| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbcne12 4395 fnprb 7205 fntpb 7206 eqfunresadj 7358 eloprabga 7521 ordsucuniel 7823 ordsucun 7824 oeoa 8614 ereldm 8774 boxcutc 8960 mapen 9160 mapfien 9425 wemapwe 9716 sdom2en01 10321 prlem936 11066 subcan 11543 mulcan1g 11895 conjmul 11963 ltrec 12129 rebtwnz 12968 xposdif 13283 divelunit 13516 fseq1m1p1 13621 fzm1 13629 fllt 13828 hashfacen 14477 hashf1 14480 ccat0 14599 lenegsq 15344 dvdsmod 16353 bitsmod 16460 smueqlem 16514 rpexp 16746 eulerthlem2 16806 odzdvds 16820 pcelnn 16895 xpsle 17598 isepi 17758 fthmon 17947 cat1 18115 pospropd 18342 grpidpropd 18645 mgmhmpropd 18681 sgrppropd 18714 mndpropd 18742 mhmpropd 18775 grppropd 18939 ghmnsgima 19228 mndodcong 19528 odf1 19548 odf1o1 19558 sylow3lem6 19618 lsmcntzr 19666 efgredlema 19726 cmnpropd 19777 qusecsub 19821 dprdf11 20011 rngpropd 20139 ringpropd 20253 dvdsrpropd 20381 resrhm2b 20567 abvpropd 20800 lmodprop2d 20886 lsspropd 20980 lmhmpropd 21036 lbspropd 21062 lvecvscan 21077 lvecvscan2 21078 chrnzr 21496 zndvds0 21516 ip2eq 21618 phlpropd 21620 assapropd 21837 qtopcn 23657 tsmsf1o 24088 xmetgt0 24302 txmetcnp 24491 metustsym 24499 nlmmul0or 24627 cnmet 24715 evth 24914 isclmp 25053 minveclem3b 25385 mbfposr 25610 itg2cn 25721 iblcnlem 25747 dvcvx 25982 ulm2 26351 efeq1 26494 dcubic 26813 mcubic 26814 dquart 26820 birthdaylem3 26920 ftalem2 27041 issqf 27103 sqff1o 27149 bposlem7 27258 lgsabs1 27304 gausslemma2dlem1a 27333 lgsquadlem2 27349 addsq2reu 27408 dchrisum0lem1 27484 sltrec 27789 opphllem6 28736 colhp 28754 lmiinv 28776 lmiopp 28786 wlkeq 29619 eupth2lem3lem3 30216 eupth2lem3lem6 30219 nmounbi 30762 ip2eqi 30842 hvmulcan 31058 hvsubcan2 31061 hi2eq 31091 fh2 31605 riesz4i 32049 cvbr4i 32353 sgnmulsgn 32826 sgnmulsgp 32827 xdivpnfrp 32912 isorng 33326 qusker 33369 ellspds 33388 ply1moneq 33604 ballotlemfc0 34530 ballotlemfcc 34531 subfacp1lem5 35211 topfneec2 36379 neibastop3 36385 unccur 37632 cos2h 37640 tan2h 37641 poimirlem25 37674 poimirlem27 37676 dvasin 37733 caures 37789 ismtyima 37832 isdmn3 38103 dmecd 38327 releldmqscoss 38683 tendospcanN 41047 dochsncom 41406 f1o2d2 42251 sqrtcval 43640 or3or 44022 neicvgel1 44118 rusbcALT 44438 sbcoreleleqVD 44858 climreeq 45622 coseq0 45873 affinecomb1 48662 eenglngeehlnmlem1 48697 2sphere 48709 line2 48712 itscnhlc0yqe 48719 itscnhlc0xyqsol 48725 oduoppcciso 49423 |
| Copyright terms: Public domain | W3C validator |