MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrp Structured version   Visualization version   GIF version

Theorem rexrp 12680
Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
rexrp (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥𝜑))

Proof of Theorem rexrp
StepHypRef Expression
1 elrp 12661 . . . 4 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21anbi1i 623 . . 3 ((𝑥 ∈ ℝ+𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑))
3 anass 468 . . 3 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥𝜑)))
42, 3bitri 274 . 2 ((𝑥 ∈ ℝ+𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥𝜑)))
54rexbii2 3175 1 (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  wrex 3064   class class class wbr 5070  cr 10801  0cc0 10802   < clt 10940  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-rp 12660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator