MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5 Structured version   Visualization version   GIF version

Theorem frgrwopreglem5 28685
Description: Lemma 5 for frgrwopreg 28687. If 𝐴 as well as 𝐵 contain at least two vertices, there is a 4-cycle in a friendship graph. This corresponds to statement 6 in [Huneke] p. 2: "... otherwise, there are two different vertices in A, and they have two common neighbors in B, ...". (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Proof shortened by AV, 5-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem5 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝐴,𝑏   𝑥,𝐵   𝑦,𝐷   𝐺,𝑎,𝑏,𝑦,𝑥   𝑦,𝑉   𝐴,𝑎,𝑦   𝐵,𝑎,𝑏,𝑦   𝑥,𝐸
Allowed substitution hints:   𝐷(𝑎,𝑏)   𝐸(𝑦,𝑎,𝑏)   𝐾(𝑦,𝑎,𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem frgrwopreglem5
StepHypRef Expression
1 simpllr 773 . . . . . . . . . . . . . 14 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → 𝑎𝑥)
21anim1i 615 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → (𝑎𝑥𝑏𝑦))
3 simplll 772 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → 𝐺 ∈ FriendGraph )
4 fveqeq2 6783 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → ((𝐷𝑥) = 𝐾 ↔ (𝐷𝑎) = 𝐾))
5 frgrwopreg.a . . . . . . . . . . . . . . . . . . . . 21 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
64, 5elrab2 3627 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴 ↔ (𝑎𝑉 ∧ (𝐷𝑎) = 𝐾))
76simplbi 498 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴𝑎𝑉)
8 rabidim1 3312 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾} → 𝑥𝑉)
98, 5eleq2s 2857 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴𝑥𝑉)
107, 9anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑎𝐴𝑥𝐴) → (𝑎𝑉𝑥𝑉))
1110adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) → (𝑎𝑉𝑥𝑉))
12 eldifi 4061 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ (𝑉𝐴) → 𝑏𝑉)
13 frgrwopreg.b . . . . . . . . . . . . . . . . . . 19 𝐵 = (𝑉𝐴)
1412, 13eleq2s 2857 . . . . . . . . . . . . . . . . . 18 (𝑏𝐵𝑏𝑉)
15 eldifi 4061 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝑉𝐴) → 𝑦𝑉)
1615, 13eleq2s 2857 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵𝑦𝑉)
1714, 16anim12i 613 . . . . . . . . . . . . . . . . 17 ((𝑏𝐵𝑦𝐵) → (𝑏𝑉𝑦𝑉))
1811, 17anim12i 613 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ((𝑎𝑉𝑥𝑉) ∧ (𝑏𝑉𝑦𝑉)))
19 frgrwopreg.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
20 frgrwopreg.d . . . . . . . . . . . . . . . . . 18 𝐷 = (VtxDeg‘𝐺)
21 frgrwopreg.e . . . . . . . . . . . . . . . . . 18 𝐸 = (Edg‘𝐺)
2219, 20, 5, 13, 21frgrwopreglem5lem 28684 . . . . . . . . . . . . . . . . 17 (((𝑎𝐴𝑥𝐴) ∧ (𝑏𝐵𝑦𝐵)) → ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦)))
2322adantll 711 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦)))
243, 18, 233jca 1127 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (𝐺 ∈ FriendGraph ∧ ((𝑎𝑉𝑥𝑉) ∧ (𝑏𝑉𝑦𝑉)) ∧ ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦))))
2524adantr 481 . . . . . . . . . . . . . 14 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → (𝐺 ∈ FriendGraph ∧ ((𝑎𝑉𝑥𝑉) ∧ (𝑏𝑉𝑦𝑉)) ∧ ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦))))
2619, 20, 21frgrwopreglem5a 28675 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ ((𝑎𝑉𝑥𝑉) ∧ (𝑏𝑉𝑦𝑉)) ∧ ((𝐷𝑎) = (𝐷𝑥) ∧ (𝐷𝑎) ≠ (𝐷𝑏) ∧ (𝐷𝑥) ≠ (𝐷𝑦))) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
2725, 26syl 17 . . . . . . . . . . . . 13 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
28 3anass 1094 . . . . . . . . . . . . 13 (((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)) ↔ ((𝑎𝑥𝑏𝑦) ∧ (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
292, 27, 28sylanbrc 583 . . . . . . . . . . . 12 (((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) ∧ 𝑏𝑦) → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
3029ex 413 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) ∧ (𝑏𝐵𝑦𝐵)) → (𝑏𝑦 → ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
3130reximdvva 3206 . . . . . . . . . 10 (((𝐺 ∈ FriendGraph ∧ 𝑎𝑥) ∧ (𝑎𝐴𝑥𝐴)) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
3231exp31 420 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑎𝑥 → ((𝑎𝐴𝑥𝐴) → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
3332com24 95 . . . . . . . 8 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → ((𝑎𝐴𝑥𝐴) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))))
3433imp31 418 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) ∧ (𝑎𝐴𝑥𝐴)) → (𝑎𝑥 → ∃𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
3534reximdvva 3206 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
3635ex 413 . . . . 5 (𝐺 ∈ FriendGraph → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
3736com13 88 . . . 4 (∃𝑎𝐴𝑥𝐴 𝑎𝑥 → (∃𝑏𝐵𝑦𝐵 𝑏𝑦 → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))))
3837imp 407 . . 3 ((∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦) → (𝐺 ∈ FriendGraph → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
3919, 20, 5, 13frgrwopreglem1 28676 . . . 4 (𝐴 ∈ V ∧ 𝐵 ∈ V)
40 hashgt12el 14137 . . . . . 6 ((𝐴 ∈ V ∧ 1 < (♯‘𝐴)) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥)
4140ex 413 . . . . 5 (𝐴 ∈ V → (1 < (♯‘𝐴) → ∃𝑎𝐴𝑥𝐴 𝑎𝑥))
42 hashgt12el 14137 . . . . . 6 ((𝐵 ∈ V ∧ 1 < (♯‘𝐵)) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦)
4342ex 413 . . . . 5 (𝐵 ∈ V → (1 < (♯‘𝐵) → ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
4441, 43im2anan9 620 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦)))
4539, 44ax-mp 5 . . 3 ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → (∃𝑎𝐴𝑥𝐴 𝑎𝑥 ∧ ∃𝑏𝐵𝑦𝐵 𝑏𝑦))
4638, 45syl11 33 . 2 (𝐺 ∈ FriendGraph → ((1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸))))
47463impib 1115 1 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝐴) ∧ 1 < (♯‘𝐵)) → ∃𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ((𝑎𝑥𝑏𝑦) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑥} ∈ 𝐸) ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑎} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  {cpr 4563   class class class wbr 5074  cfv 6433  1c1 10872   < clt 11009  chash 14044  Vtxcvtx 27366  Edgcedg 27417  VtxDegcvtxdg 27832   FriendGraph cfrgr 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-xadd 12849  df-fz 13240  df-hash 14045  df-edg 27418  df-uhgr 27428  df-ushgr 27429  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-nbgr 27700  df-vtxdg 27833  df-frgr 28623
This theorem is referenced by:  frgrwopreg  28687
  Copyright terms: Public domain W3C validator