
1751742rexbidv 3305 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → (∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) + (𝑞 · (𝐴𝑖))))))
176163, 175syl5ibrcom 248 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1))) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1771763expia 1115 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑡 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))))
178177rexlimdvv 3298 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
1791783adant3 1126 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
180 simp3l 1195 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
181 simp21 1200 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
182 simp23 1202 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
183 brbtwn 26618 . . . . 5 ((𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
184180, 181, 182, 183syl3anc 1365 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐷 Btwn ⟨𝐴, 𝐶⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖)))))
185 simp3r 1196 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
186 simp22 1201 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
187 brbtwn 26618 . . . . 5 ((𝐸 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
188185, 186, 182, 187syl3anc 1365 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (𝐸 Btwn ⟨𝐵, 𝐶⟩ ↔ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
189184, 188anbi12d 630 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
190 r19.26 3175 . . . . 5 (∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
1911902rexbii 3253 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
192 reeanv 3373 . . . 4 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
193191, 192bitri 276 . . 3 (∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ ∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖)))))
194189, 193syl6bbr 290 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) ↔ ∃𝑡 ∈ (0[,]1)∃𝑠 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝐷𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝐶𝑖))) ∧ (𝐸𝑖) = (((1 − 𝑠) · (𝐵𝑖)) + (𝑠 · (𝐶𝑖))))))
195 simpr 485 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
196 simpl3l 1222 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
197 simpl22 1246 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
198 brbtwn 26618 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
199195, 196, 197, 198syl3anc 1365 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐷, 𝐵⟩ ↔ ∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖)))))
200 simpl3r 1223 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐸 ∈ (𝔼‘𝑁))
201 simpl21 1245 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
202 brbtwn 26618 . . . . . 6 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
203195, 200, 201, 202syl3anc 1365 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝐸, 𝐴⟩ ↔ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
204199, 203anbi12d 630 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
205 r19.26 3175 . . . . . 6 (∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
2062052rexbii 3253 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
207 reeanv 3373 . . . . 5 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
208206, 207bitri 276 . . . 4 (∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))) ↔ (∃𝑟 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ ∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖)))))
209204, 208syl6bbr 290 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
210209rexbidva 3301 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑟 ∈ (0[,]1)∃𝑞 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)((𝑥𝑖) = (((1 − 𝑟) · (𝐷𝑖)) + (𝑟 · (𝐵𝑖))) ∧ (𝑥𝑖) = (((1 − 𝑞) · (𝐸𝑖)) + (𝑞 · (𝐴𝑖))))))
211179, 194, 2103imtr4d 295 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐸 Btwn ⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn ⟨𝐷, 𝐵⟩ ∧ 𝑥 Btwn ⟨𝐸, 𝐴⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  wrex 3144  cop 4570   class class class wbr 5063  cmpt 5143  cfv 6354  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cle 10670  cmin 10864  cn 11632  [,]cicc 12736  ...cfz 12887  𝔼cee 26607   Btwn cbtwn 26608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-z 11976  df-uz 12238  df-icc 12740  df-fz 12888  df-ee 26610  df-btwn 26611
This theorem is referenced by:  eengtrkg  26705  btwncomim  33377  btwnswapid  33381  btwnintr  33383  btwnexch3  33384  trisegint  33392  btwnconn1lem13  33463
  Copyright terms: Public domain W3C validator