| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slesolex | Structured version Visualization version GIF version | ||
| Description: Every system of linear equations represented by a matrix with a unit as determinant has a solution. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.) |
| Ref | Expression |
|---|---|
| slesolex.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| slesolex.b | ⊢ 𝐵 = (Base‘𝐴) |
| slesolex.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| slesolex.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| slesolex.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| Ref | Expression |
|---|---|
| slesolex | ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slesolex.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | slesolex.x | . . . . 5 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | crngring 20163 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 7 | 6 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) |
| 8 | slesolex.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | 1, 8 | matrcl 22327 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 10 | 9 | simpld 494 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 12 | 11 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑁 ∈ Fin) |
| 13 | 6, 11 | anim12ci 614 | . . . . . . . 8 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 14 | 13 | 3adant3 1132 | . . . . . . 7 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 15 | 1 | matring 22358 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝐴 ∈ Ring) |
| 17 | slesolex.d | . . . . . . . . . 10 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 18 | eqid 2731 | . . . . . . . . . 10 ⊢ (Unit‘𝐴) = (Unit‘𝐴) | |
| 19 | eqid 2731 | . . . . . . . . . 10 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 20 | 1, 17, 8, 18, 19 | matunit 22593 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
| 21 | 20 | bicomd 223 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
| 22 | 21 | ad2ant2lr 748 | . . . . . . 7 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
| 23 | 22 | biimp3a 1471 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝐴)) |
| 24 | eqid 2731 | . . . . . . 7 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
| 25 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 26 | 18, 24, 25 | ringinvcl 20310 | . . . . . 6 ⊢ ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → ((invr‘𝐴)‘𝑋) ∈ (Base‘𝐴)) |
| 27 | 16, 23, 26 | syl2anc 584 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ((invr‘𝐴)‘𝑋) ∈ (Base‘𝐴)) |
| 28 | slesolex.v | . . . . . . . . 9 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 29 | 28 | eleq2i 2823 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑉 ↔ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 30 | 29 | biimpi 216 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 31 | 30 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 32 | 31 | 3ad2ant2 1134 | . . . . 5 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 33 | 1, 2, 3, 4, 7, 12, 27, 32 | mavmulcl 22462 | . . . 4 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((invr‘𝐴)‘𝑋) · 𝑌) ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 34 | 33, 28 | eleqtrrdi 2842 | . . 3 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((invr‘𝐴)‘𝑋) · 𝑌) ∈ 𝑉) |
| 35 | 1, 8, 28, 2, 17, 24 | slesolinvbi 22596 | . . . . . 6 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑧) = 𝑌 ↔ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌))) |
| 36 | 35 | adantr 480 | . . . . 5 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → ((𝑋 · 𝑧) = 𝑌 ↔ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌))) |
| 37 | 36 | biimprd 248 | . . . 4 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌) → (𝑋 · 𝑧) = 𝑌)) |
| 38 | 37 | impancom 451 | . . 3 ⊢ ((((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) ∧ 𝑧 = (((invr‘𝐴)‘𝑋) · 𝑌)) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (𝑋 · 𝑧) = 𝑌)) |
| 39 | 34, 38 | rspcimedv 3563 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌)) |
| 40 | 39 | pm2.43i 52 | 1 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅)) → ∃𝑧 ∈ 𝑉 (𝑋 · 𝑧) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 Vcvv 3436 ∅c0 4280 〈cop 4579 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 Basecbs 17120 .rcmulr 17162 Ringcrg 20151 CRingccrg 20152 Unitcui 20273 invrcinvr 20305 Mat cmat 22322 maVecMul cmvmul 22455 maDet cmdat 22499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-gim 19171 df-cntz 19229 df-oppg 19258 df-symg 19282 df-pmtr 19354 df-psgn 19403 df-evpm 19404 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-lmod 20795 df-lss 20865 df-sra 21107 df-rgmod 21108 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-dsmm 21669 df-frlm 21684 df-assa 21790 df-mamu 22306 df-mat 22323 df-mvmul 22456 df-mdet 22500 df-madu 22549 |
| This theorem is referenced by: cramerlem3 22604 |
| Copyright terms: Public domain | W3C validator |