MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixfo Structured version   Visualization version   GIF version

Theorem symgfixfo 19047
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.h 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
Assertion
Ref Expression
symgfixfo ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄onto𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑁,𝑞   𝑄,𝑞   𝑆,𝑞
Allowed substitution hints:   𝐻(𝑞)   𝑉(𝑞)

Proof of Theorem symgfixfo
Dummy variables 𝑝 𝑖 𝑠 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgfixf.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . 4 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
3 symgfixf.s . . . 4 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
4 symgfixf.h . . . 4 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
51, 2, 3, 4symgfixf 19044 . . 3 (𝐾𝑁𝐻:𝑄𝑆)
65adantl 482 . 2 ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄𝑆)
7 eqeq1 2742 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖 = 𝐾𝑗 = 𝐾))
8 fveq2 6774 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑠𝑖) = (𝑠𝑗))
97, 8ifbieq2d 4485 . . . . . . . . 9 (𝑖 = 𝑗 → if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)) = if(𝑗 = 𝐾, 𝐾, (𝑠𝑗)))
109cbvmptv 5187 . . . . . . . 8 (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) = (𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝐾, (𝑠𝑗)))
111, 2, 3, 4, 10symgfixfolem1 19046 . . . . . . 7 ((𝑁𝑉𝐾𝑁𝑠𝑆) → (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∈ 𝑄)
12113expa 1117 . . . . . 6 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∈ 𝑄)
13 simpr 485 . . . . . . . . . . . . 13 ((𝑁𝑉𝐾𝑁) → 𝐾𝑁)
1413anim1i 615 . . . . . . . . . . . 12 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (𝐾𝑁𝑠𝑆))
1514adantl 482 . . . . . . . . . . 11 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → (𝐾𝑁𝑠𝑆))
16 eqid 2738 . . . . . . . . . . . 12 (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)))
173, 16symgextres 19033 . . . . . . . . . . 11 ((𝐾𝑁𝑠𝑆) → ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠)
1815, 17syl 17 . . . . . . . . . 10 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠)
1918eqcomd 2744 . . . . . . . . 9 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})))
20 reseq1 5885 . . . . . . . . . . 11 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (𝑝 ↾ (𝑁 ∖ {𝐾})) = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})))
2120eqeq2d 2749 . . . . . . . . . 10 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾}))))
2221adantr 481 . . . . . . . . 9 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾}))))
2319, 22mpbird 256 . . . . . . . 8 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))
2423ex 413 . . . . . . 7 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2524adantl 482 . . . . . 6 ((((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) ∧ 𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)))) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2612, 25rspcimedv 3552 . . . . 5 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2726pm2.43i 52 . . . 4 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))
284fvtresfn 6877 . . . . . . 7 (𝑝𝑄 → (𝐻𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾})))
2928eqeq2d 2749 . . . . . 6 (𝑝𝑄 → (𝑠 = (𝐻𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3029adantl 482 . . . . 5 ((((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) ∧ 𝑝𝑄) → (𝑠 = (𝐻𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3130rexbidva 3225 . . . 4 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (∃𝑝𝑄 𝑠 = (𝐻𝑝) ↔ ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3227, 31mpbird 256 . . 3 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝐻𝑝))
3332ralrimiva 3103 . 2 ((𝑁𝑉𝐾𝑁) → ∀𝑠𝑆𝑝𝑄 𝑠 = (𝐻𝑝))
34 dffo3 6978 . 2 (𝐻:𝑄onto𝑆 ↔ (𝐻:𝑄𝑆 ∧ ∀𝑠𝑆𝑝𝑄 𝑠 = (𝐻𝑝)))
356, 33, 34sylanbrc 583 1 ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cdif 3884  ifcif 4459  {csn 4561  cmpt 5157  cres 5591  wf 6429  ontowfo 6431  cfv 6433  Basecbs 16912  SymGrpcsymg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975
This theorem is referenced by:  symgfixf1o  19048
  Copyright terms: Public domain W3C validator