Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprelprb Structured version   Visualization version   GIF version

Theorem prprelprb 44969
Description: A set is an element of the set of all proper unordered pairs over a given set 𝑋 iff it is a pair of different elements of the set 𝑋. (Contributed by AV, 7-May-2023.)
Assertion
Ref Expression
prprelprb (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
Distinct variable groups:   𝑃,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem prprelprb
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prprvalpw 44967 . . . . 5 (𝑋 ∈ V → (Pairsproper𝑋) = {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
21eleq2d 2824 . . . 4 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})}))
3 eqeq1 2742 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏}))
43anbi2d 629 . . . . . 6 (𝑝 = 𝑃 → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
542rexbidv 3229 . . . . 5 (𝑝 = 𝑃 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
65elrab 3624 . . . 4 (𝑃 ∈ {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
72, 6bitrdi 287 . . 3 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
8 pm3.22 460 . . . . . . . . 9 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
98a1i 11 . . . . . . . 8 ((𝑃 ∈ 𝒫 𝑋 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
109reximdvva 3206 . . . . . . 7 (𝑃 ∈ 𝒫 𝑋 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}) → ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1110imp 407 . . . . . 6 ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) → ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
1211anim2i 617 . . . . 5 ((𝑋 ∈ V ∧ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}))) → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1312ex 413 . . . 4 (𝑋 ∈ V → ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
14 simpr 485 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
1514ancomd 462 . . . . . . . . 9 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑎𝑏𝑃 = {𝑎, 𝑏}))
16 prelpwi 5363 . . . . . . . . . . . 12 ((𝑎𝑋𝑏𝑋) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
1716adantl 482 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
1817adantr 481 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
19 eleq1 2826 . . . . . . . . . . . 12 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2019adantr 481 . . . . . . . . . . 11 ((𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2120adantl 482 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2218, 21mpbird 256 . . . . . . . . 9 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑃 ∈ 𝒫 𝑋)
2315, 22jca 512 . . . . . . . 8 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
2423ex 413 . . . . . . 7 ((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) → ((𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)))
2524reximdvva 3206 . . . . . 6 (𝑋 ∈ V → (∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)))
2625imp 407 . . . . 5 ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
27 r19.41vv 3278 . . . . . 6 (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋) ↔ (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
2827biancomi 463 . . . . 5 (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋) ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
2926, 28sylib 217 . . . 4 ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
3013, 29impbid1 224 . . 3 (𝑋 ∈ V → ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
317, 30bitrd 278 . 2 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
32 fvprc 6766 . . . 4 𝑋 ∈ V → (Pairsproper𝑋) = ∅)
3332eleq2d 2824 . . 3 𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ 𝑃 ∈ ∅))
34 noel 4264 . . . . 5 ¬ 𝑃 ∈ ∅
35 pm2.21 123 . . . . 5 𝑃 ∈ ∅ → (𝑃 ∈ ∅ → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
3634, 35mp1i 13 . . . 4 𝑋 ∈ V → (𝑃 ∈ ∅ → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
37 pm2.21 123 . . . . 5 𝑋 ∈ V → (𝑋 ∈ V → (∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → 𝑃 ∈ ∅)))
3837impd 411 . . . 4 𝑋 ∈ V → ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑃 ∈ ∅))
3936, 38impbid 211 . . 3 𝑋 ∈ V → (𝑃 ∈ ∅ ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
4033, 39bitrd 278 . 2 𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
4131, 40pm2.61i 182 1 (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  c0 4256  𝒫 cpw 4533  {cpr 4563  cfv 6433  Pairspropercprpr 44964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-prpr 44965
This theorem is referenced by:  inlinecirc02p  46133
  Copyright terms: Public domain W3C validator