MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrp Structured version   Visualization version   GIF version

Theorem ralrp 12980
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
Assertion
Ref Expression
ralrp (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥𝜑))

Proof of Theorem ralrp
StepHypRef Expression
1 elrp 12960 . . . 4 (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥))
21imbi1i 349 . . 3 ((𝑥 ∈ ℝ+𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑))
3 impexp 450 . . 3 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥𝜑)))
42, 3bitri 275 . 2 ((𝑥 ∈ ℝ+𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥𝜑)))
54ralbii2 3072 1 (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045   class class class wbr 5110  cr 11074  0cc0 11075   < clt 11215  +crp 12958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-rp 12959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator