MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrp Structured version   Visualization version   GIF version

Theorem rexrp 13053
Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
rexrp (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥𝜑))

Proof of Theorem rexrp
StepHypRef Expression
1 elrp 13033 . . . 4 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21anbi1i 624 . . 3 ((𝑥 ∈ ℝ+𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑))
3 anass 468 . . 3 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥𝜑)))
42, 3bitri 275 . 2 ((𝑥 ∈ ℝ+𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥𝜑)))
54rexbii2 3087 1 (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2105  wrex 3067   class class class wbr 5147  cr 11151  0cc0 11152   < clt 11292  +crp 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-rp 13032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator