| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbcne12 4395 fnprb 7210 fntpb 7211 eqfunresadj 7362 eloprabga 7524 ordsucuniel 7826 ordsucun 7827 oeoa 8617 ereldm 8777 boxcutc 8963 mapen 9163 mapfien 9430 wemapwe 9719 sdom2en01 10324 prlem936 11069 subcan 11546 mulcan1g 11898 conjmul 11966 ltrec 12132 rebtwnz 12971 xposdif 13286 divelunit 13516 fseq1m1p1 13621 fzm1 13629 fllt 13828 hashfacen 14476 hashf1 14479 ccat0 14597 lenegsq 15342 dvdsmod 16349 bitsmod 16456 smueqlem 16510 rpexp 16742 eulerthlem2 16802 odzdvds 16816 pcelnn 16891 xpsle 17596 isepi 17756 fthmon 17946 cat1 18114 pospropd 18342 grpidpropd 18645 mgmhmpropd 18681 sgrppropd 18714 mndpropd 18742 mhmpropd 18775 grppropd 18939 ghmnsgima 19228 mndodcong 19529 odf1 19549 odf1o1 19559 sylow3lem6 19619 lsmcntzr 19667 efgredlema 19727 cmnpropd 19778 qusecsub 19822 dprdf11 20012 rngpropd 20140 ringpropd 20254 dvdsrpropd 20385 resrhm2b 20571 abvpropd 20805 lmodprop2d 20891 lsspropd 20985 lmhmpropd 21041 lbspropd 21067 lvecvscan 21082 lvecvscan2 21083 chrnzr 21504 zndvds0 21524 ip2eq 21626 phlpropd 21628 assapropd 21847 qtopcn 23669 tsmsf1o 24100 xmetgt0 24314 txmetcnp 24505 metustsym 24513 nlmmul0or 24641 cnmet 24729 evth 24928 isclmp 25067 minveclem3b 25399 mbfposr 25624 itg2cn 25735 iblcnlem 25761 dvcvx 25996 ulm2 26365 efeq1 26507 dcubic 26826 mcubic 26827 dquart 26833 birthdaylem3 26933 ftalem2 27054 issqf 27116 sqff1o 27162 bposlem7 27271 lgsabs1 27317 gausslemma2dlem1a 27346 lgsquadlem2 27362 addsq2reu 27421 dchrisum0lem1 27497 sltrec 27802 opphllem6 28697 colhp 28715 lmiinv 28737 lmiopp 28747 wlkeq 29581 eupth2lem3lem3 30178 eupth2lem3lem6 30181 nmounbi 30724 ip2eqi 30804 hvmulcan 31020 hvsubcan2 31023 hi2eq 31053 fh2 31567 riesz4i 32011 cvbr4i 32315 xdivpnfrp 32860 isorng 33274 qusker 33317 ellspds 33336 ply1moneq 33551 ballotlemfc0 34470 ballotlemfcc 34471 sgnmulsgn 34527 sgnmulsgp 34528 subfacp1lem5 35164 topfneec2 36332 neibastop3 36338 unccur 37585 cos2h 37593 tan2h 37594 poimirlem25 37627 poimirlem27 37629 dvasin 37686 caures 37742 ismtyima 37785 isdmn3 38056 dmecd 38280 releldmqscoss 38636 tendospcanN 41000 dochsncom 41359 f1o2d2 42248 sqrtcval 43631 or3or 44013 neicvgel1 44109 rusbcALT 44430 sbcoreleleqVD 44851 climreeq 45600 coseq0 45851 affinecomb1 48596 eenglngeehlnmlem1 48631 2sphere 48643 line2 48646 itscnhlc0yqe 48653 itscnhlc0xyqsol 48659 oduoppcciso 49258 |
| Copyright terms: Public domain | W3C validator |