![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexrp | Structured version Visualization version GIF version |
Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
rexrp | ⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 13008 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
2 | 1 | anbi1i 623 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑)) |
3 | anass 468 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝜑) ↔ (𝑥 ∈ ℝ ∧ (0 < 𝑥 ∧ 𝜑))) |
5 | 4 | rexbii2 3087 | 1 ⊢ (∃𝑥 ∈ ℝ+ 𝜑 ↔ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∃wrex 3067 class class class wbr 5148 ℝcr 11137 0cc0 11138 < clt 11278 ℝ+crp 13006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-rp 13007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |