| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3d | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3d | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| 4 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 5 | 3, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sbcne12 4366 fnprb 7151 fntpb 7152 eqfunresadj 7303 eloprabga 7464 ordsucuniel 7763 ordsucun 7764 oeoa 8521 ereldm 8684 boxcutc 8874 mapen 9064 mapfien 9302 wemapwe 9597 sdom2en01 10203 prlem936 10948 subcan 11426 mulcan1g 11780 conjmul 11848 ltrec 12014 rebtwnz 12855 xposdif 13171 divelunit 13404 fseq1m1p1 13509 fzm1 13517 fllt 13720 hashfacen 14371 hashf1 14374 ccat0 14493 lenegsq 15238 dvdsmod 16250 bitsmod 16357 smueqlem 16411 rpexp 16643 eulerthlem2 16703 odzdvds 16717 pcelnn 16792 xpsle 17493 isepi 17657 fthmon 17846 cat1 18014 pospropd 18241 grpidpropd 18580 mgmhmpropd 18616 sgrppropd 18649 mndpropd 18677 mhmpropd 18710 grppropd 18874 ghmnsgima 19162 mndodcong 19464 odf1 19484 odf1o1 19494 sylow3lem6 19554 lsmcntzr 19602 efgredlema 19662 cmnpropd 19713 qusecsub 19757 dprdf11 19947 rngpropd 20102 ringpropd 20216 dvdsrpropd 20344 resrhm2b 20527 abvpropd 20760 isorng 20786 lmodprop2d 20867 lsspropd 20961 lmhmpropd 21017 lbspropd 21043 lvecvscan 21058 lvecvscan2 21059 chrnzr 21477 zndvds0 21497 ip2eq 21600 phlpropd 21602 assapropd 21819 qtopcn 23639 tsmsf1o 24070 xmetgt0 24283 txmetcnp 24472 metustsym 24480 nlmmul0or 24608 cnmet 24696 evth 24895 isclmp 25034 minveclem3b 25365 mbfposr 25590 itg2cn 25701 iblcnlem 25727 dvcvx 25962 ulm2 26331 efeq1 26474 dcubic 26793 mcubic 26794 dquart 26800 birthdaylem3 26900 ftalem2 27021 issqf 27083 sqff1o 27129 bposlem7 27238 lgsabs1 27284 gausslemma2dlem1a 27313 lgsquadlem2 27329 addsq2reu 27388 dchrisum0lem1 27464 ssltsnb 27742 sltrec 27772 opphllem6 28740 colhp 28758 lmiinv 28780 lmiopp 28790 wlkeq 29623 eupth2lem3lem3 30221 eupth2lem3lem6 30224 nmounbi 30767 ip2eqi 30847 hvmulcan 31063 hvsubcan2 31066 hi2eq 31096 fh2 31610 riesz4i 32054 cvbr4i 32358 sgnmulsgn 32836 sgnmulsgp 32837 xdivpnfrp 32924 qusker 33325 ellspds 33344 ply1moneq 33561 ballotlemfc0 34517 ballotlemfcc 34518 subfacp1lem5 35239 topfneec2 36411 neibastop3 36417 unccur 37653 cos2h 37661 tan2h 37662 poimirlem25 37695 poimirlem27 37697 dvasin 37754 caures 37810 ismtyima 37853 isdmn3 38124 dmecd 38352 releldmqscoss 38768 tendospcanN 41132 dochsncom 41491 f1o2d2 42341 sqrtcval 43748 or3or 44130 neicvgel1 44226 rusbcALT 44545 sbcoreleleqVD 44965 climreeq 45727 coseq0 45976 modmkpkne 47475 affinecomb1 48817 eenglngeehlnmlem1 48852 2sphere 48864 line2 48867 itscnhlc0yqe 48874 itscnhlc0xyqsol 48880 oduoppcciso 49681 |
| Copyright terms: Public domain | W3C validator |