Step | Hyp | Ref
| Expression |
1 | | satfrel 33329 |
. . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑌)) |
2 | 1 | adantr 481 |
. . . 4
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌)) |
3 | | 1stdm 7881 |
. . . 4
⊢ ((Rel
((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st ‘𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌)) |
4 | 2, 3 | sylan 580 |
. . 3
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st ‘𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌)) |
5 | | eleq2 2827 |
. . . . . 6
⊢ (dom
((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st ‘𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st ‘𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌))) |
6 | 5 | adantl 482 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → ((1st ‘𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st ‘𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌))) |
7 | 6 | adantr 481 |
. . . 4
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st ‘𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st ‘𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌))) |
8 | | fvex 6787 |
. . . . . 6
⊢
(1st ‘𝑢) ∈ V |
9 | | eldm2g 5808 |
. . . . . 6
⊢
((1st ‘𝑢) ∈ V → ((1st
‘𝑢) ∈ dom
((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌))) |
10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢
((1st ‘𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) |
11 | | simpr 485 |
. . . . . . . 8
⊢
(((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) → 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) |
12 | 2 | ad4antr 729 |
. . . . . . . . . . . 12
⊢
(((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌)) |
13 | | 1stdm 7881 |
. . . . . . . . . . . 12
⊢ ((Rel
((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st ‘𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌)) |
14 | 12, 13 | sylancom 588 |
. . . . . . . . . . 11
⊢
(((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st ‘𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌)) |
15 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (dom
((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st ‘𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st ‘𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌))) |
16 | 15 | ad5antlr 732 |
. . . . . . . . . . . 12
⊢
(((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st ‘𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st ‘𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌))) |
17 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢
(1st ‘𝑣) ∈ V |
18 | | eldm2g 5808 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑣) ∈ V → ((1st
‘𝑣) ∈ dom
((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌))) |
19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) |
20 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) → 〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) |
21 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑠 ∈ V |
22 | 8, 21 | op1std 7841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 〈(1st
‘𝑢), 𝑠〉 → (1st
‘𝑎) = (1st
‘𝑢)) |
23 | 22 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 〈(1st
‘𝑢), 𝑠〉 → (1st
‘𝑢) = (1st
‘𝑎)) |
24 | 23 | ad3antlr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (1st ‘𝑢) = (1st ‘𝑎)) |
25 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑟 ∈ V |
26 | 17, 25 | op1std 7841 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 〈(1st
‘𝑣), 𝑟〉 → (1st
‘𝑏) = (1st
‘𝑣)) |
27 | 26 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 〈(1st
‘𝑣), 𝑟〉 → (1st
‘𝑣) = (1st
‘𝑏)) |
28 | 24, 27 | oveqan12d 7294 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = 〈(1st ‘𝑣), 𝑟〉) → ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) =
((1st ‘𝑎)⊼𝑔(1st
‘𝑏))) |
29 | 28 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = 〈(1st ‘𝑣), 𝑟〉) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ↔ 𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)))) |
30 | 29 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = 〈(1st ‘𝑣), 𝑟〉) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) → 𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)))) |
31 | 20, 30 | rspcimedv 3552 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)))) |
32 | 31 | ex 413 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (〈(1st
‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏))))) |
33 | 32 | exlimdv 1936 |
. . . . . . . . . . . . 13
⊢
(((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑟〈(1st ‘𝑣), 𝑟〉 ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏))))) |
34 | 19, 33 | syl5bi 241 |
. . . . . . . . . . . 12
⊢
(((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st ‘𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏))))) |
35 | 16, 34 | sylbid 239 |
. . . . . . . . . . 11
⊢
(((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st ‘𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏))))) |
36 | 14, 35 | mpd 15 |
. . . . . . . . . 10
⊢
(((((((𝑀 ∈
𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)))) |
37 | 36 | rexlimdva 3213 |
. . . . . . . . 9
⊢
((((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) →
∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)))) |
38 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 〈(1st
‘𝑢), 𝑠〉 → 𝑖 = 𝑖) |
39 | 38, 23 | goaleq12d 33313 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 〈(1st
‘𝑢), 𝑠〉 →
∀𝑔𝑖(1st ‘𝑢) = ∀𝑔𝑖(1st ‘𝑎)) |
40 | 39 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑎 = 〈(1st
‘𝑢), 𝑠〉 → (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ↔ 𝑥 = ∀𝑔𝑖(1st ‘𝑎))) |
41 | 40 | biimpd 228 |
. . . . . . . . . . 11
⊢ (𝑎 = 〈(1st
‘𝑢), 𝑠〉 → (𝑥 =
∀𝑔𝑖(1st ‘𝑢) → 𝑥 = ∀𝑔𝑖(1st ‘𝑎))) |
42 | 41 | adantl 482 |
. . . . . . . . . 10
⊢
((((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) → (𝑥 = ∀𝑔𝑖(1st ‘𝑢) → 𝑥 = ∀𝑔𝑖(1st ‘𝑎))) |
43 | 42 | reximdv 3202 |
. . . . . . . . 9
⊢
((((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st ‘𝑢) → ∃𝑖 ∈ ω 𝑥 =
∀𝑔𝑖(1st ‘𝑎))) |
44 | 37, 43 | orim12d 962 |
. . . . . . . 8
⊢
((((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = 〈(1st ‘𝑢), 𝑠〉) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)))) |
45 | 11, 44 | rspcimedv 3552 |
. . . . . . 7
⊢
(((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ 〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)))) |
46 | 45 | ex 413 |
. . . . . 6
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (〈(1st
‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎))))) |
47 | 46 | exlimdv 1936 |
. . . . 5
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑠〈(1st ‘𝑢), 𝑠〉 ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎))))) |
48 | 10, 47 | syl5bi 241 |
. . . 4
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st ‘𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎))))) |
49 | 7, 48 | sylbid 239 |
. . 3
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st ‘𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎))))) |
50 | 4, 49 | mpd 15 |
. 2
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)))) |
51 | 50 | rexlimdva 3213 |
1
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st ‘𝑎)⊼𝑔(1st
‘𝑏)) ∨
∃𝑖 ∈ ω
𝑥 =
∀𝑔𝑖(1st ‘𝑎)))) |