| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbcne12 4378 fnprb 7182 fntpb 7183 eqfunresadj 7335 eloprabga 7498 ordsucuniel 7799 ordsucun 7800 oeoa 8561 ereldm 8724 boxcutc 8914 mapen 9105 mapfien 9359 wemapwe 9650 sdom2en01 10255 prlem936 11000 subcan 11477 mulcan1g 11831 conjmul 11899 ltrec 12065 rebtwnz 12906 xposdif 13222 divelunit 13455 fseq1m1p1 13560 fzm1 13568 fllt 13768 hashfacen 14419 hashf1 14422 ccat0 14541 lenegsq 15287 dvdsmod 16299 bitsmod 16406 smueqlem 16460 rpexp 16692 eulerthlem2 16752 odzdvds 16766 pcelnn 16841 xpsle 17542 isepi 17702 fthmon 17891 cat1 18059 pospropd 18286 grpidpropd 18589 mgmhmpropd 18625 sgrppropd 18658 mndpropd 18686 mhmpropd 18719 grppropd 18883 ghmnsgima 19172 mndodcong 19472 odf1 19492 odf1o1 19502 sylow3lem6 19562 lsmcntzr 19610 efgredlema 19670 cmnpropd 19721 qusecsub 19765 dprdf11 19955 rngpropd 20083 ringpropd 20197 dvdsrpropd 20325 resrhm2b 20511 abvpropd 20744 lmodprop2d 20830 lsspropd 20924 lmhmpropd 20980 lbspropd 21006 lvecvscan 21021 lvecvscan2 21022 chrnzr 21440 zndvds0 21460 ip2eq 21562 phlpropd 21564 assapropd 21781 qtopcn 23601 tsmsf1o 24032 xmetgt0 24246 txmetcnp 24435 metustsym 24443 nlmmul0or 24571 cnmet 24659 evth 24858 isclmp 24997 minveclem3b 25328 mbfposr 25553 itg2cn 25664 iblcnlem 25690 dvcvx 25925 ulm2 26294 efeq1 26437 dcubic 26756 mcubic 26757 dquart 26763 birthdaylem3 26863 ftalem2 26984 issqf 27046 sqff1o 27092 bposlem7 27201 lgsabs1 27247 gausslemma2dlem1a 27276 lgsquadlem2 27292 addsq2reu 27351 dchrisum0lem1 27427 sltrec 27732 opphllem6 28679 colhp 28697 lmiinv 28719 lmiopp 28729 wlkeq 29562 eupth2lem3lem3 30159 eupth2lem3lem6 30162 nmounbi 30705 ip2eqi 30785 hvmulcan 31001 hvsubcan2 31004 hi2eq 31034 fh2 31548 riesz4i 31992 cvbr4i 32296 sgnmulsgn 32767 sgnmulsgp 32768 xdivpnfrp 32853 isorng 33277 qusker 33320 ellspds 33339 ply1moneq 33555 ballotlemfc0 34484 ballotlemfcc 34485 subfacp1lem5 35171 topfneec2 36344 neibastop3 36350 unccur 37597 cos2h 37605 tan2h 37606 poimirlem25 37639 poimirlem27 37641 dvasin 37698 caures 37754 ismtyima 37797 isdmn3 38068 dmecd 38292 releldmqscoss 38652 tendospcanN 41017 dochsncom 41376 f1o2d2 42221 sqrtcval 43630 or3or 44012 neicvgel1 44108 rusbcALT 44428 sbcoreleleqVD 44848 climreeq 45611 coseq0 45862 modmkpkne 47362 affinecomb1 48691 eenglngeehlnmlem1 48726 2sphere 48738 line2 48741 itscnhlc0yqe 48748 itscnhlc0xyqsol 48754 oduoppcciso 49555 |
| Copyright terms: Public domain | W3C validator |