| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slesolex | Structured version Visualization version GIF version | ||
| Description: Every system of linear equations represented by a matrix with a unit as determinant has a solution. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.) |
| Ref | Expression |
|---|---|
| slesolex.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| slesolex.b | ⊢ 𝐵 = (Base‘𝐴) |
| slesolex.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| slesolex.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| slesolex.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| Ref | Expression |
|---|---|
| slesolex | ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slesolex.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | slesolex.x | . . . . 5 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | crngring 20130 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 7 | 6 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) |
| 8 | slesolex.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | 1, 8 | matrcl 22275 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 10 | 9 | simpld 494 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 12 | 11 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑁 ∈ Fin) |
| 13 | 6, 11 | anim12ci 614 | . . . . . . . 8 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 14 | 13 | 3adant3 1132 | . . . . . . 7 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 15 | 1 | matring 22306 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝐴 ∈ Ring) |
| 17 | slesolex.d | . . . . . . . . . 10 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 18 | eqid 2729 | . . . . . . . . . 10 ⊢ (Unit‘𝐴) = (Unit‘𝐴) | |
| 19 | eqid 2729 | . . . . . . . . . 10 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 20 | 1, 17, 8, 18, 19 | matunit 22541 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
| 21 | 20 | bicomd 223 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
| 22 | 21 | ad2ant2lr 748 | . . . . . . 7 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
| 23 | 22 | biimp3a 1471 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝐴)) |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
| 25 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 26 | 18, 24, 25 | ringinvcl 20277 | . . . . . 6 ⊢ ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → ((invr‘𝐴)‘𝑋) ∈ (Base‘𝐴)) |
| 27 | 16, 23, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ((invr‘𝐴)‘𝑋) ∈ (Base‘𝐴)) |
| 28 | slesolex.v | . . . . . . . . 9 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 29 | 28 | eleq2i 2820 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑉 ↔ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 30 | 29 | biimpi 216 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 31 | 30 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 32 | 31 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 33 | 1, 2, 3, 4, 7, 12, 27, 32 | mavmulcl 22410 | . . . 4 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((invr‘𝐴)‘𝑋) · 𝑌) ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 34 | 33, 28 | eleqtrrdi 2839 | . . 3 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((invr‘𝐴)‘𝑋) · 𝑌) ∈ 𝑉) |
| 35 | 1, 8, 28, 2, 17, 24 | slesolinvbi 22544 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑧) = 𝑌 ↔ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌))) |
| 36 | 35 | adantr 480 | . . . . 5 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝑋 · 𝑧) = 𝑌 ↔ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌))) |
| 37 | 36 | biimprd 248 | . . . 4 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌) → (𝑋 · 𝑧) = 𝑌)) |
| 38 | 37 | impancom 451 | . . 3 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌)) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑋 · 𝑧) = 𝑌)) |
| 39 | 34, 38 | rspcimedv 3576 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌)) |
| 40 | 39 | pm2.43i 52 | 1 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3444 ∅c0 4292 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 Basecbs 17155 .rcmulr 17197 Ringcrg 20118 CRingccrg 20119 Unitcui 20240 invrcinvr 20272 Mat cmat 22270 maVecMul cmvmul 22403 maDet cmdat 22447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-splice 14691 df-reverse 14700 df-s2 14790 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-efmnd 18772 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-gim 19167 df-cntz 19225 df-oppg 19254 df-symg 19276 df-pmtr 19348 df-psgn 19397 df-evpm 19398 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-lmod 20744 df-lss 20814 df-sra 21056 df-rgmod 21057 df-cnfld 21241 df-zring 21333 df-zrh 21389 df-dsmm 21617 df-frlm 21632 df-assa 21738 df-mamu 22254 df-mat 22271 df-mvmul 22404 df-mdet 22448 df-madu 22497 |
| This theorem is referenced by: cramerlem3 22552 |
| Copyright terms: Public domain | W3C validator |