MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkfo Structured version   Visualization version   GIF version

Theorem clwlkclwwlkfo 27958
Description: 𝐹 is a function from the nonempty closed walks onto the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 2-May-2021.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkfo (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐,𝑤   𝐹,𝑐,𝑤

Proof of Theorem clwlkclwwlkfo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . 3 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 clwlkclwwlkf.f . . 3 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
31, 2clwlkclwwlkf 27957 . 2 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
4 clwwlkgt0 27935 . . . . . 6 (𝑤 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑤))
5 eqid 2739 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
65clwwlkbp 27934 . . . . . . 7 (𝑤 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅))
7 lencl 13986 . . . . . . . . . . . 12 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℕ0)
87nn0zd 12178 . . . . . . . . . . 11 (𝑤 ∈ Word (Vtx‘𝐺) → (♯‘𝑤) ∈ ℤ)
9 zgt0ge1 12129 . . . . . . . . . . 11 ((♯‘𝑤) ∈ ℤ → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤)))
108, 9syl 17 . . . . . . . . . 10 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) ↔ 1 ≤ (♯‘𝑤)))
1110biimpd 232 . . . . . . . . 9 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) → 1 ≤ (♯‘𝑤)))
1211anc2li 559 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
13123ad2ant2 1135 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑤 ≠ ∅) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
146, 13syl 17 . . . . . 6 (𝑤 ∈ (ClWWalks‘𝐺) → (0 < (♯‘𝑤) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))))
154, 14mpd 15 . . . . 5 (𝑤 ∈ (ClWWalks‘𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
1615adantl 485 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
17 eqid 2739 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
185, 17clwlkclwwlk2 27952 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ 𝑤 ∈ (ClWWalks‘𝐺)))
19 df-br 5041 . . . . . . . . . 10 (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) ↔ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
20 simpr2 1196 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → 𝑤 ∈ Word (Vtx‘𝐺))
21 simpr3 1197 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → 1 ≤ (♯‘𝑤))
22 simpl 486 . . . . . . . . . . . . . 14 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺))
231clwlkclwwlkfolem 27956 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
2420, 21, 22, 23syl3anc 1372 . . . . . . . . . . . . 13 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
25233expa 1119 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶)
26 ovex 7215 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) ∈ V
27 fveq2 6686 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (2nd𝑐) = (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
28 2fveq3 6691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (♯‘(2nd𝑐)) = (♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
2928oveq1d 7197 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1))
3027, 29oveq12d 7200 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) prefix ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1)))
31 vex 3404 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 ∈ V
32 ovex 7215 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ++ ⟨“(𝑤‘0)”⟩) ∈ V
3331, 32op2nd 7735 . . . . . . . . . . . . . . . . . . . . . 22 (2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = (𝑤 ++ ⟨“(𝑤‘0)”⟩)
3433fveq2i 6689 . . . . . . . . . . . . . . . . . . . . . . 23 (♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) = (♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩))
3534oveq1i 7192 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1) = ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)
3633, 35oveq12i 7194 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) prefix ((♯‘(2nd ‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1))
3730, 36eqtrdi 2790 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
3837, 2fvmptg 6785 . . . . . . . . . . . . . . . . . . 19 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ 𝐶 ∧ ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) ∈ V) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
3925, 26, 38sylancl 589 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)))
40 wrdlenccats1lenm1 14077 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1) = (♯‘𝑤))
4140ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1) = (♯‘𝑤))
4241oveq2d 7198 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix ((♯‘(𝑤 ++ ⟨“(𝑤‘0)”⟩)) − 1)) = ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)))
43 simpll 767 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
44 simpl 486 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)))
45 wrdsymb1 14006 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤‘0) ∈ (Vtx‘𝐺))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (𝑤‘0) ∈ (Vtx‘𝐺))
4746s1cld 14058 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺))
48 eqidd 2740 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → (♯‘𝑤) = (♯‘𝑤))
49 pfxccatid 14204 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑤‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (♯‘𝑤)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)) = 𝑤)
5043, 47, 48, 49syl3anc 1372 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → ((𝑤 ++ ⟨“(𝑤‘0)”⟩) prefix (♯‘𝑤)) = 𝑤)
5139, 42, 503eqtrrd 2779 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) ∧ ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺)) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5251ex 416 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
53523adant1 1131 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
5453ad2antlr 727 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
55 fveq2 6686 . . . . . . . . . . . . . . . . 17 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝐹𝑐) = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))
5655eqeq2d 2750 . . . . . . . . . . . . . . . 16 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → (𝑤 = (𝐹𝑐) ↔ 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩)))
5756imbi2d 344 . . . . . . . . . . . . . . 15 (𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
5857adantl 485 . . . . . . . . . . . . . 14 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)) ↔ (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹‘⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩))))
5954, 58mpbird 260 . . . . . . . . . . . . 13 (((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) ∧ 𝑐 = ⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → 𝑤 = (𝐹𝑐)))
6024, 59rspcimedv 3520 . . . . . . . . . . . 12 ((⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) ∧ (𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤))) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6160ex 416 . . . . . . . . . . 11 (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6261pm2.43b 55 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (⟨𝑓, (𝑤 ++ ⟨“(𝑤‘0)”⟩)⟩ ∈ (ClWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6319, 62syl5bi 245 . . . . . . . . 9 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6463exlimdv 1940 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑤 ++ ⟨“(𝑤‘0)”⟩) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6518, 64sylbird 263 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤 ∈ (ClWWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
66653expib 1123 . . . . . 6 (𝐺 ∈ USPGraph → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → (𝑤 ∈ (ClWWalks‘𝐺) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6766com23 86 . . . . 5 (𝐺 ∈ USPGraph → (𝑤 ∈ (ClWWalks‘𝐺) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))))
6867imp 410 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (♯‘𝑤)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐)))
6916, 68mpd 15 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑤 ∈ (ClWWalks‘𝐺)) → ∃𝑐𝐶 𝑤 = (𝐹𝑐))
7069ralrimiva 3097 . 2 (𝐺 ∈ USPGraph → ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐))
71 dffo3 6890 . 2 (𝐹:𝐶onto→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑤 ∈ (ClWWalks‘𝐺)∃𝑐𝐶 𝑤 = (𝐹𝑐)))
723, 70, 71sylanbrc 586 1 (𝐺 ∈ USPGraph → 𝐹:𝐶onto→(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wex 1786  wcel 2114  wne 2935  wral 3054  wrex 3055  {crab 3058  Vcvv 3400  c0 4221  cop 4532   class class class wbr 5040  cmpt 5120  wf 6345  ontowfo 6347  cfv 6349  (class class class)co 7182  1st c1st 7724  2nd c2nd 7725  0cc0 10627  1c1 10628   < clt 10765  cle 10766  cmin 10960  cz 12074  chash 13794  Word cword 13967   ++ cconcat 14023  ⟨“cs1 14050   prefix cpfx 14133  Vtxcvtx 26953  iEdgciedg 26954  USPGraphcuspgr 27105  ClWalkscclwlks 27723  ClWWalkscclwwlk 27930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-oadd 8147  df-er 8332  df-map 8451  df-pm 8452  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-dju 9415  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-n0 11989  df-xnn0 12061  df-z 12075  df-uz 12337  df-rp 12485  df-fz 12994  df-fzo 13137  df-hash 13795  df-word 13968  df-lsw 14016  df-concat 14024  df-s1 14051  df-substr 14104  df-pfx 14134  df-edg 27005  df-uhgr 27015  df-upgr 27039  df-uspgr 27107  df-wlks 27553  df-clwlks 27724  df-clwwlk 27931
This theorem is referenced by:  clwlkclwwlkf1o  27960
  Copyright terms: Public domain W3C validator