Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 280 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 278 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbcne12 4351 fnprb 7078 fntpb 7079 eloprabga 7373 eloprabgaOLD 7374 ordsucuniel 7659 ordsucun 7660 oeoa 8404 ereldm 8520 boxcutc 8703 mapen 8893 mapfien 9128 wemapwe 9416 sdom2en01 10042 prlem936 10787 subcan 11259 mulcan1g 11611 conjmul 11675 ltrec 11840 rebtwnz 12669 xposdif 12978 divelunit 13208 fseq1m1p1 13313 fzm1 13318 fllt 13507 hashfacen 14147 hashfacenOLD 14148 hashf1 14152 ccat0 14261 lenegsq 15013 dvdsmod 16019 bitsmod 16124 smueqlem 16178 rpexp 16408 eulerthlem2 16464 odzdvds 16477 pcelnn 16552 xpsle 17271 isepi 17433 fthmon 17624 cat1 17793 pospropd 18026 grpidpropd 18327 mndpropd 18391 mhmpropd 18417 grppropd 18575 ghmnsgima 18839 mndodcong 19131 odf1 19150 odf1o1 19158 sylow3lem6 19218 lsmcntzr 19267 efgredlema 19327 cmnpropd 19377 dprdf11 19607 ringpropd 19802 dvdsrpropd 19919 abvpropd 20083 lmodprop2d 20166 lsspropd 20260 lmhmpropd 20316 lbspropd 20342 lvecvscan 20354 lvecvscan2 20355 chrnzr 20715 zndvds0 20739 ip2eq 20839 phlpropd 20841 assapropd 21057 qtopcn 22846 tsmsf1o 23277 xmetgt0 23492 txmetcnp 23684 metustsym 23692 nlmmul0or 23828 cnmet 23916 evth 24103 isclmp 24241 minveclem3b 24573 mbfposr 24797 itg2cn 24909 iblcnlem 24934 dvcvx 25165 ulm2 25525 efeq1 25665 dcubic 25977 mcubic 25978 dquart 25984 birthdaylem3 26084 ftalem2 26204 issqf 26266 sqff1o 26312 bposlem7 26419 lgsabs1 26465 gausslemma2dlem1a 26494 lgsquadlem2 26510 addsq2reu 26569 dchrisum0lem1 26645 opphllem6 27094 colhp 27112 lmiinv 27134 lmiopp 27144 wlkeq 27981 eupth2lem3lem3 28573 eupth2lem3lem6 28576 nmounbi 29117 ip2eqi 29197 hvmulcan 29413 hvsubcan2 29416 hi2eq 29446 fh2 29960 riesz4i 30404 cvbr4i 30708 xdivpnfrp 31186 isorng 31477 qusker 31528 ellspds 31543 ballotlemfc0 32438 ballotlemfcc 32439 sgnmulsgn 32495 sgnmulsgp 32496 subfacp1lem5 33125 eqfunresadj 33714 sltrec 33993 topfneec2 34524 neibastop3 34530 unccur 35739 cos2h 35747 tan2h 35748 poimirlem25 35781 poimirlem27 35783 dvasin 35840 caures 35897 ismtyima 35940 isdmn3 36211 dmecd 36419 releldmqscoss 36751 tendospcanN 39016 dochsncom 39375 sqrtcval 41202 or3or 41584 neicvgel1 41682 rusbcALT 42010 sbcoreleleqVD 42432 climreeq 43108 coseq0 43359 mgmhmpropd 45291 affinecomb1 46000 eenglngeehlnmlem1 46035 2sphere 46047 line2 46050 itscnhlc0yqe 46057 itscnhlc0xyqsol 46063 |
Copyright terms: Public domain | W3C validator |