Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfdmlem Structured version   Visualization version   GIF version

Theorem satfdmlem 35362
Description: Lemma for satfdm 35363. (Contributed by AV, 12-Oct-2023.)
Assertion
Ref Expression
satfdmlem (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑖,𝑢,𝑣   𝐹,𝑎,𝑏,𝑖,𝑢,𝑣   𝑀,𝑎,𝑏,𝑖,𝑢,𝑣   𝑁,𝑎,𝑏,𝑖,𝑢,𝑣   𝑉,𝑎,𝑏,𝑖,𝑢,𝑣   𝑊,𝑎,𝑏,𝑖,𝑢,𝑣   𝑌,𝑎,𝑏,𝑖,𝑢,𝑣   𝑥,𝑎,𝑏,𝑖,𝑢,𝑣
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)

Proof of Theorem satfdmlem
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfrel 35361 . . . . 5 ((𝑀𝑉𝐸𝑊𝑌 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑌))
21adantr 480 . . . 4 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌))
3 1stdm 8022 . . . 4 ((Rel ((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
42, 3sylan 580 . . 3 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
5 eleq2 2818 . . . . . 6 (dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
65adantl 481 . . . . 5 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
76adantr 480 . . . 4 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
8 fvex 6874 . . . . . 6 (1st𝑢) ∈ V
9 eldm2g 5866 . . . . . 6 ((1st𝑢) ∈ V → ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)))
108, 9ax-mp 5 . . . . 5 ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
11 simpr 484 . . . . . . . 8 (((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
122ad4antr 732 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌))
13 1stdm 8022 . . . . . . . . . . . 12 ((Rel ((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
1412, 13sylancom 588 . . . . . . . . . . 11 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
15 eleq2 2818 . . . . . . . . . . . . 13 (dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
1615ad5antlr 735 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
17 fvex 6874 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
18 eldm2g 5866 . . . . . . . . . . . . . 14 ((1st𝑣) ∈ V → ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)))
1917, 18ax-mp 5 . . . . . . . . . . . . 13 ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
20 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
21 vex 3454 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 ∈ V
228, 21op1std 7981 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (1st𝑎) = (1st𝑢))
2322eqcomd 2736 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (1st𝑢) = (1st𝑎))
2423ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (1st𝑢) = (1st𝑎))
25 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑟 ∈ V
2617, 25op1std 7981 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ⟨(1st𝑣), 𝑟⟩ → (1st𝑏) = (1st𝑣))
2726eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 (𝑏 = ⟨(1st𝑣), 𝑟⟩ → (1st𝑣) = (1st𝑏))
2824, 27oveqan12d 7409 . . . . . . . . . . . . . . . . . 18 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → ((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑎)⊼𝑔(1st𝑏)))
2928eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3029biimpd 229 . . . . . . . . . . . . . . . 16 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3120, 30rspcimedv 3582 . . . . . . . . . . . . . . 15 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3231ex 412 . . . . . . . . . . . . . 14 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3332exlimdv 1933 . . . . . . . . . . . . 13 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3419, 33biimtrid 242 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3516, 34sylbid 240 . . . . . . . . . . 11 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3614, 35mpd 15 . . . . . . . . . 10 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3736rexlimdva 3135 . . . . . . . . 9 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
38 eqidd 2731 . . . . . . . . . . . . . 14 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → 𝑖 = 𝑖)
3938, 23goaleq12d 35345 . . . . . . . . . . . . 13 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → ∀𝑔𝑖(1st𝑢) = ∀𝑔𝑖(1st𝑎))
4039eqeq2d 2741 . . . . . . . . . . . 12 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝑥 = ∀𝑔𝑖(1st𝑎)))
4140biimpd 229 . . . . . . . . . . 11 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (𝑥 = ∀𝑔𝑖(1st𝑢) → 𝑥 = ∀𝑔𝑖(1st𝑎)))
4241adantl 481 . . . . . . . . . 10 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (𝑥 = ∀𝑔𝑖(1st𝑢) → 𝑥 = ∀𝑔𝑖(1st𝑎)))
4342reximdv 3149 . . . . . . . . 9 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) → ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))
4437, 43orim12d 966 . . . . . . . 8 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
4511, 44rspcimedv 3582 . . . . . . 7 (((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
4645ex 412 . . . . . 6 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
4746exlimdv 1933 . . . . 5 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
4810, 47biimtrid 242 . . . 4 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
497, 48sylbid 240 . . 3 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
504, 49mpd 15 . 2 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
5150rexlimdva 3135 1 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3054  Vcvv 3450  cop 4598  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390  ωcom 7845  1st c1st 7969  𝑔cgna 35328  𝑔cgol 35329   Sat csat 35330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-goel 35334  df-goal 35336  df-sat 35337
This theorem is referenced by:  satfdm  35363
  Copyright terms: Public domain W3C validator