![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 282 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 280 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 |
This theorem is referenced by: sbcne12 4290 fnprb 6844 fntpb 6845 eloprabga 7124 ordsucuniel 7402 ordsucun 7403 oeoa 8080 ereldm 8194 boxcutc 8360 mapen 8535 mapfien 8724 wemapwe 9013 sdom2en01 9577 prlem936 10322 subcan 10795 mulcan1g 11147 conjmul 11211 ltrec 11376 rebtwnz 12200 xposdif 12509 divelunit 12734 fseq1m1p1 12836 fzm1 12841 fllt 13030 hashfacen 13664 hashf1 13667 lenegsq 14518 dvdsmod 15515 bitsmod 15622 smueqlem 15676 rpexp 15897 eulerthlem2 15952 odzdvds 15965 pcelnn 16039 xpsle 16685 isepi 16843 fthmon 17030 pospropd 17577 grpidpropd 17704 mndpropd 17759 mhmpropd 17784 grppropd 17880 ghmnsgima 18127 mndodcong 18405 odf1 18423 odf1o1 18431 sylow3lem6 18491 lsmcntzr 18537 efgredlema 18597 cmnpropd 18646 dprdf11 18866 ringpropd 19026 dvdsrpropd 19140 abvpropd 19307 lmodprop2d 19390 lsspropd 19483 lmhmpropd 19539 lbspropd 19565 lvecvscan 19577 lvecvscan2 19578 assapropd 19793 chrnzr 20363 zndvds0 20383 ip2eq 20483 phlpropd 20485 qtopcn 22010 tsmsf1o 22440 xmetgt0 22655 txmetcnp 22844 metustsym 22852 nlmmul0or 22979 cnmet 23067 evth 23250 isclmp 23388 minveclem3b 23718 mbfposr 23940 itg2cn 24051 iblcnlem 24076 dvcvx 24304 ulm2 24660 efeq1 24798 dcubic 25109 mcubic 25110 dquart 25116 birthdaylem3 25217 ftalem2 25337 issqf 25399 sqff1o 25445 bposlem7 25552 lgsabs1 25598 gausslemma2dlem1a 25627 lgsquadlem2 25643 addsq2reu 25702 dchrisum0lem1 25778 opphllem6 26224 colhp 26242 lmiinv 26264 lmiopp 26274 eupth2lem3lem3 27695 eupth2lem3lem6 27698 nmounbi 28240 ip2eqi 28320 hvmulcan 28536 hvsubcan2 28539 hi2eq 28569 fh2 29083 riesz4i 29527 cvbr4i 29831 xdivpnfrp 30289 isorng 30522 qusker 30568 ellspds 30577 ballotlemfc0 31363 ballotlemfcc 31364 sgnmulsgn 31420 sgnmulsgp 31421 subfacp1lem5 32041 eqfunresadj 32614 sltrec 32889 topfneec2 33315 neibastop3 33321 unccur 34427 cos2h 34435 tan2h 34436 poimirlem25 34469 poimirlem27 34471 dvasin 34530 caures 34588 ismtyima 34634 isdmn3 34905 dmecd 35115 releldmqscoss 35446 tendospcanN 37711 dochsncom 38070 or3or 39877 neicvgel1 39975 rusbcALT 40330 sbcoreleleqVD 40753 climreeq 41457 coseq0 41708 mgmhmpropd 43556 affinecomb1 44192 eenglngeehlnmlem1 44227 2sphere 44239 line2 44242 itscnhlc0yqe 44249 itscnhlc0xyqsol 44255 |
Copyright terms: Public domain | W3C validator |