MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpaddcl Structured version   Visualization version   GIF version

Theorem rpaddcl 12401
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
rpaddcl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)

Proof of Theorem rpaddcl
StepHypRef Expression
1 rpre 12387 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpre 12387 . . 3 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3 readdcl 10609 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
41, 2, 3syl2an 595 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ)
5 elrp 12381 . . 3 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
6 elrp 12381 . . 3 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
7 addgt0 11115 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵))
87an4s 656 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵))
95, 6, 8syl2anb 597 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 0 < (𝐴 + 𝐵))
10 elrp 12381 . 2 ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
114, 9, 10sylanbrc 583 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105   class class class wbr 5058  (class class class)co 7145  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  +crp 12379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7148  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-rp 12380
This theorem is referenced by:  rpaddcld  12436  fsumrpcl  15084  logcnlem2  25153  logcnlem3  25154  logcnlem4  25155  loglesqrt  25266  ang180lem2  25315  cxp2limlem  25481  logdifbnd  25499  emcllem4  25504  emcllem5  25505  emcllem6  25506  selberg2lem  26054  chpdifbndlem2  26058  pntpbnd1a  26089  pntpbnd1  26090  pntpbnd2  26091  pntpbnd  26092  pntibndlem1  26093  pntibndlem2  26095  pntibnd  26097  pntlemd  26098  pntlemq  26105  pntlemr  26106  pntlemj  26107  pntlemp  26114  pntleml  26115  smcnlem  28402  hoidmvlelem3  42760  amgmwlem  44801
  Copyright terms: Public domain W3C validator