![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: sbcne12 4420 fnprb 7227 fntpb 7228 eqfunresadj 7379 eloprabga 7540 eloprabgaOLD 7541 ordsucuniel 7843 ordsucun 7844 oeoa 8633 ereldm 8793 boxcutc 8979 mapen 9179 mapfien 9445 wemapwe 9734 sdom2en01 10339 prlem936 11084 subcan 11561 mulcan1g 11913 conjmul 11981 ltrec 12147 rebtwnz 12986 xposdif 13300 divelunit 13530 fseq1m1p1 13635 fzm1 13643 fllt 13842 hashfacen 14489 hashf1 14492 ccat0 14610 lenegsq 15355 dvdsmod 16362 bitsmod 16469 smueqlem 16523 rpexp 16755 eulerthlem2 16815 odzdvds 16828 pcelnn 16903 xpsle 17625 isepi 17787 fthmon 17980 cat1 18150 pospropd 18384 grpidpropd 18687 mgmhmpropd 18723 sgrppropd 18756 mndpropd 18784 mhmpropd 18817 grppropd 18981 ghmnsgima 19270 mndodcong 19574 odf1 19594 odf1o1 19604 sylow3lem6 19664 lsmcntzr 19712 efgredlema 19772 cmnpropd 19823 qusecsub 19867 dprdf11 20057 rngpropd 20191 ringpropd 20301 dvdsrpropd 20432 resrhm2b 20618 abvpropd 20852 lmodprop2d 20938 lsspropd 21033 lmhmpropd 21089 lbspropd 21115 lvecvscan 21130 lvecvscan2 21131 chrnzr 21562 zndvds0 21586 ip2eq 21688 phlpropd 21690 assapropd 21909 qtopcn 23737 tsmsf1o 24168 xmetgt0 24383 txmetcnp 24575 metustsym 24583 nlmmul0or 24719 cnmet 24807 evth 25004 isclmp 25143 minveclem3b 25475 mbfposr 25700 itg2cn 25812 iblcnlem 25838 dvcvx 26073 ulm2 26442 efeq1 26584 dcubic 26903 mcubic 26904 dquart 26910 birthdaylem3 27010 ftalem2 27131 issqf 27193 sqff1o 27239 bposlem7 27348 lgsabs1 27394 gausslemma2dlem1a 27423 lgsquadlem2 27439 addsq2reu 27498 dchrisum0lem1 27574 sltrec 27879 opphllem6 28774 colhp 28792 lmiinv 28814 lmiopp 28824 wlkeq 29666 eupth2lem3lem3 30258 eupth2lem3lem6 30261 nmounbi 30804 ip2eqi 30884 hvmulcan 31100 hvsubcan2 31103 hi2eq 31133 fh2 31647 riesz4i 32091 cvbr4i 32395 xdivpnfrp 32899 isorng 33308 qusker 33356 ellspds 33375 ply1moneq 33590 ballotlemfc0 34473 ballotlemfcc 34474 sgnmulsgn 34530 sgnmulsgp 34531 subfacp1lem5 35168 topfneec2 36338 neibastop3 36344 unccur 37589 cos2h 37597 tan2h 37598 poimirlem25 37631 poimirlem27 37633 dvasin 37690 caures 37746 ismtyima 37789 isdmn3 38060 dmecd 38285 releldmqscoss 38641 tendospcanN 41005 dochsncom 41364 f1o2d2 42252 sqrtcval 43630 or3or 44012 neicvgel1 44108 rusbcALT 44434 sbcoreleleqVD 44856 climreeq 45568 coseq0 45819 affinecomb1 48551 eenglngeehlnmlem1 48586 2sphere 48598 line2 48601 itscnhlc0yqe 48608 itscnhlc0xyqsol 48614 oduoppcciso 48881 |
Copyright terms: Public domain | W3C validator |