Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcimedv | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
rspcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcimdv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcimedv.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
3 | 2 | con3d 152 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (¬ 𝜓 → ¬ 𝜒)) |
4 | 1, 3 | rspcimdv 3569 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝜓 → ¬ 𝜒)) |
5 | 4 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓)) |
6 | dfrex2 3074 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓) | |
7 | 5, 6 | syl6ibr 252 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 |
This theorem is referenced by: rspcedv 3572 scshwfzeqfzo 14646 symgfixfo 19151 slesolex 21944 usgr2pthlem 28488 clwlkclwwlkfo 28730 satfdmlem 33696 |
Copyright terms: Public domain | W3C validator |