Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfdmlem Structured version   Visualization version   GIF version

Theorem satfdmlem 35373
Description: Lemma for satfdm 35374. (Contributed by AV, 12-Oct-2023.)
Assertion
Ref Expression
satfdmlem (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑖,𝑢,𝑣   𝐹,𝑎,𝑏,𝑖,𝑢,𝑣   𝑀,𝑎,𝑏,𝑖,𝑢,𝑣   𝑁,𝑎,𝑏,𝑖,𝑢,𝑣   𝑉,𝑎,𝑏,𝑖,𝑢,𝑣   𝑊,𝑎,𝑏,𝑖,𝑢,𝑣   𝑌,𝑎,𝑏,𝑖,𝑢,𝑣   𝑥,𝑎,𝑏,𝑖,𝑢,𝑣
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)

Proof of Theorem satfdmlem
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfrel 35372 . . . . 5 ((𝑀𝑉𝐸𝑊𝑌 ∈ ω) → Rel ((𝑀 Sat 𝐸)‘𝑌))
21adantr 480 . . . 4 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌))
3 1stdm 8065 . . . 4 ((Rel ((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
42, 3sylan 580 . . 3 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
5 eleq2 2830 . . . . . 6 (dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
65adantl 481 . . . . 5 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
76adantr 480 . . . 4 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
8 fvex 6919 . . . . . 6 (1st𝑢) ∈ V
9 eldm2g 5910 . . . . . 6 ((1st𝑢) ∈ V → ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)))
108, 9ax-mp 5 . . . . 5 ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
11 simpr 484 . . . . . . . 8 (((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
122ad4antr 732 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → Rel ((𝑀 Sat 𝐸)‘𝑌))
13 1stdm 8065 . . . . . . . . . . . 12 ((Rel ((𝑀 Sat 𝐸)‘𝑌) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
1412, 13sylancom 588 . . . . . . . . . . 11 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌))
15 eleq2 2830 . . . . . . . . . . . . 13 (dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
1615ad5antlr 735 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) ↔ (1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌)))
17 fvex 6919 . . . . . . . . . . . . . 14 (1st𝑣) ∈ V
18 eldm2g 5910 . . . . . . . . . . . . . 14 ((1st𝑣) ∈ V → ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)))
1917, 18ax-mp 5 . . . . . . . . . . . . 13 ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) ↔ ∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
20 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌))
21 vex 3484 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 ∈ V
228, 21op1std 8024 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (1st𝑎) = (1st𝑢))
2322eqcomd 2743 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (1st𝑢) = (1st𝑎))
2423ad3antlr 731 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (1st𝑢) = (1st𝑎))
25 vex 3484 . . . . . . . . . . . . . . . . . . . . 21 𝑟 ∈ V
2617, 25op1std 8024 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ⟨(1st𝑣), 𝑟⟩ → (1st𝑏) = (1st𝑣))
2726eqcomd 2743 . . . . . . . . . . . . . . . . . . 19 (𝑏 = ⟨(1st𝑣), 𝑟⟩ → (1st𝑣) = (1st𝑏))
2824, 27oveqan12d 7450 . . . . . . . . . . . . . . . . . 18 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → ((1st𝑢)⊼𝑔(1st𝑣)) = ((1st𝑎)⊼𝑔(1st𝑏)))
2928eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ↔ 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3029biimpd 229 . . . . . . . . . . . . . . . 16 (((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑏 = ⟨(1st𝑣), 𝑟⟩) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → 𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3120, 30rspcimedv 3613 . . . . . . . . . . . . . . 15 ((((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3231ex 412 . . . . . . . . . . . . . 14 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3332exlimdv 1933 . . . . . . . . . . . . 13 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑟⟨(1st𝑣), 𝑟⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3419, 33biimtrid 242 . . . . . . . . . . . 12 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3516, 34sylbid 240 . . . . . . . . . . 11 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑣) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)))))
3614, 35mpd 15 . . . . . . . . . 10 (((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) ∧ 𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
3736rexlimdva 3155 . . . . . . . . 9 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) → ∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏))))
38 eqidd 2738 . . . . . . . . . . . . . 14 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → 𝑖 = 𝑖)
3938, 23goaleq12d 35356 . . . . . . . . . . . . 13 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → ∀𝑔𝑖(1st𝑢) = ∀𝑔𝑖(1st𝑎))
4039eqeq2d 2748 . . . . . . . . . . . 12 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (𝑥 = ∀𝑔𝑖(1st𝑢) ↔ 𝑥 = ∀𝑔𝑖(1st𝑎)))
4140biimpd 229 . . . . . . . . . . 11 (𝑎 = ⟨(1st𝑢), 𝑠⟩ → (𝑥 = ∀𝑔𝑖(1st𝑢) → 𝑥 = ∀𝑔𝑖(1st𝑎)))
4241adantl 481 . . . . . . . . . 10 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (𝑥 = ∀𝑔𝑖(1st𝑢) → 𝑥 = ∀𝑔𝑖(1st𝑎)))
4342reximdv 3170 . . . . . . . . 9 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢) → ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))
4437, 43orim12d 967 . . . . . . . 8 ((((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑎 = ⟨(1st𝑢), 𝑠⟩) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → (∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
4511, 44rspcimedv 3613 . . . . . . 7 (((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) ∧ ⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
4645ex 412 . . . . . 6 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
4746exlimdv 1933 . . . . 5 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → (∃𝑠⟨(1st𝑢), 𝑠⟩ ∈ ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
4810, 47biimtrid 242 . . . 4 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑁 Sat 𝐹)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
497, 48sylbid 240 . . 3 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((1st𝑢) ∈ dom ((𝑀 Sat 𝐸)‘𝑌) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎)))))
504, 49mpd 15 . 2 ((((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) ∧ 𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
5150rexlimdva 3155 1 (((𝑀𝑉𝐸𝑊𝑌 ∈ ω) ∧ dom ((𝑀 Sat 𝐸)‘𝑌) = dom ((𝑁 Sat 𝐹)‘𝑌)) → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑌)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑌)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)) → ∃𝑎 ∈ ((𝑁 Sat 𝐹)‘𝑌)(∃𝑏 ∈ ((𝑁 Sat 𝐹)‘𝑌)𝑥 = ((1st𝑎)⊼𝑔(1st𝑏)) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wrex 3070  Vcvv 3480  cop 4632  dom cdm 5685  Rel wrel 5690  cfv 6561  (class class class)co 7431  ωcom 7887  1st c1st 8012  𝑔cgna 35339  𝑔cgol 35340   Sat csat 35341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-goel 35345  df-goal 35347  df-sat 35348
This theorem is referenced by:  satfdm  35374
  Copyright terms: Public domain W3C validator