MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpaddcl Structured version   Visualization version   GIF version

Theorem rpaddcl 13000
Description: Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
Assertion
Ref Expression
rpaddcl ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)

Proof of Theorem rpaddcl
StepHypRef Expression
1 rpre 12986 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 rpre 12986 . . 3 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
3 readdcl 11195 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
41, 2, 3syl2an 594 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ)
5 elrp 12980 . . 3 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
6 elrp 12980 . . 3 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
7 addgt0 11704 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵))
87an4s 656 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 + 𝐵))
95, 6, 8syl2anb 596 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → 0 < (𝐴 + 𝐵))
10 elrp 12980 . 2 ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
114, 9, 10sylanbrc 581 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104   class class class wbr 5147  (class class class)co 7411  cr 11111  0cc0 11112   + caddc 11115   < clt 11252  +crp 12978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-rp 12979
This theorem is referenced by:  rpaddcld  13035  fsumrpcl  15687  logcnlem2  26387  logcnlem3  26388  logcnlem4  26389  loglesqrt  26502  ang180lem2  26551  cxp2limlem  26716  logdifbnd  26734  emcllem4  26739  emcllem5  26740  emcllem6  26741  selberg2lem  27289  chpdifbndlem2  27293  pntpbnd1a  27324  pntpbnd1  27325  pntpbnd2  27326  pntpbnd  27327  pntibndlem1  27328  pntibndlem2  27330  pntibnd  27332  pntlemd  27333  pntlemq  27340  pntlemr  27341  pntlemj  27342  pntlemp  27349  pntleml  27350  smcnlem  30217  hoidmvlelem3  45611  amgmwlem  47936
  Copyright terms: Public domain W3C validator