| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbcne12 4381 fnprb 7185 fntpb 7186 eqfunresadj 7338 eloprabga 7501 ordsucuniel 7802 ordsucun 7803 oeoa 8564 ereldm 8727 boxcutc 8917 mapen 9111 mapfien 9366 wemapwe 9657 sdom2en01 10262 prlem936 11007 subcan 11484 mulcan1g 11838 conjmul 11906 ltrec 12072 rebtwnz 12913 xposdif 13229 divelunit 13462 fseq1m1p1 13567 fzm1 13575 fllt 13775 hashfacen 14426 hashf1 14429 ccat0 14548 lenegsq 15294 dvdsmod 16306 bitsmod 16413 smueqlem 16467 rpexp 16699 eulerthlem2 16759 odzdvds 16773 pcelnn 16848 xpsle 17549 isepi 17709 fthmon 17898 cat1 18066 pospropd 18293 grpidpropd 18596 mgmhmpropd 18632 sgrppropd 18665 mndpropd 18693 mhmpropd 18726 grppropd 18890 ghmnsgima 19179 mndodcong 19479 odf1 19499 odf1o1 19509 sylow3lem6 19569 lsmcntzr 19617 efgredlema 19677 cmnpropd 19728 qusecsub 19772 dprdf11 19962 rngpropd 20090 ringpropd 20204 dvdsrpropd 20332 resrhm2b 20518 abvpropd 20751 lmodprop2d 20837 lsspropd 20931 lmhmpropd 20987 lbspropd 21013 lvecvscan 21028 lvecvscan2 21029 chrnzr 21447 zndvds0 21467 ip2eq 21569 phlpropd 21571 assapropd 21788 qtopcn 23608 tsmsf1o 24039 xmetgt0 24253 txmetcnp 24442 metustsym 24450 nlmmul0or 24578 cnmet 24666 evth 24865 isclmp 25004 minveclem3b 25335 mbfposr 25560 itg2cn 25671 iblcnlem 25697 dvcvx 25932 ulm2 26301 efeq1 26444 dcubic 26763 mcubic 26764 dquart 26770 birthdaylem3 26870 ftalem2 26991 issqf 27053 sqff1o 27099 bposlem7 27208 lgsabs1 27254 gausslemma2dlem1a 27283 lgsquadlem2 27299 addsq2reu 27358 dchrisum0lem1 27434 sltrec 27739 opphllem6 28686 colhp 28704 lmiinv 28726 lmiopp 28736 wlkeq 29569 eupth2lem3lem3 30166 eupth2lem3lem6 30169 nmounbi 30712 ip2eqi 30792 hvmulcan 31008 hvsubcan2 31011 hi2eq 31041 fh2 31555 riesz4i 31999 cvbr4i 32303 sgnmulsgn 32774 sgnmulsgp 32775 xdivpnfrp 32860 isorng 33284 qusker 33327 ellspds 33346 ply1moneq 33562 ballotlemfc0 34491 ballotlemfcc 34492 subfacp1lem5 35178 topfneec2 36351 neibastop3 36357 unccur 37604 cos2h 37612 tan2h 37613 poimirlem25 37646 poimirlem27 37648 dvasin 37705 caures 37761 ismtyima 37804 isdmn3 38075 dmecd 38299 releldmqscoss 38659 tendospcanN 41024 dochsncom 41383 f1o2d2 42228 sqrtcval 43637 or3or 44019 neicvgel1 44115 rusbcALT 44435 sbcoreleleqVD 44855 climreeq 45618 coseq0 45869 modmkpkne 47366 affinecomb1 48695 eenglngeehlnmlem1 48730 2sphere 48742 line2 48745 itscnhlc0yqe 48752 itscnhlc0xyqsol 48758 oduoppcciso 49559 |
| Copyright terms: Public domain | W3C validator |