| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexrp | Structured version Visualization version GIF version | ||
| Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.) |
| Ref | Expression |
|---|---|
| rexrp | ⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 13036 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
| 2 | 1 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑)) |
| 3 | anass 468 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ 𝜑))) |
| 5 | 4 | rexbii2 3090 | 1 ⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ℝcr 11154 0cc0 11155 < clt 11295 ℝ+crp 13034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-rp 13035 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |