MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimedv Structured version   Visualization version   GIF version

Theorem rspcimedv 3582
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1 (𝜑𝐴𝐵)
rspcimedv.2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
Assertion
Ref Expression
rspcimedv (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcimedv
StepHypRef Expression
1 rspcimdv.1 . . . 4 (𝜑𝐴𝐵)
2 rspcimedv.2 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
32con3d 152 . . . 4 ((𝜑𝑥 = 𝐴) → (¬ 𝜓 → ¬ 𝜒))
41, 3rspcimdv 3581 . . 3 (𝜑 → (∀𝑥𝐵 ¬ 𝜓 → ¬ 𝜒))
54con2d 134 . 2 (𝜑 → (𝜒 → ¬ ∀𝑥𝐵 ¬ 𝜓))
6 dfrex2 3057 . 2 (∃𝑥𝐵 𝜓 ↔ ¬ ∀𝑥𝐵 ¬ 𝜓)
75, 6imbitrrdi 252 1 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055
This theorem is referenced by:  rspcedv  3584  scshwfzeqfzo  14799  symgfixfo  19376  slesolex  22576  usgr2pthlem  29700  clwlkclwwlkfo  29945  satfdmlem  35362
  Copyright terms: Public domain W3C validator