![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpaddcl | Structured version Visualization version GIF version |
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
rpaddcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 13017 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | rpre 13017 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
3 | readdcl 11223 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | syl2an 594 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ) |
5 | elrp 13011 | . . 3 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
6 | elrp 13011 | . . 3 ⊢ (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) | |
7 | addgt0 11732 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) | |
8 | 7 | an4s 658 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵)) |
9 | 5, 6, 8 | syl2anb 596 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → 0 < (𝐴 + 𝐵)) |
10 | elrp 13011 | . 2 ⊢ ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) | |
11 | 4, 9, 10 | sylanbrc 581 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 class class class wbr 5149 (class class class)co 7419 ℝcr 11139 0cc0 11140 + caddc 11143 < clt 11280 ℝ+crp 13009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-rp 13010 |
This theorem is referenced by: rpaddcld 13066 fsumrpcl 15719 logcnlem2 26622 logcnlem3 26623 logcnlem4 26624 loglesqrt 26738 ang180lem2 26787 cxp2limlem 26953 logdifbnd 26971 emcllem4 26976 emcllem5 26977 emcllem6 26978 selberg2lem 27528 chpdifbndlem2 27532 pntpbnd1a 27563 pntpbnd1 27564 pntpbnd2 27565 pntpbnd 27566 pntibndlem1 27567 pntibndlem2 27569 pntibnd 27571 pntlemd 27572 pntlemq 27579 pntlemr 27580 pntlemj 27581 pntlemp 27588 pntleml 27589 smcnlem 30579 hoidmvlelem3 46123 amgmwlem 48421 |
Copyright terms: Public domain | W3C validator |