MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkfo Structured version   Visualization version   GIF version

Theorem clwlkclwwlkfo 30037
Description: 𝐹 is a function from the nonempty closed walks onto the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkfo (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐,𝑤   𝐹,𝑐,𝑤

Proof of Theorem clwlkclwwlkfo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
31, 2clwlkclwwlkf 30036 . 2 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
4 clwwlkgt0 30014 . . . . . 6 (𝑤 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑤))
5 eqid 2734 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
65clwwlkbp 30013 . . . . . . 7 (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅))
7 lencl 14567 . . . . . . . . . . . 12 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0)
87nn0zd 12636 . . . . . . . . . . 11 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℤ)
9 zgt0ge1 12669 . . . . . . . . . . 11 ((♯‘𝑤) ∈ ℤ → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤)))
108, 9syl 17 . . . . . . . . . 10 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤)))
1110biimpd 229 . . . . . . . . 9 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) → 1 ≤ (♯‘𝑤)))
1211anc2li 555 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
13123ad2ant2 1133 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
146, 13syl 17 . . . . . 6 (𝑤 ∈ (ClWWalks‘𝐺) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
154, 14mpd 15 . . . . 5 (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
1615adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
17 eqid 2734 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
185, 17clwlkclwwlk2 30031 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ 𝑤 ∈ (ClWWalks‘𝐺)))
19 df-br 5148 . . . . . . . . . 10 (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
20 simpr2 1194 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → 𝑤 ∈ Word (Vtx‘𝐺))
21 simpr3 1195 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → 1 ≤ (♯‘𝑤))
22 simpl 482 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
231clwlkclwwlkfolem 30035 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
2420, 21, 22, 23syl3anc 1370 . . . . . . . . . . . . 13 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
25233expa 1117 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
26 ovex 7463 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) ∈ V
27 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (2nd𝑐) = (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
28 2fveq3 6911 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (♯‘(2nd𝑐)) = (♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
2928oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1))
3027, 29oveq12d 7448 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) prefix ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1)))
31 vex 3481 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 ∈ V
32 ovex 7463 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ++ ⟨“(𝑤‘0)”⟩) ∈ V
3331, 32op2nd 8021 . . . . . . . . . . . . . . . . . . . . . 22 (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = (𝑤 ++ ⟨“(𝑤‘0)”⟩)
3433fveq2i 6909 . . . . . . . . . . . . . . . . . . . . . . 23 (♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩))
3534oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1) = ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)
3633, 35oveq12i 7442 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) prefix ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1))
3730, 36eqtrdi 2790 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
3837, 2fvmptg 7013 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ∧ ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) ∈ V) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
3925, 26, 38sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
40 wrdlenccats1lenm1 14656 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1) = (♯‘𝑤))
4140ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1) = (♯‘𝑤))
4241oveq2d 7446 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)))
43 simpll 767 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
44 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
45 wrdsymb1 14587 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤‘0) ∈ (Vtx‘𝐺))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤‘0) ∈ (Vtx‘𝐺))
4746s1cld 14637 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺))
48 eqidd 2735 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (♯‘𝑤) = (♯‘𝑤))
49 pfxccatid 14775 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (♯‘𝑤)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)) = 𝑤)
5043, 47, 48, 49syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)) = 𝑤)
5139, 42, 503eqtrrd 2779 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5251ex 412 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
53523adant1 1129 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
5453ad2antlr 727 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
55 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝐹𝑐) = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5655eqeq2d 2745 . . . . . . . . . . . . . . . 16 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝑤 = (𝐹𝑐) ↔ 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
5756imbi2d 340 . . . . . . . . . . . . . . 15 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
5857adantl 481 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
5954, 58mpbird 257 . . . . . . . . . . . . 13 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)))
6024, 59rspcimedv 3612 . . . . . . . . . . . 12 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6160ex 412 . . . . . . . . . . 11 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6261pm2.43b 55 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6319, 62biimtrid 242 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6463exlimdv 1930 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6518, 64sylbird 260 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤 ∈ (ClWWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
66653expib 1121 . . . . . 6 (𝐺 ∈ USPGraph → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤 ∈ (ClWWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6766com23 86 . . . . 5 (𝐺 ∈ USPGraph → (𝑤 ∈ (ClWWalks‘𝐺) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6867imp 406 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6916, 68mpd 15 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))
7069ralrimiva 3143 . 2 (𝐺 ∈ USPGraph → ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐))
71 dffo3 7121 . 2 (𝐹:𝐶onto→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐)))
723, 70, 71sylanbrc 583 1 (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  c0 4338  cop 4636   class class class wbr 5147  cmpt 5230  wf 6558  ontowfo 6560  cfv 6562  (class class class)co 7430  1st c1st 8010  2nd c2nd 8011  0cc0 11152  1c1 11153   < clt 11292  cle 11293  cmin 11489  cz 12610  chash 14365  Word cword 14548   ++ cconcat 14604  ⟨“cs1 14629   prefix cpfx 14704  Vtxcvtx 29027  iEdgciedg 29028  USPGraphcuspgr 29179  ClWalkscclwlks 29802  ClWWalkscclwwlk 30009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-lsw 14597  df-concat 14605  df-s1 14630  df-substr 14675  df-pfx 14705  df-edg 29079  df-uhgr 29089  df-upgr 29113  df-uspgr 29181  df-wlks 29631  df-clwlks 29803  df-clwwlk 30010
This theorem is referenced by:  clwlkclwwlkf1o  30039
  Copyright terms: Public domain W3C validator