Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfdmlem Structured version   Visualization version   GIF version

Theorem satfdmlem 35343
Description: Lemma for satfdm 35344. (Contributed by AV, 12-Oct-2023.)
Assertion
Ref Expression
satfdmlem (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑖,𝑢,𝑣   𝐹,𝑎,𝑏,𝑖,𝑢,𝑣   𝑀,𝑎,𝑏,𝑖,𝑢,𝑣   𝑁,𝑎,𝑏,𝑖,𝑢,𝑣   𝑉,𝑎,𝑏,𝑖,𝑢,𝑣   𝑊,𝑎,𝑏,𝑖,𝑢,𝑣   𝑌,𝑎,𝑏,𝑖,𝑢,𝑣   𝑥,𝑎,𝑏,𝑖,𝑢,𝑣
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)

Proof of Theorem satfdmlem
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfrel 35342 . . . . 5 ((𝑀𝑉𝐸𝑊𝑌 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑌))
21adantr 480 . . . 4 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌))
3 1stdm 7982 . . . 4 ((Rel ((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
42, 3sylan 580 . . 3 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
5 eleq2 2817 . . . . . 6 (dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
65adantl 481 . . . . 5 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
76adantr 480 . . . 4 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
8 fvex 6839 . . . . . 6 (1st𝑢) ∈ V
9 eldm2g 5846 . . . . . 6 ((1st𝑢) ∈ V → ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)))
108, 9ax-mp 5 . . . . 5 ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
11 simpr 484 . . . . . . . 8 (((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
122ad4antr 732 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌))
13 1stdm 7982 . . . . . . . . . . . 12 ((Rel ((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
1412, 13sylancom 588 . . . . . . . . . . 11 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
15 eleq2 2817 . . . . . . . . . . . . 13 (dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
1615ad5antlr 735 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
17 fvex 6839 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
18 eldm2g 5846 . . . . . . . . . . . . . 14 ((1st𝑣) ∈ V → ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)))
1917, 18ax-mp 5 . . . . . . . . . . . . 13 ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
20 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
21 vex 3442 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 ∈ V
228, 21op1std 7941 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (1st𝑎) = (1st𝑢))
2322eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (1st𝑢) = (1st𝑎))
2423ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (1st𝑢) = (1st𝑎))
25 vex 3442 . . . . . . . . . . . . . . . . . . . . 21 𝑟 ∈ V
2617, 25op1std 7941 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ⟨(1st𝑣), 𝑟⟩ → (1st𝑏) = (1st𝑣))
2726eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (𝑏 = ⟨(1st𝑣), 𝑟⟩ → (1st𝑣) = (1st𝑏))
2824, 27oveqan12d 7372 . . . . . . . . . . . . . . . . . 18 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → ((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑎)⊼𝑔(1st𝑏)))
2928eqeq2d 2740 . . . . . . . . . . . . . . . . 17 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3029biimpd 229 . . . . . . . . . . . . . . . 16 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3120, 30rspcimedv 3570 . . . . . . . . . . . . . . 15 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3231ex 412 . . . . . . . . . . . . . 14 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3332exlimdv 1933 . . . . . . . . . . . . 13 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3419, 33biimtrid 242 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3516, 34sylbid 240 . . . . . . . . . . 11 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3614, 35mpd 15 . . . . . . . . . 10 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3736rexlimdva 3130 . . . . . . . . 9 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
38 eqidd 2730 . . . . . . . . . . . . . 14 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → 𝑖 = 𝑖)
3938, 23goaleq12d 35326 . . . . . . . . . . . . 13 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → ∀𝑔𝑖(1st𝑢) = ∀𝑔𝑖(1st𝑎))
4039eqeq2d 2740 . . . . . . . . . . . 12 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝑥 = ∀𝑔𝑖(1st𝑎)))
4140biimpd 229 . . . . . . . . . . 11 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (𝑥 = ∀𝑔𝑖(1st𝑢) → 𝑥 = ∀𝑔𝑖(1st𝑎)))
4241adantl 481 . . . . . . . . . 10 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (𝑥 = ∀𝑔𝑖(1st𝑢) → 𝑥 = ∀𝑔𝑖(1st𝑎)))
4342reximdv 3144 . . . . . . . . 9 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) → ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))
4437, 43orim12d 966 . . . . . . . 8 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
4511, 44rspcimedv 3570 . . . . . . 7 (((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
4645ex 412 . . . . . 6 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
4746exlimdv 1933 . . . . 5 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
4810, 47biimtrid 242 . . . 4 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
497, 48sylbid 240 . . 3 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
504, 49mpd 15 . 2 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
5150rexlimdva 3130 1 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3438  cop 4585  dom cdm 5623  Rel wrel 5628  cfv 6486  (class class class)co 7353  ωcom 7806  1st c1st 7929  𝑔cgna 35309  𝑔cgol 35310   Sat csat 35311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-goel 35315  df-goal 35317  df-sat 35318
This theorem is referenced by:  satfdm  35344
  Copyright terms: Public domain W3C validator