Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minregex Structured version   Visualization version   GIF version

Theorem minregex 43496
Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of which is greater to or equal to 𝐴. This proof uses AC. (Contributed by RP, 23-Nov-2023.)
Assertion
Ref Expression
minregex (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem minregex
StepHypRef Expression
1 eldif 3986 . . . . . . 7 (𝐴 ∈ (ran card ∖ ω) ↔ (𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω))
2 omelon 9715 . . . . . . . . . 10 ω ∈ On
3 cardon 10013 . . . . . . . . . . 11 (card‘𝐴) ∈ On
4 eleq1 2832 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
53, 4mpbii 233 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
6 ontri1 6429 . . . . . . . . . 10 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
72, 5, 6sylancr 586 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
87pm5.32i 574 . . . . . . . 8 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) ↔ ((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω))
9 iscard4 43495 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
109anbi1i 623 . . . . . . . 8 (((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω) ↔ (𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω))
118, 10bitr2i 276 . . . . . . 7 ((𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω) ↔ ((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴))
12 ancom 460 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
131, 11, 123bitri 297 . . . . . 6 (𝐴 ∈ (ran card ∖ ω) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
1413biimpi 216 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
15 cardalephex 10159 . . . . . . . 8 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
1615biimpa 476 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
17 eqimss 4067 . . . . . . . . 9 (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥))
1817a1i 11 . . . . . . . 8 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)))
1918reximdv 3176 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)))
2016, 19mpd 15 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
21 onintrab2 7833 . . . . . 6 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) ↔ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
2220, 21sylib 218 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
23 simpr 484 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
24 onsuc 7847 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
2523, 24syl 17 . . . . . 6 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
26 eloni 6405 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
2723, 26syl 17 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
28 0elsuc 7871 . . . . . . . 8 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
2927, 28syl 17 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
30 cardaleph 10158 . . . . . . . . 9 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3130adantr 480 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
32 sssucid 6475 . . . . . . . . 9 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
33 alephord3 10147 . . . . . . . . . 10 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
3423, 24, 33syl2anc2 584 . . . . . . . . 9 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
3532, 34mpbii 233 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3631, 35eqsstrd 4047 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
37 alephreg 10651 . . . . . . . 8 (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
3837a1i 11 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3929, 36, 383jca 1128 . . . . . 6 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
4025, 39jca 511 . . . . 5 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
4114, 22, 40syl2anc2 584 . . . 4 (𝐴 ∈ (ran card ∖ ω) → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
4214, 16syl 17 . . . . . . . 8 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
4317a1i 11 . . . . . . . . 9 (𝐴 ∈ (ran card ∖ ω) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)))
4443reximdv 3176 . . . . . . . 8 (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)))
4542, 44mpd 15 . . . . . . 7 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
4645, 21sylib 218 . . . . . 6 (𝐴 ∈ (ran card ∖ ω) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
4746, 24syl 17 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
48 sbcan 3857 . . . . . 6 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
49 sbcel1v 3875 . . . . . . . 8 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
5049a1i 11 . . . . . . 7 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On))
51 sbc3an 3874 . . . . . . . 8 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦[suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))
52 sbcel2gv 3876 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
53 sbcssg 4543 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
54 csbconstg 3940 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴 = 𝐴)
55 csbfv2g 6969 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦))
56 csbvarg 4457 . . . . . . . . . . . . 13 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦 = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
5756fveq2d 6924 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
5855, 57eqtrd 2780 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
5954, 58sseq12d 4042 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6053, 59bitrd 279 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
61 sbceqg 4435 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
62 csbfv2g 6969 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = (cf‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
6358fveq2d 6924 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (cf‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)) = (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6462, 63eqtrd 2780 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6564, 58eqeq12d 2756 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) ↔ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6661, 65bitrd 279 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6752, 60, 663anbi123d 1436 . . . . . . . 8 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦[suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
6851, 67bitrid 283 . . . . . . 7 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
6950, 68anbi12d 631 . . . . . 6 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7048, 69bitrid 283 . . . . 5 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7147, 70syl 17 . . . 4 (𝐴 ∈ (ran card ∖ ω) → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7241, 71mpbird 257 . . 3 (𝐴 ∈ (ran card ∖ ω) → [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
7372spesbcd 3905 . 2 (𝐴 ∈ (ran card ∖ ω) → ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
74 onintrab2 7833 . . 3 (∃𝑦 ∈ On (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On)
75 df-rex 3077 . . 3 (∃𝑦 ∈ On (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
76 risset 3239 . . 3 ( {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
7774, 75, 763bitr3i 301 . 2 (∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
7873, 77sylib 218 1 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wrex 3076  {crab 3443  [wsbc 3804  csb 3921  cdif 3973  wss 3976  c0 4352   cint 4970  ran crn 5701  Ord word 6394  Oncon0 6395  suc csuc 6397  cfv 6573  ωcom 7903  cardccrd 10004  cale 10005  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-card 10008  df-aleph 10009  df-cf 10010  df-acn 10011  df-ac 10185
This theorem is referenced by:  minregex2  43497
  Copyright terms: Public domain W3C validator