MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkfo Structured version   Visualization version   GIF version

Theorem clwlkclwwlkfo 29938
Description: 𝐹 is a function from the nonempty closed walks onto the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkfo (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐,𝑤   𝐹,𝑐,𝑤

Proof of Theorem clwlkclwwlkfo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
31, 2clwlkclwwlkf 29937 . 2 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
4 clwwlkgt0 29915 . . . . . 6 (𝑤 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑤))
5 eqid 2729 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
65clwwlkbp 29914 . . . . . . 7 (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅))
7 lencl 14498 . . . . . . . . . . . 12 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0)
87nn0zd 12555 . . . . . . . . . . 11 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℤ)
9 zgt0ge1 12588 . . . . . . . . . . 11 ((♯‘𝑤) ∈ ℤ → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤)))
108, 9syl 17 . . . . . . . . . 10 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤)))
1110biimpd 229 . . . . . . . . 9 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) → 1 ≤ (♯‘𝑤)))
1211anc2li 555 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
13123ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
146, 13syl 17 . . . . . 6 (𝑤 ∈ (ClWWalks‘𝐺) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
154, 14mpd 15 . . . . 5 (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
1615adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
17 eqid 2729 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
185, 17clwlkclwwlk2 29932 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ 𝑤 ∈ (ClWWalks‘𝐺)))
19 df-br 5108 . . . . . . . . . 10 (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
20 simpr2 1196 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → 𝑤 ∈ Word (Vtx‘𝐺))
21 simpr3 1197 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → 1 ≤ (♯‘𝑤))
22 simpl 482 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
231clwlkclwwlkfolem 29936 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
2420, 21, 22, 23syl3anc 1373 . . . . . . . . . . . . 13 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
25233expa 1118 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
26 ovex 7420 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) ∈ V
27 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (2nd𝑐) = (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
28 2fveq3 6863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (♯‘(2nd𝑐)) = (♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
2928oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1))
3027, 29oveq12d 7405 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) prefix ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1)))
31 vex 3451 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 ∈ V
32 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ++ ⟨“(𝑤‘0)”⟩) ∈ V
3331, 32op2nd 7977 . . . . . . . . . . . . . . . . . . . . . 22 (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = (𝑤 ++ ⟨“(𝑤‘0)”⟩)
3433fveq2i 6861 . . . . . . . . . . . . . . . . . . . . . . 23 (♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩))
3534oveq1i 7397 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1) = ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)
3633, 35oveq12i 7399 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) prefix ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1))
3730, 36eqtrdi 2780 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
3837, 2fvmptg 6966 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ∧ ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) ∈ V) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
3925, 26, 38sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
40 wrdlenccats1lenm1 14587 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1) = (♯‘𝑤))
4140ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1) = (♯‘𝑤))
4241oveq2d 7403 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)))
43 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
44 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
45 wrdsymb1 14518 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤‘0) ∈ (Vtx‘𝐺))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤‘0) ∈ (Vtx‘𝐺))
4746s1cld 14568 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺))
48 eqidd 2730 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (♯‘𝑤) = (♯‘𝑤))
49 pfxccatid 14706 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (♯‘𝑤)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)) = 𝑤)
5043, 47, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)) = 𝑤)
5139, 42, 503eqtrrd 2769 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5251ex 412 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
53523adant1 1130 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
5453ad2antlr 727 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
55 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝐹𝑐) = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5655eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝑤 = (𝐹𝑐) ↔ 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
5756imbi2d 340 . . . . . . . . . . . . . . 15 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
5857adantl 481 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
5954, 58mpbird 257 . . . . . . . . . . . . 13 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)))
6024, 59rspcimedv 3579 . . . . . . . . . . . 12 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6160ex 412 . . . . . . . . . . 11 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6261pm2.43b 55 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6319, 62biimtrid 242 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6463exlimdv 1933 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6518, 64sylbird 260 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤 ∈ (ClWWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
66653expib 1122 . . . . . 6 (𝐺 ∈ USPGraph → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤 ∈ (ClWWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6766com23 86 . . . . 5 (𝐺 ∈ USPGraph → (𝑤 ∈ (ClWWalks‘𝐺) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6867imp 406 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6916, 68mpd 15 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))
7069ralrimiva 3125 . 2 (𝐺 ∈ USPGraph → ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐))
71 dffo3 7074 . 2 (𝐹:𝐶onto→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐)))
723, 70, 71sylanbrc 583 1 (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  c0 4296  cop 4595   class class class wbr 5107  cmpt 5188  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  0cc0 11068  1c1 11069   < clt 11208  cle 11209  cmin 11405  cz 12529  chash 14295  Word cword 14478   ++ cconcat 14535  ⟨“cs1 14560   prefix cpfx 14635  Vtxcvtx 28923  iEdgciedg 28924  USPGraphcuspgr 29075  ClWalkscclwlks 29700  ClWWalkscclwwlk 29910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-uspgr 29077  df-wlks 29527  df-clwlks 29701  df-clwwlk 29911
This theorem is referenced by:  clwlkclwwlkf1o  29940
  Copyright terms: Public domain W3C validator