![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrp | Structured version Visualization version GIF version |
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
ralrp | ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12204 | . . . 4 ⊢ (𝑥 ∈ ℝ+ ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) | |
2 | 1 | imbi1i 342 | . . 3 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑)) |
3 | impexp 443 | . . 3 ⊢ (((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) | |
4 | 2, 3 | bitri 267 | . 2 ⊢ ((𝑥 ∈ ℝ+ → 𝜑) ↔ (𝑥 ∈ ℝ → (0 < 𝑥 → 𝜑))) |
5 | 4 | ralbii2 3106 | 1 ⊢ (∀𝑥 ∈ ℝ+ 𝜑 ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∈ wcel 2051 ∀wral 3081 class class class wbr 4925 ℝcr 10332 0cc0 10333 < clt 10472 ℝ+crp 12202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-rp 12203 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |