Step | Hyp | Ref
| Expression |
1 | | symgfixf.p |
. . . 4
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
2 | | symgfixf.q |
. . . 4
⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
3 | | symgfixf.s |
. . . 4
⊢ 𝑆 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
4 | | symgfixf.h |
. . . 4
⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) |
5 | 1, 2, 3, 4 | symgfixf 19044 |
. . 3
⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄⟶𝑆) |
6 | 5 | adantl 482 |
. 2
⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄⟶𝑆) |
7 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑖 = 𝐾 ↔ 𝑗 = 𝐾)) |
8 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑠‘𝑖) = (𝑠‘𝑗)) |
9 | 7, 8 | ifbieq2d 4485 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖)) = if(𝑗 = 𝐾, 𝐾, (𝑠‘𝑗))) |
10 | 9 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) = (𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, 𝐾, (𝑠‘𝑗))) |
11 | 1, 2, 3, 4, 10 | symgfixfolem1 19046 |
. . . . . . 7
⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁 ∧ 𝑠 ∈ 𝑆) → (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ∈ 𝑄) |
12 | 11 | 3expa 1117 |
. . . . . 6
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ∈ 𝑄) |
13 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) |
14 | 13 | anim1i 615 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → (𝐾 ∈ 𝑁 ∧ 𝑠 ∈ 𝑆)) |
15 | 14 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆)) → (𝐾 ∈ 𝑁 ∧ 𝑠 ∈ 𝑆)) |
16 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) |
17 | 3, 16 | symgextres 19033 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑠 ∈ 𝑆) → ((𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠) |
18 | 15, 17 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆)) → ((𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠) |
19 | 18 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆)) → 𝑠 = ((𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ↾ (𝑁 ∖ {𝐾}))) |
20 | | reseq1 5885 |
. . . . . . . . . . 11
⊢ (𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) → (𝑝 ↾ (𝑁 ∖ {𝐾})) = ((𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ↾ (𝑁 ∖ {𝐾}))) |
21 | 20 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ↾ (𝑁 ∖ {𝐾})))) |
22 | 21 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆)) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ↾ (𝑁 ∖ {𝐾})))) |
23 | 19, 22 | mpbird 256 |
. . . . . . . 8
⊢ ((𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) ∧ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆)) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))) |
24 | 23 | ex 413 |
. . . . . . 7
⊢ (𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖))) → (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
25 | 24 | adantl 482 |
. . . . . 6
⊢ ((((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) ∧ 𝑝 = (𝑖 ∈ 𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠‘𝑖)))) → (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
26 | 12, 25 | rspcimedv 3552 |
. . . . 5
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → ∃𝑝 ∈ 𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
27 | 26 | pm2.43i 52 |
. . . 4
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → ∃𝑝 ∈ 𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))) |
28 | 4 | fvtresfn 6877 |
. . . . . . 7
⊢ (𝑝 ∈ 𝑄 → (𝐻‘𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾}))) |
29 | 28 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑝 ∈ 𝑄 → (𝑠 = (𝐻‘𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
30 | 29 | adantl 482 |
. . . . 5
⊢ ((((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) ∧ 𝑝 ∈ 𝑄) → (𝑠 = (𝐻‘𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
31 | 30 | rexbidva 3225 |
. . . 4
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → (∃𝑝 ∈ 𝑄 𝑠 = (𝐻‘𝑝) ↔ ∃𝑝 ∈ 𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
32 | 27, 31 | mpbird 256 |
. . 3
⊢ (((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ 𝑠 ∈ 𝑆) → ∃𝑝 ∈ 𝑄 𝑠 = (𝐻‘𝑝)) |
33 | 32 | ralrimiva 3103 |
. 2
⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ∀𝑠 ∈ 𝑆 ∃𝑝 ∈ 𝑄 𝑠 = (𝐻‘𝑝)) |
34 | | dffo3 6978 |
. 2
⊢ (𝐻:𝑄–onto→𝑆 ↔ (𝐻:𝑄⟶𝑆 ∧ ∀𝑠 ∈ 𝑆 ∃𝑝 ∈ 𝑄 𝑠 = (𝐻‘𝑝))) |
35 | 6, 33, 34 | sylanbrc 583 |
1
⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–onto→𝑆) |