MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkfo Structured version   Visualization version   GIF version

Theorem clwlkclwwlkfo 29979
Description: 𝐹 is a function from the nonempty closed walks onto the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkfo (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐,𝑤   𝐹,𝑐,𝑤

Proof of Theorem clwlkclwwlkfo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
31, 2clwlkclwwlkf 29978 . 2 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
4 clwwlkgt0 29956 . . . . . 6 (𝑤 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑤))
5 eqid 2730 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
65clwwlkbp 29955 . . . . . . 7 (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅))
7 lencl 14432 . . . . . . . . . . . 12 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0)
87nn0zd 12486 . . . . . . . . . . 11 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℤ)
9 zgt0ge1 12519 . . . . . . . . . . 11 ((♯‘𝑤) ∈ ℤ → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤)))
108, 9syl 17 . . . . . . . . . 10 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤)))
1110biimpd 229 . . . . . . . . 9 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) → 1 ≤ (♯‘𝑤)))
1211anc2li 555 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
13123ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
146, 13syl 17 . . . . . 6 (𝑤 ∈ (ClWWalks‘𝐺) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
154, 14mpd 15 . . . . 5 (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
1615adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
17 eqid 2730 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
185, 17clwlkclwwlk2 29973 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ 𝑤 ∈ (ClWWalks‘𝐺)))
19 df-br 5090 . . . . . . . . . 10 (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
20 simpr2 1196 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → 𝑤 ∈ Word (Vtx‘𝐺))
21 simpr3 1197 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → 1 ≤ (♯‘𝑤))
22 simpl 482 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
231clwlkclwwlkfolem 29977 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
2420, 21, 22, 23syl3anc 1373 . . . . . . . . . . . . 13 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
25233expa 1118 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
26 ovex 7374 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) ∈ V
27 fveq2 6817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (2nd𝑐) = (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
28 2fveq3 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (♯‘(2nd𝑐)) = (♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
2928oveq1d 7356 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1))
3027, 29oveq12d 7359 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) prefix ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1)))
31 vex 3438 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 ∈ V
32 ovex 7374 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ++ ⟨“(𝑤‘0)”⟩) ∈ V
3331, 32op2nd 7925 . . . . . . . . . . . . . . . . . . . . . 22 (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = (𝑤 ++ ⟨“(𝑤‘0)”⟩)
3433fveq2i 6820 . . . . . . . . . . . . . . . . . . . . . . 23 (♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩))
3534oveq1i 7351 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1) = ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)
3633, 35oveq12i 7353 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) prefix ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1))
3730, 36eqtrdi 2781 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
3837, 2fvmptg 6922 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ∧ ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) ∈ V) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
3925, 26, 38sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
40 wrdlenccats1lenm1 14522 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1) = (♯‘𝑤))
4140ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1) = (♯‘𝑤))
4241oveq2d 7357 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)))
43 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
44 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
45 wrdsymb1 14452 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤‘0) ∈ (Vtx‘𝐺))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤‘0) ∈ (Vtx‘𝐺))
4746s1cld 14503 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺))
48 eqidd 2731 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (♯‘𝑤) = (♯‘𝑤))
49 pfxccatid 14640 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (♯‘𝑤)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)) = 𝑤)
5043, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)) = 𝑤)
5139, 42, 503eqtrrd 2770 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5251ex 412 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
53523adant1 1130 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
5453ad2antlr 727 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
55 fveq2 6817 . . . . . . . . . . . . . . . . 17 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝐹𝑐) = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5655eqeq2d 2741 . . . . . . . . . . . . . . . 16 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝑤 = (𝐹𝑐) ↔ 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
5756imbi2d 340 . . . . . . . . . . . . . . 15 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
5857adantl 481 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
5954, 58mpbird 257 . . . . . . . . . . . . 13 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)))
6024, 59rspcimedv 3566 . . . . . . . . . . . 12 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6160ex 412 . . . . . . . . . . 11 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6261pm2.43b 55 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6319, 62biimtrid 242 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6463exlimdv 1934 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6518, 64sylbird 260 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤 ∈ (ClWWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
66653expib 1122 . . . . . 6 (𝐺 ∈ USPGraph → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤 ∈ (ClWWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6766com23 86 . . . . 5 (𝐺 ∈ USPGraph → (𝑤 ∈ (ClWWalks‘𝐺) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6867imp 406 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6916, 68mpd 15 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))
7069ralrimiva 3122 . 2 (𝐺 ∈ USPGraph → ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐))
71 dffo3 7030 . 2 (𝐹:𝐶onto→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐)))
723, 70, 71sylanbrc 583 1 (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  c0 4281  cop 4580   class class class wbr 5089  cmpt 5170  wf 6473  ontowfo 6475  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  0cc0 10998  1c1 10999   < clt 11138  cle 11139  cmin 11336  cz 12460  chash 14229  Word cword 14412   ++ cconcat 14469  ⟨“cs1 14495   prefix cpfx 14570  Vtxcvtx 28967  iEdgciedg 28968  USPGraphcuspgr 29119  ClWalkscclwlks 29741  ClWWalkscclwwlk 29951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-lsw 14462  df-concat 14470  df-s1 14496  df-substr 14541  df-pfx 14571  df-edg 29019  df-uhgr 29029  df-upgr 29053  df-uspgr 29121  df-wlks 29571  df-clwlks 29742  df-clwwlk 29952
This theorem is referenced by:  clwlkclwwlkf1o  29981
  Copyright terms: Public domain W3C validator