Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfdmlem Structured version   Visualization version   GIF version

Theorem satfdmlem 33330
Description: Lemma for satfdm 33331. (Contributed by AV, 12-Oct-2023.)
Assertion
Ref Expression
satfdmlem (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑖,𝑢,𝑣   𝐹,𝑎,𝑏,𝑖,𝑢,𝑣   𝑀,𝑎,𝑏,𝑖,𝑢,𝑣   𝑁,𝑎,𝑏,𝑖,𝑢,𝑣   𝑉,𝑎,𝑏,𝑖,𝑢,𝑣   𝑊,𝑎,𝑏,𝑖,𝑢,𝑣   𝑌,𝑎,𝑏,𝑖,𝑢,𝑣   𝑥,𝑎,𝑏,𝑖,𝑢,𝑣
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)

Proof of Theorem satfdmlem
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfrel 33329 . . . . 5 ((𝑀𝑉𝐸𝑊𝑌 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑌))
21adantr 481 . . . 4 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌))
3 1stdm 7881 . . . 4 ((Rel ((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
42, 3sylan 580 . . 3 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
5 eleq2 2827 . . . . . 6 (dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
65adantl 482 . . . . 5 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
76adantr 481 . . . 4 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
8 fvex 6787 . . . . . 6 (1st𝑢) ∈ V
9 eldm2g 5808 . . . . . 6 ((1st𝑢) ∈ V → ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)))
108, 9ax-mp 5 . . . . 5 ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
11 simpr 485 . . . . . . . 8 (((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
122ad4antr 729 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌))
13 1stdm 7881 . . . . . . . . . . . 12 ((Rel ((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
1412, 13sylancom 588 . . . . . . . . . . 11 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
15 eleq2 2827 . . . . . . . . . . . . 13 (dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
1615ad5antlr 732 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
17 fvex 6787 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
18 eldm2g 5808 . . . . . . . . . . . . . 14 ((1st𝑣) ∈ V → ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)))
1917, 18ax-mp 5 . . . . . . . . . . . . 13 ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
20 simpr 485 . . . . . . . . . . . . . . . 16 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
21 vex 3436 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 ∈ V
228, 21op1std 7841 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (1st𝑎) = (1st𝑢))
2322eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (1st𝑢) = (1st𝑎))
2423ad3antlr 728 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (1st𝑢) = (1st𝑎))
25 vex 3436 . . . . . . . . . . . . . . . . . . . . 21 𝑟 ∈ V
2617, 25op1std 7841 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ⟨(1st𝑣), 𝑟⟩ → (1st𝑏) = (1st𝑣))
2726eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (𝑏 = ⟨(1st𝑣), 𝑟⟩ → (1st𝑣) = (1st𝑏))
2824, 27oveqan12d 7294 . . . . . . . . . . . . . . . . . 18 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → ((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑎)⊼𝑔(1st𝑏)))
2928eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3029biimpd 228 . . . . . . . . . . . . . . . 16 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3120, 30rspcimedv 3552 . . . . . . . . . . . . . . 15 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3231ex 413 . . . . . . . . . . . . . 14 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3332exlimdv 1936 . . . . . . . . . . . . 13 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3419, 33syl5bi 241 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3516, 34sylbid 239 . . . . . . . . . . 11 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3614, 35mpd 15 . . . . . . . . . 10 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3736rexlimdva 3213 . . . . . . . . 9 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
38 eqidd 2739 . . . . . . . . . . . . . 14 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → 𝑖 = 𝑖)
3938, 23goaleq12d 33313 . . . . . . . . . . . . 13 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → ∀𝑔𝑖(1st𝑢) = ∀𝑔𝑖(1st𝑎))
4039eqeq2d 2749 . . . . . . . . . . . 12 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝑥 = ∀𝑔𝑖(1st𝑎)))
4140biimpd 228 . . . . . . . . . . 11 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (𝑥 = ∀𝑔𝑖(1st𝑢) → 𝑥 = ∀𝑔𝑖(1st𝑎)))
4241adantl 482 . . . . . . . . . 10 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (𝑥 = ∀𝑔𝑖(1st𝑢) → 𝑥 = ∀𝑔𝑖(1st𝑎)))
4342reximdv 3202 . . . . . . . . 9 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) → ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))
4437, 43orim12d 962 . . . . . . . 8 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
4511, 44rspcimedv 3552 . . . . . . 7 (((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
4645ex 413 . . . . . 6 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
4746exlimdv 1936 . . . . 5 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
4810, 47syl5bi 241 . . . 4 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
497, 48sylbid 239 . . 3 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
504, 49mpd 15 . 2 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
5150rexlimdva 3213 1 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wrex 3065  Vcvv 3432  cop 4567  dom cdm 5589  Rel wrel 5594  cfv 6433  (class class class)co 7275  ωcom 7712  1st c1st 7829  𝑔cgna 33296  𝑔cgol 33297   Sat csat 33298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-goel 33302  df-goal 33304  df-sat 33305
This theorem is referenced by:  satfdm  33331
  Copyright terms: Public domain W3C validator