![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slesolex | Structured version Visualization version GIF version |
Description: Every system of linear equations represented by a matrix with a unit as determinant has a solution. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.) |
Ref | Expression |
---|---|
slesolex.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
slesolex.b | ⊢ 𝐵 = (Base‘𝐴) |
slesolex.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
slesolex.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
slesolex.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
Ref | Expression |
---|---|
slesolex | ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slesolex.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | slesolex.x | . . . . 5 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
3 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | eqid 2736 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | crngring 19976 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
6 | 5 | adantl 482 | . . . . . 6 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
7 | 6 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) |
8 | slesolex.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
9 | 1, 8 | matrcl 21759 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 495 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑁 ∈ Fin) |
12 | 11 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑁 ∈ Fin) |
13 | 6, 11 | anim12ci 614 | . . . . . . . 8 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
14 | 13 | 3adant3 1132 | . . . . . . 7 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
15 | 1 | matring 21792 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝐴 ∈ Ring) |
17 | slesolex.d | . . . . . . . . . 10 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
18 | eqid 2736 | . . . . . . . . . 10 ⊢ (Unit‘𝐴) = (Unit‘𝐴) | |
19 | eqid 2736 | . . . . . . . . . 10 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
20 | 1, 17, 8, 18, 19 | matunit 22027 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
21 | 20 | bicomd 222 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
22 | 21 | ad2ant2lr 746 | . . . . . . 7 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
23 | 22 | biimp3a 1469 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝐴)) |
24 | eqid 2736 | . . . . . . 7 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
25 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
26 | 18, 24, 25 | ringinvcl 20105 | . . . . . 6 ⊢ ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → ((invr‘𝐴)‘𝑋) ∈ (Base‘𝐴)) |
27 | 16, 23, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ((invr‘𝐴)‘𝑋) ∈ (Base‘𝐴)) |
28 | slesolex.v | . . . . . . . . 9 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
29 | 28 | eleq2i 2829 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑉 ↔ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
30 | 29 | biimpi 215 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
31 | 30 | adantl 482 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
32 | 31 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
33 | 1, 2, 3, 4, 7, 12, 27, 32 | mavmulcl 21896 | . . . 4 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((invr‘𝐴)‘𝑋) · 𝑌) ∈ ((Base‘𝑅) ↑m 𝑁)) |
34 | 33, 28 | eleqtrrdi 2849 | . . 3 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((invr‘𝐴)‘𝑋) · 𝑌) ∈ 𝑉) |
35 | 1, 8, 28, 2, 17, 24 | slesolinvbi 22030 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑧) = 𝑌 ↔ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌))) |
36 | 35 | adantr 481 | . . . . 5 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝑋 · 𝑧) = 𝑌 ↔ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌))) |
37 | 36 | biimprd 247 | . . . 4 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌) → (𝑋 · 𝑧) = 𝑌)) |
38 | 37 | impancom 452 | . . 3 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌)) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑋 · 𝑧) = 𝑌)) |
39 | 34, 38 | rspcimedv 3572 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌)) |
40 | 39 | pm2.43i 52 | 1 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 Vcvv 3445 ∅c0 4282 〈cop 4592 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 Fincfn 8883 Basecbs 17083 .rcmulr 17134 Ringcrg 19964 CRingccrg 19965 Unitcui 20068 invrcinvr 20100 Mat cmat 21754 maVecMul cmvmul 21889 maDet cmdat 21933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-xnn0 12486 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-word 14403 df-lsw 14451 df-concat 14459 df-s1 14484 df-substr 14529 df-pfx 14559 df-splice 14638 df-reverse 14647 df-s2 14737 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-efmnd 18679 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-gim 19049 df-cntz 19097 df-oppg 19124 df-symg 19149 df-pmtr 19224 df-psgn 19273 df-evpm 19274 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-srg 19918 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-rnghom 20146 df-drng 20187 df-subrg 20220 df-lmod 20324 df-lss 20393 df-sra 20633 df-rgmod 20634 df-cnfld 20797 df-zring 20870 df-zrh 20904 df-dsmm 21138 df-frlm 21153 df-assa 21259 df-mamu 21733 df-mat 21755 df-mvmul 21890 df-mdet 21934 df-madu 21983 |
This theorem is referenced by: cramerlem3 22038 |
Copyright terms: Public domain | W3C validator |