| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbcne12 4368 fnprb 7148 fntpb 7149 eqfunresadj 7301 eloprabga 7462 ordsucuniel 7763 ordsucun 7764 oeoa 8522 ereldm 8685 boxcutc 8875 mapen 9065 mapfien 9317 wemapwe 9612 sdom2en01 10215 prlem936 10960 subcan 11437 mulcan1g 11791 conjmul 11859 ltrec 12025 rebtwnz 12866 xposdif 13182 divelunit 13415 fseq1m1p1 13520 fzm1 13528 fllt 13728 hashfacen 14379 hashf1 14382 ccat0 14501 lenegsq 15246 dvdsmod 16258 bitsmod 16365 smueqlem 16419 rpexp 16651 eulerthlem2 16711 odzdvds 16725 pcelnn 16800 xpsle 17501 isepi 17665 fthmon 17854 cat1 18022 pospropd 18249 grpidpropd 18554 mgmhmpropd 18590 sgrppropd 18623 mndpropd 18651 mhmpropd 18684 grppropd 18848 ghmnsgima 19137 mndodcong 19439 odf1 19459 odf1o1 19469 sylow3lem6 19529 lsmcntzr 19577 efgredlema 19637 cmnpropd 19688 qusecsub 19732 dprdf11 19922 rngpropd 20077 ringpropd 20191 dvdsrpropd 20319 resrhm2b 20505 abvpropd 20738 isorng 20764 lmodprop2d 20845 lsspropd 20939 lmhmpropd 20995 lbspropd 21021 lvecvscan 21036 lvecvscan2 21037 chrnzr 21455 zndvds0 21475 ip2eq 21578 phlpropd 21580 assapropd 21797 qtopcn 23617 tsmsf1o 24048 xmetgt0 24262 txmetcnp 24451 metustsym 24459 nlmmul0or 24587 cnmet 24675 evth 24874 isclmp 25013 minveclem3b 25344 mbfposr 25569 itg2cn 25680 iblcnlem 25706 dvcvx 25941 ulm2 26310 efeq1 26453 dcubic 26772 mcubic 26773 dquart 26779 birthdaylem3 26879 ftalem2 27000 issqf 27062 sqff1o 27108 bposlem7 27217 lgsabs1 27263 gausslemma2dlem1a 27292 lgsquadlem2 27308 addsq2reu 27367 dchrisum0lem1 27443 sltrec 27750 opphllem6 28715 colhp 28733 lmiinv 28755 lmiopp 28765 wlkeq 29597 eupth2lem3lem3 30192 eupth2lem3lem6 30195 nmounbi 30738 ip2eqi 30818 hvmulcan 31034 hvsubcan2 31037 hi2eq 31067 fh2 31581 riesz4i 32025 cvbr4i 32329 sgnmulsgn 32800 sgnmulsgp 32801 xdivpnfrp 32886 qusker 33296 ellspds 33315 ply1moneq 33531 ballotlemfc0 34460 ballotlemfcc 34461 subfacp1lem5 35156 topfneec2 36329 neibastop3 36335 unccur 37582 cos2h 37590 tan2h 37591 poimirlem25 37624 poimirlem27 37626 dvasin 37683 caures 37739 ismtyima 37782 isdmn3 38053 dmecd 38277 releldmqscoss 38637 tendospcanN 41002 dochsncom 41361 f1o2d2 42206 sqrtcval 43614 or3or 43996 neicvgel1 44092 rusbcALT 44412 sbcoreleleqVD 44832 climreeq 45595 coseq0 45846 modmkpkne 47346 affinecomb1 48675 eenglngeehlnmlem1 48710 2sphere 48722 line2 48725 itscnhlc0yqe 48732 itscnhlc0xyqsol 48738 oduoppcciso 49539 |
| Copyright terms: Public domain | W3C validator |