![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sbcne12 4413 fnprb 7210 fntpb 7211 eqfunresadj 7357 eloprabga 7516 eloprabgaOLD 7517 ordsucuniel 7812 ordsucun 7813 oeoa 8597 ereldm 8751 boxcutc 8935 mapen 9141 mapfien 9403 wemapwe 9692 sdom2en01 10297 prlem936 11042 subcan 11515 mulcan1g 11867 conjmul 11931 ltrec 12096 rebtwnz 12931 xposdif 13241 divelunit 13471 fseq1m1p1 13576 fzm1 13581 fllt 13771 hashfacen 14413 hashfacenOLD 14414 hashf1 14418 ccat0 14526 lenegsq 15267 dvdsmod 16272 bitsmod 16377 smueqlem 16431 rpexp 16659 eulerthlem2 16715 odzdvds 16728 pcelnn 16803 xpsle 17525 isepi 17687 fthmon 17878 cat1 18047 pospropd 18280 grpidpropd 18581 sgrppropd 18622 mndpropd 18650 mhmpropd 18678 grppropd 18837 ghmnsgima 19116 mndodcong 19410 odf1 19430 odf1o1 19440 sylow3lem6 19500 lsmcntzr 19548 efgredlema 19608 cmnpropd 19659 qusecsub 19703 dprdf11 19893 ringpropd 20102 dvdsrpropd 20230 resrhm2b 20349 abvpropd 20450 lmodprop2d 20534 lsspropd 20628 lmhmpropd 20684 lbspropd 20710 lvecvscan 20724 lvecvscan2 20725 chrnzr 21082 zndvds0 21106 ip2eq 21206 phlpropd 21208 assapropd 21426 qtopcn 23218 tsmsf1o 23649 xmetgt0 23864 txmetcnp 24056 metustsym 24064 nlmmul0or 24200 cnmet 24288 evth 24475 isclmp 24613 minveclem3b 24945 mbfposr 25169 itg2cn 25281 iblcnlem 25306 dvcvx 25537 ulm2 25897 efeq1 26037 dcubic 26351 mcubic 26352 dquart 26358 birthdaylem3 26458 ftalem2 26578 issqf 26640 sqff1o 26686 bposlem7 26793 lgsabs1 26839 gausslemma2dlem1a 26868 lgsquadlem2 26884 addsq2reu 26943 dchrisum0lem1 27019 sltrec 27321 opphllem6 28003 colhp 28021 lmiinv 28043 lmiopp 28053 wlkeq 28891 eupth2lem3lem3 29483 eupth2lem3lem6 29486 nmounbi 30029 ip2eqi 30109 hvmulcan 30325 hvsubcan2 30328 hi2eq 30358 fh2 30872 riesz4i 31316 cvbr4i 31620 xdivpnfrp 32099 isorng 32417 qusker 32464 ellspds 32481 ply1moneq 32665 ballotlemfc0 33491 ballotlemfcc 33492 sgnmulsgn 33548 sgnmulsgp 33549 subfacp1lem5 34175 topfneec2 35241 neibastop3 35247 unccur 36471 cos2h 36479 tan2h 36480 poimirlem25 36513 poimirlem27 36515 dvasin 36572 caures 36628 ismtyima 36671 isdmn3 36942 dmecd 37173 releldmqscoss 37530 tendospcanN 39894 dochsncom 40253 f1o2d2 41055 sqrtcval 42392 or3or 42774 neicvgel1 42870 rusbcALT 43198 sbcoreleleqVD 43620 climreeq 44329 coseq0 44580 mgmhmpropd 46555 rngpropd 46673 affinecomb1 47388 eenglngeehlnmlem1 47423 2sphere 47435 line2 47438 itscnhlc0yqe 47445 itscnhlc0xyqsol 47451 |
Copyright terms: Public domain | W3C validator |