Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprelprb Structured version   Visualization version   GIF version

Theorem prprelprb 47504
Description: A set is an element of the set of all proper unordered pairs over a given set 𝑋 iff it is a pair of different elements of the set 𝑋. (Contributed by AV, 7-May-2023.)
Assertion
Ref Expression
prprelprb (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
Distinct variable groups:   𝑃,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem prprelprb
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prprvalpw 47502 . . . . 5 (𝑋 ∈ V → (Pairsproper𝑋) = {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
21eleq2d 2827 . . . 4 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})}))
3 eqeq1 2741 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏}))
43anbi2d 630 . . . . . 6 (𝑝 = 𝑃 → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
542rexbidv 3222 . . . . 5 (𝑝 = 𝑃 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
65elrab 3692 . . . 4 (𝑃 ∈ {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
72, 6bitrdi 287 . . 3 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
8 pm3.22 459 . . . . . . . . 9 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
98a1i 11 . . . . . . . 8 ((𝑃 ∈ 𝒫 𝑋 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
109reximdvva 3207 . . . . . . 7 (𝑃 ∈ 𝒫 𝑋 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}) → ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1110imp 406 . . . . . 6 ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) → ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
1211anim2i 617 . . . . 5 ((𝑋 ∈ V ∧ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}))) → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1312ex 412 . . . 4 (𝑋 ∈ V → ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
14 simpr 484 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
1514ancomd 461 . . . . . . . . 9 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑎𝑏𝑃 = {𝑎, 𝑏}))
16 prelpwi 5452 . . . . . . . . . . . 12 ((𝑎𝑋𝑏𝑋) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
1716adantl 481 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
1817adantr 480 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
19 eleq1 2829 . . . . . . . . . . . 12 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2019adantr 480 . . . . . . . . . . 11 ((𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2120adantl 481 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2218, 21mpbird 257 . . . . . . . . 9 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑃 ∈ 𝒫 𝑋)
2315, 22jca 511 . . . . . . . 8 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
2423ex 412 . . . . . . 7 ((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) → ((𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)))
2524reximdvva 3207 . . . . . 6 (𝑋 ∈ V → (∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)))
2625imp 406 . . . . 5 ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
27 r19.41vv 3227 . . . . . 6 (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋) ↔ (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
2827biancomi 462 . . . . 5 (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋) ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
2926, 28sylib 218 . . . 4 ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
3013, 29impbid1 225 . . 3 (𝑋 ∈ V → ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
317, 30bitrd 279 . 2 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
32 fvprc 6898 . . . 4 𝑋 ∈ V → (Pairsproper𝑋) = ∅)
3332eleq2d 2827 . . 3 𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ 𝑃 ∈ ∅))
34 noel 4338 . . . . 5 ¬ 𝑃 ∈ ∅
35 pm2.21 123 . . . . 5 𝑃 ∈ ∅ → (𝑃 ∈ ∅ → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
3634, 35mp1i 13 . . . 4 𝑋 ∈ V → (𝑃 ∈ ∅ → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
37 pm2.21 123 . . . . 5 𝑋 ∈ V → (𝑋 ∈ V → (∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → 𝑃 ∈ ∅)))
3837impd 410 . . . 4 𝑋 ∈ V → ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑃 ∈ ∅))
3936, 38impbid 212 . . 3 𝑋 ∈ V → (𝑃 ∈ ∅ ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
4033, 39bitrd 279 . 2 𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
4131, 40pm2.61i 182 1 (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  c0 4333  𝒫 cpw 4600  {cpr 4628  cfv 6561  Pairspropercprpr 47499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-prpr 47500
This theorem is referenced by:  inlinecirc02p  48708
  Copyright terms: Public domain W3C validator