MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixfo Structured version   Visualization version   GIF version

Theorem symgfixfo 19376
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.h 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
Assertion
Ref Expression
symgfixfo ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄onto𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑁,𝑞   𝑄,𝑞   𝑆,𝑞
Allowed substitution hints:   𝐻(𝑞)   𝑉(𝑞)

Proof of Theorem symgfixfo
Dummy variables 𝑝 𝑖 𝑠 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgfixf.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . 4 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
3 symgfixf.s . . . 4 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
4 symgfixf.h . . . 4 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
51, 2, 3, 4symgfixf 19373 . . 3 (𝐾𝑁𝐻:𝑄𝑆)
65adantl 481 . 2 ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄𝑆)
7 eqeq1 2734 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖 = 𝐾𝑗 = 𝐾))
8 fveq2 6861 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑠𝑖) = (𝑠𝑗))
97, 8ifbieq2d 4518 . . . . . . . . 9 (𝑖 = 𝑗 → if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)) = if(𝑗 = 𝐾, 𝐾, (𝑠𝑗)))
109cbvmptv 5214 . . . . . . . 8 (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) = (𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝐾, (𝑠𝑗)))
111, 2, 3, 4, 10symgfixfolem1 19375 . . . . . . 7 ((𝑁𝑉𝐾𝑁𝑠𝑆) → (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∈ 𝑄)
12113expa 1118 . . . . . 6 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∈ 𝑄)
13 simpr 484 . . . . . . . . . . . . 13 ((𝑁𝑉𝐾𝑁) → 𝐾𝑁)
1413anim1i 615 . . . . . . . . . . . 12 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (𝐾𝑁𝑠𝑆))
1514adantl 481 . . . . . . . . . . 11 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → (𝐾𝑁𝑠𝑆))
16 eqid 2730 . . . . . . . . . . . 12 (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)))
173, 16symgextres 19362 . . . . . . . . . . 11 ((𝐾𝑁𝑠𝑆) → ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠)
1815, 17syl 17 . . . . . . . . . 10 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠)
1918eqcomd 2736 . . . . . . . . 9 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})))
20 reseq1 5947 . . . . . . . . . . 11 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (𝑝 ↾ (𝑁 ∖ {𝐾})) = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})))
2120eqeq2d 2741 . . . . . . . . . 10 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾}))))
2221adantr 480 . . . . . . . . 9 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾}))))
2319, 22mpbird 257 . . . . . . . 8 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))
2423ex 412 . . . . . . 7 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2524adantl 481 . . . . . 6 ((((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) ∧ 𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)))) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2612, 25rspcimedv 3582 . . . . 5 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2726pm2.43i 52 . . . 4 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))
284fvtresfn 6973 . . . . . . 7 (𝑝𝑄 → (𝐻𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾})))
2928eqeq2d 2741 . . . . . 6 (𝑝𝑄 → (𝑠 = (𝐻𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3029adantl 481 . . . . 5 ((((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) ∧ 𝑝𝑄) → (𝑠 = (𝐻𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3130rexbidva 3156 . . . 4 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (∃𝑝𝑄 𝑠 = (𝐻𝑝) ↔ ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3227, 31mpbird 257 . . 3 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝐻𝑝))
3332ralrimiva 3126 . 2 ((𝑁𝑉𝐾𝑁) → ∀𝑠𝑆𝑝𝑄 𝑠 = (𝐻𝑝))
34 dffo3 7077 . 2 (𝐻:𝑄onto𝑆 ↔ (𝐻:𝑄𝑆 ∧ ∀𝑠𝑆𝑝𝑄 𝑠 = (𝐻𝑝)))
356, 33, 34sylanbrc 583 1 ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  cdif 3914  ifcif 4491  {csn 4592  cmpt 5191  cres 5643  wf 6510  ontowfo 6512  cfv 6514  Basecbs 17186  SymGrpcsymg 19306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-efmnd 18803  df-symg 19307
This theorem is referenced by:  symgfixf1o  19377
  Copyright terms: Public domain W3C validator