![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 280 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 278 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbcne12 4411 fnprb 7211 fntpb 7212 eqfunresadj 7359 eloprabga 7518 eloprabgaOLD 7519 ordsucuniel 7814 ordsucun 7815 oeoa 8599 ereldm 8753 boxcutc 8937 mapen 9143 mapfien 9405 wemapwe 9694 sdom2en01 10299 prlem936 11044 subcan 11519 mulcan1g 11871 conjmul 11935 ltrec 12100 rebtwnz 12935 xposdif 13245 divelunit 13475 fseq1m1p1 13580 fzm1 13585 fllt 13775 hashfacen 14417 hashfacenOLD 14418 hashf1 14422 ccat0 14530 lenegsq 15271 dvdsmod 16276 bitsmod 16381 smueqlem 16435 rpexp 16663 eulerthlem2 16719 odzdvds 16732 pcelnn 16807 xpsle 17529 isepi 17691 fthmon 17882 cat1 18051 pospropd 18284 grpidpropd 18587 mgmhmpropd 18623 sgrppropd 18656 mndpropd 18684 mhmpropd 18714 grppropd 18873 ghmnsgima 19154 mndodcong 19451 odf1 19471 odf1o1 19481 sylow3lem6 19541 lsmcntzr 19589 efgredlema 19649 cmnpropd 19700 qusecsub 19744 dprdf11 19934 rngpropd 20068 ringpropd 20176 dvdsrpropd 20307 resrhm2b 20492 abvpropd 20593 lmodprop2d 20678 lsspropd 20772 lmhmpropd 20828 lbspropd 20854 lvecvscan 20869 lvecvscan2 20870 chrnzr 21301 zndvds0 21325 ip2eq 21425 phlpropd 21427 assapropd 21645 qtopcn 23438 tsmsf1o 23869 xmetgt0 24084 txmetcnp 24276 metustsym 24284 nlmmul0or 24420 cnmet 24508 evth 24705 isclmp 24844 minveclem3b 25176 mbfposr 25401 itg2cn 25513 iblcnlem 25538 dvcvx 25772 ulm2 26133 efeq1 26273 dcubic 26587 mcubic 26588 dquart 26594 birthdaylem3 26694 ftalem2 26814 issqf 26876 sqff1o 26922 bposlem7 27029 lgsabs1 27075 gausslemma2dlem1a 27104 lgsquadlem2 27120 addsq2reu 27179 dchrisum0lem1 27255 sltrec 27558 opphllem6 28270 colhp 28288 lmiinv 28310 lmiopp 28320 wlkeq 29158 eupth2lem3lem3 29750 eupth2lem3lem6 29753 nmounbi 30296 ip2eqi 30376 hvmulcan 30592 hvsubcan2 30595 hi2eq 30625 fh2 31139 riesz4i 31583 cvbr4i 31887 xdivpnfrp 32366 isorng 32687 qusker 32734 ellspds 32755 ply1moneq 32939 ballotlemfc0 33789 ballotlemfcc 33790 sgnmulsgn 33846 sgnmulsgp 33847 subfacp1lem5 34473 topfneec2 35544 neibastop3 35550 unccur 36774 cos2h 36782 tan2h 36783 poimirlem25 36816 poimirlem27 36818 dvasin 36875 caures 36931 ismtyima 36974 isdmn3 37245 dmecd 37476 releldmqscoss 37833 tendospcanN 40197 dochsncom 40556 f1o2d2 41361 sqrtcval 42694 or3or 43076 neicvgel1 43172 rusbcALT 43500 sbcoreleleqVD 43922 climreeq 44627 coseq0 44878 affinecomb1 47475 eenglngeehlnmlem1 47510 2sphere 47522 line2 47525 itscnhlc0yqe 47532 itscnhlc0xyqsol 47538 |
Copyright terms: Public domain | W3C validator |