MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixfo Structured version   Visualization version   GIF version

Theorem symgfixfo 19425
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is an onto function. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.h 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
Assertion
Ref Expression
symgfixfo ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄onto𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑁,𝑞   𝑄,𝑞   𝑆,𝑞
Allowed substitution hints:   𝐻(𝑞)   𝑉(𝑞)

Proof of Theorem symgfixfo
Dummy variables 𝑝 𝑖 𝑠 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgfixf.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . . 4 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
3 symgfixf.s . . . 4 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
4 symgfixf.h . . . 4 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
51, 2, 3, 4symgfixf 19422 . . 3 (𝐾𝑁𝐻:𝑄𝑆)
65adantl 481 . 2 ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄𝑆)
7 eqeq1 2740 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖 = 𝐾𝑗 = 𝐾))
8 fveq2 6881 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑠𝑖) = (𝑠𝑗))
97, 8ifbieq2d 4532 . . . . . . . . 9 (𝑖 = 𝑗 → if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)) = if(𝑗 = 𝐾, 𝐾, (𝑠𝑗)))
109cbvmptv 5230 . . . . . . . 8 (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) = (𝑗𝑁 ↦ if(𝑗 = 𝐾, 𝐾, (𝑠𝑗)))
111, 2, 3, 4, 10symgfixfolem1 19424 . . . . . . 7 ((𝑁𝑉𝐾𝑁𝑠𝑆) → (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∈ 𝑄)
12113expa 1118 . . . . . 6 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∈ 𝑄)
13 simpr 484 . . . . . . . . . . . . 13 ((𝑁𝑉𝐾𝑁) → 𝐾𝑁)
1413anim1i 615 . . . . . . . . . . . 12 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (𝐾𝑁𝑠𝑆))
1514adantl 481 . . . . . . . . . . 11 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → (𝐾𝑁𝑠𝑆))
16 eqid 2736 . . . . . . . . . . . 12 (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)))
173, 16symgextres 19411 . . . . . . . . . . 11 ((𝐾𝑁𝑠𝑆) → ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠)
1815, 17syl 17 . . . . . . . . . 10 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})) = 𝑠)
1918eqcomd 2742 . . . . . . . . 9 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})))
20 reseq1 5965 . . . . . . . . . . 11 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (𝑝 ↾ (𝑁 ∖ {𝐾})) = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾})))
2120eqeq2d 2747 . . . . . . . . . 10 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾}))))
2221adantr 480 . . . . . . . . 9 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → (𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ 𝑠 = ((𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ↾ (𝑁 ∖ {𝐾}))))
2319, 22mpbird 257 . . . . . . . 8 ((𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) ∧ ((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆)) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))
2423ex 412 . . . . . . 7 (𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖))) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2524adantl 481 . . . . . 6 ((((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) ∧ 𝑝 = (𝑖𝑁 ↦ if(𝑖 = 𝐾, 𝐾, (𝑠𝑖)))) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2612, 25rspcimedv 3597 . . . . 5 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
2726pm2.43i 52 . . . 4 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾})))
284fvtresfn 6993 . . . . . . 7 (𝑝𝑄 → (𝐻𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾})))
2928eqeq2d 2747 . . . . . 6 (𝑝𝑄 → (𝑠 = (𝐻𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3029adantl 481 . . . . 5 ((((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) ∧ 𝑝𝑄) → (𝑠 = (𝐻𝑝) ↔ 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3130rexbidva 3163 . . . 4 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → (∃𝑝𝑄 𝑠 = (𝐻𝑝) ↔ ∃𝑝𝑄 𝑠 = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
3227, 31mpbird 257 . . 3 (((𝑁𝑉𝐾𝑁) ∧ 𝑠𝑆) → ∃𝑝𝑄 𝑠 = (𝐻𝑝))
3332ralrimiva 3133 . 2 ((𝑁𝑉𝐾𝑁) → ∀𝑠𝑆𝑝𝑄 𝑠 = (𝐻𝑝))
34 dffo3 7097 . 2 (𝐻:𝑄onto𝑆 ↔ (𝐻:𝑄𝑆 ∧ ∀𝑠𝑆𝑝𝑄 𝑠 = (𝐻𝑝)))
356, 33, 34sylanbrc 583 1 ((𝑁𝑉𝐾𝑁) → 𝐻:𝑄onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  cdif 3928  ifcif 4505  {csn 4606  cmpt 5206  cres 5661  wf 6532  ontowfo 6534  cfv 6536  Basecbs 17233  SymGrpcsymg 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-tset 17295  df-efmnd 18852  df-symg 19356
This theorem is referenced by:  symgfixf1o  19426
  Copyright terms: Public domain W3C validator