Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minregex Structured version   Visualization version   GIF version

Theorem minregex 43516
Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of which is greater to or equal to 𝐴. This proof uses AC. (Contributed by RP, 23-Nov-2023.)
Assertion
Ref Expression
minregex (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem minregex
StepHypRef Expression
1 eldif 3921 . . . . . . 7 (𝐴 ∈ (ran card ∖ ω) ↔ (𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω))
2 omelon 9575 . . . . . . . . . 10 ω ∈ On
3 cardon 9873 . . . . . . . . . . 11 (card‘𝐴) ∈ On
4 eleq1 2816 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
53, 4mpbii 233 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
6 ontri1 6354 . . . . . . . . . 10 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
72, 5, 6sylancr 587 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
87pm5.32i 574 . . . . . . . 8 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) ↔ ((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω))
9 iscard4 43515 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
109anbi1i 624 . . . . . . . 8 (((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω) ↔ (𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω))
118, 10bitr2i 276 . . . . . . 7 ((𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω) ↔ ((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴))
12 ancom 460 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
131, 11, 123bitri 297 . . . . . 6 (𝐴 ∈ (ran card ∖ ω) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
1413biimpi 216 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
15 cardalephex 10019 . . . . . . . 8 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
1615biimpa 476 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
17 eqimss 4002 . . . . . . . . 9 (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥))
1817a1i 11 . . . . . . . 8 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)))
1918reximdv 3148 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)))
2016, 19mpd 15 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
21 onintrab2 7753 . . . . . 6 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) ↔ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
2220, 21sylib 218 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
23 simpr 484 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
24 onsuc 7767 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
2523, 24syl 17 . . . . . 6 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
26 eloni 6330 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
2723, 26syl 17 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
28 0elsuc 7790 . . . . . . . 8 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
2927, 28syl 17 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
30 cardaleph 10018 . . . . . . . . 9 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3130adantr 480 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
32 sssucid 6402 . . . . . . . . 9 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
33 alephord3 10007 . . . . . . . . . 10 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
3423, 24, 33syl2anc2 585 . . . . . . . . 9 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
3532, 34mpbii 233 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3631, 35eqsstrd 3978 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
37 alephreg 10511 . . . . . . . 8 (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
3837a1i 11 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3929, 36, 383jca 1128 . . . . . 6 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
4025, 39jca 511 . . . . 5 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
4114, 22, 40syl2anc2 585 . . . 4 (𝐴 ∈ (ran card ∖ ω) → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
4214, 16syl 17 . . . . . . . 8 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
4317a1i 11 . . . . . . . . 9 (𝐴 ∈ (ran card ∖ ω) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)))
4443reximdv 3148 . . . . . . . 8 (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)))
4542, 44mpd 15 . . . . . . 7 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
4645, 21sylib 218 . . . . . 6 (𝐴 ∈ (ran card ∖ ω) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
4746, 24syl 17 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
48 sbcan 3800 . . . . . 6 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
49 sbcel1v 3816 . . . . . . . 8 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
5049a1i 11 . . . . . . 7 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On))
51 sbc3an 3815 . . . . . . . 8 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦[suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))
52 sbcel2gv 3817 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
53 sbcssg 4479 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
54 csbconstg 3878 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴 = 𝐴)
55 csbfv2g 6889 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦))
56 csbvarg 4393 . . . . . . . . . . . . 13 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦 = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
5756fveq2d 6844 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
5855, 57eqtrd 2764 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
5954, 58sseq12d 3977 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6053, 59bitrd 279 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
61 sbceqg 4371 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
62 csbfv2g 6889 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = (cf‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
6358fveq2d 6844 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (cf‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)) = (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6462, 63eqtrd 2764 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6564, 58eqeq12d 2745 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) ↔ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6661, 65bitrd 279 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6752, 60, 663anbi123d 1438 . . . . . . . 8 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦[suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
6851, 67bitrid 283 . . . . . . 7 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
6950, 68anbi12d 632 . . . . . 6 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7048, 69bitrid 283 . . . . 5 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7147, 70syl 17 . . . 4 (𝐴 ∈ (ran card ∖ ω) → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7241, 71mpbird 257 . . 3 (𝐴 ∈ (ran card ∖ ω) → [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
7372spesbcd 3843 . 2 (𝐴 ∈ (ran card ∖ ω) → ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
74 onintrab2 7753 . . 3 (∃𝑦 ∈ On (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On)
75 df-rex 3054 . . 3 (∃𝑦 ∈ On (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
76 risset 3210 . . 3 ( {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
7774, 75, 763bitr3i 301 . 2 (∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
7873, 77sylib 218 1 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3053  {crab 3402  [wsbc 3750  csb 3859  cdif 3908  wss 3911  c0 4292   cint 4906  ran crn 5632  Ord word 6319  Oncon0 6320  suc csuc 6322  cfv 6499  ωcom 7822  cardccrd 9864  cale 9865  cfccf 9866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-oi 9439  df-har 9486  df-card 9868  df-aleph 9869  df-cf 9870  df-acn 9871  df-ac 10045
This theorem is referenced by:  minregex2  43517
  Copyright terms: Public domain W3C validator