| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbcne12 4363 fnprb 7137 fntpb 7138 eqfunresadj 7289 eloprabga 7450 ordsucuniel 7749 ordsucun 7750 oeoa 8507 ereldm 8670 boxcutc 8860 mapen 9049 mapfien 9287 wemapwe 9582 sdom2en01 10185 prlem936 10930 subcan 11408 mulcan1g 11762 conjmul 11830 ltrec 11996 rebtwnz 12837 xposdif 13153 divelunit 13386 fseq1m1p1 13491 fzm1 13499 fllt 13702 hashfacen 14353 hashf1 14356 ccat0 14475 lenegsq 15220 dvdsmod 16232 bitsmod 16339 smueqlem 16393 rpexp 16625 eulerthlem2 16685 odzdvds 16699 pcelnn 16774 xpsle 17475 isepi 17639 fthmon 17828 cat1 17996 pospropd 18223 grpidpropd 18562 mgmhmpropd 18598 sgrppropd 18631 mndpropd 18659 mhmpropd 18692 grppropd 18856 ghmnsgima 19145 mndodcong 19447 odf1 19467 odf1o1 19477 sylow3lem6 19537 lsmcntzr 19585 efgredlema 19645 cmnpropd 19696 qusecsub 19740 dprdf11 19930 rngpropd 20085 ringpropd 20199 dvdsrpropd 20327 resrhm2b 20510 abvpropd 20743 isorng 20769 lmodprop2d 20850 lsspropd 20944 lmhmpropd 21000 lbspropd 21026 lvecvscan 21041 lvecvscan2 21042 chrnzr 21460 zndvds0 21480 ip2eq 21583 phlpropd 21585 assapropd 21802 qtopcn 23622 tsmsf1o 24053 xmetgt0 24266 txmetcnp 24455 metustsym 24463 nlmmul0or 24591 cnmet 24679 evth 24878 isclmp 25017 minveclem3b 25348 mbfposr 25573 itg2cn 25684 iblcnlem 25710 dvcvx 25945 ulm2 26314 efeq1 26457 dcubic 26776 mcubic 26777 dquart 26783 birthdaylem3 26883 ftalem2 27004 issqf 27066 sqff1o 27112 bposlem7 27221 lgsabs1 27267 gausslemma2dlem1a 27296 lgsquadlem2 27312 addsq2reu 27371 dchrisum0lem1 27447 ssltsnb 27725 sltrec 27755 opphllem6 28723 colhp 28741 lmiinv 28763 lmiopp 28773 wlkeq 29605 eupth2lem3lem3 30200 eupth2lem3lem6 30203 nmounbi 30746 ip2eqi 30826 hvmulcan 31042 hvsubcan2 31045 hi2eq 31075 fh2 31589 riesz4i 32033 cvbr4i 32337 sgnmulsgn 32815 sgnmulsgp 32816 xdivpnfrp 32903 qusker 33304 ellspds 33323 ply1moneq 33540 ballotlemfc0 34496 ballotlemfcc 34497 subfacp1lem5 35196 topfneec2 36369 neibastop3 36375 unccur 37622 cos2h 37630 tan2h 37631 poimirlem25 37664 poimirlem27 37666 dvasin 37723 caures 37779 ismtyima 37822 isdmn3 38093 dmecd 38317 releldmqscoss 38677 tendospcanN 41041 dochsncom 41400 f1o2d2 42245 sqrtcval 43653 or3or 44035 neicvgel1 44131 rusbcALT 44450 sbcoreleleqVD 44870 climreeq 45632 coseq0 45881 modmkpkne 47371 affinecomb1 48713 eenglngeehlnmlem1 48748 2sphere 48760 line2 48763 itscnhlc0yqe 48770 itscnhlc0xyqsol 48776 oduoppcciso 49577 |
| Copyright terms: Public domain | W3C validator |