Step | Hyp | Ref
| Expression |
1 | | prprvalpw 44855 |
. . . . 5
⊢ (𝑋 ∈ V →
(Pairsproper‘𝑋) = {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
2 | 1 | eleq2d 2824 |
. . . 4
⊢ (𝑋 ∈ V → (𝑃 ∈
(Pairsproper‘𝑋) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})})) |
3 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏})) |
4 | 3 | anbi2d 628 |
. . . . . 6
⊢ (𝑝 = 𝑃 → ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
5 | 4 | 2rexbidv 3228 |
. . . . 5
⊢ (𝑝 = 𝑃 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
6 | 5 | elrab 3617 |
. . . 4
⊢ (𝑃 ∈ {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
7 | 2, 6 | bitrdi 286 |
. . 3
⊢ (𝑋 ∈ V → (𝑃 ∈
(Pairsproper‘𝑋) ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})))) |
8 | | pm3.22 459 |
. . . . . . . . 9
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ ((𝑃 ∈ 𝒫 𝑋 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
10 | 9 | reximdvva 3205 |
. . . . . . 7
⊢ (𝑃 ∈ 𝒫 𝑋 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
11 | 10 | imp 406 |
. . . . . 6
⊢ ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
12 | 11 | anim2i 616 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) → (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |
13 | 12 | ex 412 |
. . . 4
⊢ (𝑋 ∈ V → ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})) → (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)))) |
14 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ V ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) |
15 | 14 | ancomd 461 |
. . . . . . . . 9
⊢ (((𝑋 ∈ V ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})) |
16 | | prelpwi 5357 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → {𝑎, 𝑏} ∈ 𝒫 𝑋) |
17 | 16 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ V ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → {𝑎, 𝑏} ∈ 𝒫 𝑋) |
18 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ V ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑋) |
19 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋)) |
20 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋)) |
21 | 20 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ V ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋)) |
22 | 18, 21 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝑋 ∈ V ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑃 ∈ 𝒫 𝑋) |
23 | 15, 22 | jca 511 |
. . . . . . . 8
⊢ (((𝑋 ∈ V ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)) |
24 | 23 | ex 412 |
. . . . . . 7
⊢ ((𝑋 ∈ V ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))) |
25 | 24 | reximdvva 3205 |
. . . . . 6
⊢ (𝑋 ∈ V → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))) |
26 | 25 | imp 406 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)) |
27 | | r19.41vv 3275 |
. . . . . 6
⊢
(∃𝑎 ∈
𝑋 ∃𝑏 ∈ 𝑋 ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋) ↔ (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)) |
28 | 27 | biancomi 462 |
. . . . 5
⊢
(∃𝑎 ∈
𝑋 ∃𝑏 ∈ 𝑋 ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋) ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
29 | 26, 28 | sylib 217 |
. . . 4
⊢ ((𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
30 | 13, 29 | impbid1 224 |
. . 3
⊢ (𝑋 ∈ V → ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})) ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)))) |
31 | 7, 30 | bitrd 278 |
. 2
⊢ (𝑋 ∈ V → (𝑃 ∈
(Pairsproper‘𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)))) |
32 | | fvprc 6748 |
. . . 4
⊢ (¬
𝑋 ∈ V →
(Pairsproper‘𝑋) = ∅) |
33 | 32 | eleq2d 2824 |
. . 3
⊢ (¬
𝑋 ∈ V → (𝑃 ∈
(Pairsproper‘𝑋) ↔ 𝑃 ∈ ∅)) |
34 | | noel 4261 |
. . . . 5
⊢ ¬
𝑃 ∈
∅ |
35 | | pm2.21 123 |
. . . . 5
⊢ (¬
𝑃 ∈ ∅ →
(𝑃 ∈ ∅ →
(𝑋 ∈ V ∧
∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)))) |
36 | 34, 35 | mp1i 13 |
. . . 4
⊢ (¬
𝑋 ∈ V → (𝑃 ∈ ∅ → (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)))) |
37 | | pm2.21 123 |
. . . . 5
⊢ (¬
𝑋 ∈ V → (𝑋 ∈ V → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏) → 𝑃 ∈ ∅))) |
38 | 37 | impd 410 |
. . . 4
⊢ (¬
𝑋 ∈ V → ((𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)) → 𝑃 ∈ ∅)) |
39 | 36, 38 | impbid 211 |
. . 3
⊢ (¬
𝑋 ∈ V → (𝑃 ∈ ∅ ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)))) |
40 | 33, 39 | bitrd 278 |
. 2
⊢ (¬
𝑋 ∈ V → (𝑃 ∈
(Pairsproper‘𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏)))) |
41 | 31, 40 | pm2.61i 182 |
1
⊢ (𝑃 ∈
(Pairsproper‘𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎 ≠ 𝑏))) |