| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbcne12 4397 fnprb 7211 fntpb 7212 eqfunresadj 7363 eloprabga 7525 ordsucuniel 7827 ordsucun 7828 oeoa 8618 ereldm 8778 boxcutc 8964 mapen 9164 mapfien 9431 wemapwe 9720 sdom2en01 10325 prlem936 11070 subcan 11547 mulcan1g 11899 conjmul 11967 ltrec 12133 rebtwnz 12972 xposdif 13287 divelunit 13517 fseq1m1p1 13622 fzm1 13630 fllt 13829 hashfacen 14476 hashf1 14479 ccat0 14597 lenegsq 15342 dvdsmod 16349 bitsmod 16456 smueqlem 16510 rpexp 16742 eulerthlem2 16802 odzdvds 16816 pcelnn 16891 xpsle 17600 isepi 17760 fthmon 17950 cat1 18118 pospropd 18346 grpidpropd 18649 mgmhmpropd 18685 sgrppropd 18718 mndpropd 18746 mhmpropd 18779 grppropd 18943 ghmnsgima 19232 mndodcong 19533 odf1 19553 odf1o1 19563 sylow3lem6 19623 lsmcntzr 19671 efgredlema 19731 cmnpropd 19782 qusecsub 19826 dprdf11 20016 rngpropd 20144 ringpropd 20258 dvdsrpropd 20389 resrhm2b 20575 abvpropd 20809 lmodprop2d 20895 lsspropd 20989 lmhmpropd 21045 lbspropd 21071 lvecvscan 21086 lvecvscan2 21087 chrnzr 21512 zndvds0 21536 ip2eq 21638 phlpropd 21640 assapropd 21859 qtopcn 23687 tsmsf1o 24118 xmetgt0 24332 txmetcnp 24523 metustsym 24531 nlmmul0or 24659 cnmet 24747 evth 24946 isclmp 25085 minveclem3b 25417 mbfposr 25642 itg2cn 25753 iblcnlem 25779 dvcvx 26014 ulm2 26383 efeq1 26525 dcubic 26844 mcubic 26845 dquart 26851 birthdaylem3 26951 ftalem2 27072 issqf 27134 sqff1o 27180 bposlem7 27289 lgsabs1 27335 gausslemma2dlem1a 27364 lgsquadlem2 27380 addsq2reu 27439 dchrisum0lem1 27515 sltrec 27820 opphllem6 28715 colhp 28733 lmiinv 28755 lmiopp 28765 wlkeq 29599 eupth2lem3lem3 30196 eupth2lem3lem6 30199 nmounbi 30742 ip2eqi 30822 hvmulcan 31038 hvsubcan2 31041 hi2eq 31071 fh2 31585 riesz4i 32029 cvbr4i 32333 xdivpnfrp 32862 isorng 33275 qusker 33318 ellspds 33337 ply1moneq 33552 ballotlemfc0 34436 ballotlemfcc 34437 sgnmulsgn 34493 sgnmulsgp 34494 subfacp1lem5 35130 topfneec2 36298 neibastop3 36304 unccur 37551 cos2h 37559 tan2h 37560 poimirlem25 37593 poimirlem27 37595 dvasin 37652 caures 37708 ismtyima 37751 isdmn3 38022 dmecd 38246 releldmqscoss 38602 tendospcanN 40966 dochsncom 41325 f1o2d2 42214 sqrtcval 43599 or3or 43981 neicvgel1 44077 rusbcALT 44403 sbcoreleleqVD 44824 climreeq 45573 coseq0 45824 affinecomb1 48569 eenglngeehlnmlem1 48604 2sphere 48616 line2 48619 itscnhlc0yqe 48626 itscnhlc0xyqsol 48632 oduoppcciso 49159 |
| Copyright terms: Public domain | W3C validator |