![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: sbcne12 4438 fnprb 7245 fntpb 7246 eqfunresadj 7396 eloprabga 7558 eloprabgaOLD 7559 ordsucuniel 7860 ordsucun 7861 oeoa 8653 ereldm 8813 boxcutc 8999 mapen 9207 mapfien 9477 wemapwe 9766 sdom2en01 10371 prlem936 11116 subcan 11591 mulcan1g 11943 conjmul 12011 ltrec 12177 rebtwnz 13012 xposdif 13324 divelunit 13554 fseq1m1p1 13659 fzm1 13664 fllt 13857 hashfacen 14503 hashf1 14506 ccat0 14624 lenegsq 15369 dvdsmod 16377 bitsmod 16482 smueqlem 16536 rpexp 16769 eulerthlem2 16829 odzdvds 16842 pcelnn 16917 xpsle 17639 isepi 17801 fthmon 17994 cat1 18164 pospropd 18397 grpidpropd 18700 mgmhmpropd 18736 sgrppropd 18769 mndpropd 18797 mhmpropd 18827 grppropd 18991 ghmnsgima 19280 mndodcong 19584 odf1 19604 odf1o1 19614 sylow3lem6 19674 lsmcntzr 19722 efgredlema 19782 cmnpropd 19833 qusecsub 19877 dprdf11 20067 rngpropd 20201 ringpropd 20311 dvdsrpropd 20442 resrhm2b 20630 abvpropd 20858 lmodprop2d 20944 lsspropd 21039 lmhmpropd 21095 lbspropd 21121 lvecvscan 21136 lvecvscan2 21137 chrnzr 21568 zndvds0 21592 ip2eq 21694 phlpropd 21696 assapropd 21915 qtopcn 23743 tsmsf1o 24174 xmetgt0 24389 txmetcnp 24581 metustsym 24589 nlmmul0or 24725 cnmet 24813 evth 25010 isclmp 25149 minveclem3b 25481 mbfposr 25706 itg2cn 25818 iblcnlem 25844 dvcvx 26079 ulm2 26446 efeq1 26588 dcubic 26907 mcubic 26908 dquart 26914 birthdaylem3 27014 ftalem2 27135 issqf 27197 sqff1o 27243 bposlem7 27352 lgsabs1 27398 gausslemma2dlem1a 27427 lgsquadlem2 27443 addsq2reu 27502 dchrisum0lem1 27578 sltrec 27883 opphllem6 28778 colhp 28796 lmiinv 28818 lmiopp 28828 wlkeq 29670 eupth2lem3lem3 30262 eupth2lem3lem6 30265 nmounbi 30808 ip2eqi 30888 hvmulcan 31104 hvsubcan2 31107 hi2eq 31137 fh2 31651 riesz4i 32095 cvbr4i 32399 xdivpnfrp 32897 isorng 33294 qusker 33342 ellspds 33361 ply1moneq 33576 ballotlemfc0 34457 ballotlemfcc 34458 sgnmulsgn 34514 sgnmulsgp 34515 subfacp1lem5 35152 topfneec2 36322 neibastop3 36328 unccur 37563 cos2h 37571 tan2h 37572 poimirlem25 37605 poimirlem27 37607 dvasin 37664 caures 37720 ismtyima 37763 isdmn3 38034 dmecd 38260 releldmqscoss 38616 tendospcanN 40980 dochsncom 41339 f1o2d2 42228 sqrtcval 43603 or3or 43985 neicvgel1 44081 rusbcALT 44408 sbcoreleleqVD 44830 climreeq 45534 coseq0 45785 affinecomb1 48436 eenglngeehlnmlem1 48471 2sphere 48483 line2 48486 itscnhlc0yqe 48493 itscnhlc0xyqsol 48499 |
Copyright terms: Public domain | W3C validator |