![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpaddcl | Structured version Visualization version GIF version |
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
rpaddcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12121 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpre 12121 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
3 | readdcl 10336 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | syl2an 591 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ) |
5 | elrp 12115 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
6 | elrp 12115 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
7 | addgt0 10839 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) | |
8 | 7 | an4s 652 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) |
9 | 5, 6, 8 | syl2anb 593 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 + 𝐵)) |
10 | elrp 12115 | . 2 ⊢ ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) | |
11 | 4, 9, 10 | sylanbrc 580 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 class class class wbr 4874 (class class class)co 6906 ℝcr 10252 0cc0 10253 + caddc 10256 < clt 10392 ℝ+crp 12113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-rp 12114 |
This theorem is referenced by: rpaddcld 12172 fsumrpcl 14846 logcnlem2 24789 logcnlem3 24790 logcnlem4 24791 loglesqrt 24902 ang180lem2 24951 cxp2limlem 25116 logdifbnd 25134 emcllem4 25139 emcllem5 25140 emcllem6 25141 selberg2lem 25653 chpdifbndlem2 25657 pntpbnd1a 25688 pntpbnd1 25689 pntpbnd2 25690 pntpbnd 25691 pntibndlem1 25692 pntibndlem2 25694 pntibnd 25696 pntlemd 25697 pntlemq 25704 pntlemr 25705 pntlemj 25706 pntlemp 25713 pntleml 25714 smcnlem 28108 hoidmvlelem3 41606 amgmwlem 43445 |
Copyright terms: Public domain | W3C validator |