| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrp | Structured version Visualization version GIF version | ||
| Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.) |
| Ref | Expression |
|---|---|
| ralrp | ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12884 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
| 2 | 1 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑)) |
| 3 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) |
| 5 | 4 | ralbii2 3072 | 1 ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2110 ∀wral 3045 class class class wbr 5089 ℝcr 10997 0cc0 10998 < clt 11138 ℝ+crp 12882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-rp 12883 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |