Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprelprb Structured version   Visualization version   GIF version

Theorem prprelprb 43072
Description: A set is an element of the set of all proper unordered pairs over a given set 𝑋 iff it is a pair of different elements of the set 𝑋. (Contributed by AV, 7-May-2023.)
Assertion
Ref Expression
prprelprb (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
Distinct variable groups:   𝑃,𝑎,𝑏   𝑋,𝑎,𝑏

Proof of Theorem prprelprb
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prprvalpw 43070 . . . . 5 (𝑋 ∈ V → (Pairsproper𝑋) = {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
21eleq2d 2845 . . . 4 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})}))
3 eqeq1 2776 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏}))
43anbi2d 619 . . . . . 6 (𝑝 = 𝑃 → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
542rexbidv 3239 . . . . 5 (𝑝 = 𝑃 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
65elrab 3589 . . . 4 (𝑃 ∈ {𝑝 ∈ 𝒫 𝑋 ∣ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
72, 6syl6bb 279 . . 3 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
8 pm3.22 452 . . . . . . . . 9 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
98a1i 11 . . . . . . . 8 ((𝑃 ∈ 𝒫 𝑋 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
109reximdvva 3216 . . . . . . 7 (𝑃 ∈ 𝒫 𝑋 → (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}) → ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1110imp 398 . . . . . 6 ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) → ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
1211anim2i 607 . . . . 5 ((𝑋 ∈ V ∧ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}))) → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
1312ex 405 . . . 4 (𝑋 ∈ V → ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
14 simpr 477 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))
1514ancomd 454 . . . . . . . . 9 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑎𝑏𝑃 = {𝑎, 𝑏}))
16 prelpwi 5192 . . . . . . . . . . . 12 ((𝑎𝑋𝑏𝑋) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
1716adantl 474 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
1817adantr 473 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → {𝑎, 𝑏} ∈ 𝒫 𝑋)
19 eleq1 2847 . . . . . . . . . . . 12 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2019adantr 473 . . . . . . . . . . 11 ((𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2120adantl 474 . . . . . . . . . 10 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 ∈ 𝒫 𝑋 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑋))
2218, 21mpbird 249 . . . . . . . . 9 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑃 ∈ 𝒫 𝑋)
2315, 22jca 504 . . . . . . . 8 (((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
2423ex 405 . . . . . . 7 ((𝑋 ∈ V ∧ (𝑎𝑋𝑏𝑋)) → ((𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)))
2524reximdvva 3216 . . . . . 6 (𝑋 ∈ V → (∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋)))
2625imp 398 . . . . 5 ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
27 r19.41vv 3284 . . . . . 6 (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋) ↔ (∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋))
2827biancomi 455 . . . . 5 (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ∧ 𝑃 ∈ 𝒫 𝑋) ↔ (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
2926, 28sylib 210 . . . 4 ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → (𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
3013, 29impbid1 217 . . 3 (𝑋 ∈ V → ((𝑃 ∈ 𝒫 𝑋 ∧ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝑃 = {𝑎, 𝑏})) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
317, 30bitrd 271 . 2 (𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
32 fvprc 6489 . . . 4 𝑋 ∈ V → (Pairsproper𝑋) = ∅)
3332eleq2d 2845 . . 3 𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ 𝑃 ∈ ∅))
34 noel 4177 . . . . 5 ¬ 𝑃 ∈ ∅
35 pm2.21 121 . . . . 5 𝑃 ∈ ∅ → (𝑃 ∈ ∅ → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
3634, 35mp1i 13 . . . 4 𝑋 ∈ V → (𝑃 ∈ ∅ → (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
37 pm2.21 121 . . . . 5 𝑋 ∈ V → (𝑋 ∈ V → (∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏) → 𝑃 ∈ ∅)))
3837impd 402 . . . 4 𝑋 ∈ V → ((𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)) → 𝑃 ∈ ∅))
3936, 38impbid 204 . . 3 𝑋 ∈ V → (𝑃 ∈ ∅ ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
4033, 39bitrd 271 . 2 𝑋 ∈ V → (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏))))
4131, 40pm2.61i 177 1 (𝑃 ∈ (Pairsproper𝑋) ↔ (𝑋 ∈ V ∧ ∃𝑎𝑋𝑏𝑋 (𝑃 = {𝑎, 𝑏} ∧ 𝑎𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2961  wrex 3083  {crab 3086  Vcvv 3409  c0 4172  𝒫 cpw 4416  {cpr 4437  cfv 6185  Pairspropercprpr 43067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-prpr 43068
This theorem is referenced by:  inlinecirc02p  44167
  Copyright terms: Public domain W3C validator