Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbcne12 4352 fnprb 7116 fntpb 7117 eloprabga 7414 eloprabgaOLD 7415 ordsucuniel 7703 ordsucun 7704 oeoa 8459 ereldm 8577 boxcutc 8760 mapen 8966 mapfien 9211 wemapwe 9499 sdom2en01 10104 prlem936 10849 subcan 11322 mulcan1g 11674 conjmul 11738 ltrec 11903 rebtwnz 12733 xposdif 13042 divelunit 13272 fseq1m1p1 13377 fzm1 13382 fllt 13572 hashfacen 14211 hashfacenOLD 14212 hashf1 14216 ccat0 14325 lenegsq 15077 dvdsmod 16083 bitsmod 16188 smueqlem 16242 rpexp 16472 eulerthlem2 16528 odzdvds 16541 pcelnn 16616 xpsle 17335 isepi 17497 fthmon 17688 cat1 17857 pospropd 18090 grpidpropd 18391 mndpropd 18455 mhmpropd 18481 grppropd 18639 ghmnsgima 18903 mndodcong 19195 odf1 19214 odf1o1 19222 sylow3lem6 19282 lsmcntzr 19331 efgredlema 19391 cmnpropd 19441 dprdf11 19671 ringpropd 19866 dvdsrpropd 19983 abvpropd 20147 lmodprop2d 20230 lsspropd 20324 lmhmpropd 20380 lbspropd 20406 lvecvscan 20418 lvecvscan2 20419 chrnzr 20779 zndvds0 20803 ip2eq 20903 phlpropd 20905 assapropd 21121 qtopcn 22910 tsmsf1o 23341 xmetgt0 23556 txmetcnp 23748 metustsym 23756 nlmmul0or 23892 cnmet 23980 evth 24167 isclmp 24305 minveclem3b 24637 mbfposr 24861 itg2cn 24973 iblcnlem 24998 dvcvx 25229 ulm2 25589 efeq1 25729 dcubic 26041 mcubic 26042 dquart 26048 birthdaylem3 26148 ftalem2 26268 issqf 26330 sqff1o 26376 bposlem7 26483 lgsabs1 26529 gausslemma2dlem1a 26558 lgsquadlem2 26574 addsq2reu 26633 dchrisum0lem1 26709 opphllem6 27158 colhp 27176 lmiinv 27198 lmiopp 27208 wlkeq 28046 eupth2lem3lem3 28639 eupth2lem3lem6 28642 nmounbi 29183 ip2eqi 29263 hvmulcan 29479 hvsubcan2 29482 hi2eq 29512 fh2 30026 riesz4i 30470 cvbr4i 30774 xdivpnfrp 31252 isorng 31543 qusker 31594 ellspds 31609 ballotlemfc0 32504 ballotlemfcc 32505 sgnmulsgn 32561 sgnmulsgp 32562 subfacp1lem5 33191 eqfunresadj 33780 sltrec 34059 topfneec2 34590 neibastop3 34596 unccur 35804 cos2h 35812 tan2h 35813 poimirlem25 35846 poimirlem27 35848 dvasin 35905 caures 35962 ismtyima 36005 isdmn3 36276 dmecd 36482 releldmqscoss 36814 tendospcanN 39079 dochsncom 39438 sqrtcval 41287 or3or 41669 neicvgel1 41767 rusbcALT 42095 sbcoreleleqVD 42517 climreeq 43203 coseq0 43454 mgmhmpropd 45397 affinecomb1 46106 eenglngeehlnmlem1 46141 2sphere 46153 line2 46156 itscnhlc0yqe 46163 itscnhlc0xyqsol 46169 |
Copyright terms: Public domain | W3C validator |