Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minregex Structured version   Visualization version   GIF version

Theorem minregex 43201
Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of which is greater to or equal to 𝐴. This proof uses AC. (Contributed by RP, 23-Nov-2023.)
Assertion
Ref Expression
minregex (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem minregex
StepHypRef Expression
1 eldif 3957 . . . . . . 7 (𝐴 ∈ (ran card ∖ ω) ↔ (𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω))
2 omelon 9689 . . . . . . . . . 10 ω ∈ On
3 cardon 9987 . . . . . . . . . . 11 (card‘𝐴) ∈ On
4 eleq1 2814 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
53, 4mpbii 232 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
6 ontri1 6410 . . . . . . . . . 10 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
72, 5, 6sylancr 585 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
87pm5.32i 573 . . . . . . . 8 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) ↔ ((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω))
9 iscard4 43200 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
109anbi1i 622 . . . . . . . 8 (((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω) ↔ (𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω))
118, 10bitr2i 275 . . . . . . 7 ((𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω) ↔ ((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴))
12 ancom 459 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
131, 11, 123bitri 296 . . . . . 6 (𝐴 ∈ (ran card ∖ ω) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
1413biimpi 215 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
15 cardalephex 10133 . . . . . . . 8 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
1615biimpa 475 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
17 eqimss 4038 . . . . . . . . 9 (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥))
1817a1i 11 . . . . . . . 8 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)))
1918reximdv 3160 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)))
2016, 19mpd 15 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
21 onintrab2 7806 . . . . . 6 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) ↔ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
2220, 21sylib 217 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
23 simpr 483 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
24 onsuc 7820 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
2523, 24syl 17 . . . . . 6 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
26 eloni 6386 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
2723, 26syl 17 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
28 0elsuc 7844 . . . . . . . 8 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
2927, 28syl 17 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
30 cardaleph 10132 . . . . . . . . 9 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3130adantr 479 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
32 sssucid 6456 . . . . . . . . 9 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
33 alephord3 10121 . . . . . . . . . 10 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
3423, 24, 33syl2anc2 583 . . . . . . . . 9 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
3532, 34mpbii 232 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3631, 35eqsstrd 4018 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
37 alephreg 10625 . . . . . . . 8 (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
3837a1i 11 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3929, 36, 383jca 1125 . . . . . 6 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
4025, 39jca 510 . . . . 5 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
4114, 22, 40syl2anc2 583 . . . 4 (𝐴 ∈ (ran card ∖ ω) → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
4214, 16syl 17 . . . . . . . 8 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
4317a1i 11 . . . . . . . . 9 (𝐴 ∈ (ran card ∖ ω) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)))
4443reximdv 3160 . . . . . . . 8 (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)))
4542, 44mpd 15 . . . . . . 7 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
4645, 21sylib 217 . . . . . 6 (𝐴 ∈ (ran card ∖ ω) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
4746, 24syl 17 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
48 sbcan 3829 . . . . . 6 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
49 sbcel1v 3847 . . . . . . . 8 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
5049a1i 11 . . . . . . 7 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On))
51 sbc3an 3846 . . . . . . . 8 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦[suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))
52 sbcel2gv 3848 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
53 sbcssg 4528 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
54 csbconstg 3911 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴 = 𝐴)
55 csbfv2g 6950 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦))
56 csbvarg 4436 . . . . . . . . . . . . 13 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦 = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
5756fveq2d 6905 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
5855, 57eqtrd 2766 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
5954, 58sseq12d 4013 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6053, 59bitrd 278 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
61 sbceqg 4414 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
62 csbfv2g 6950 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = (cf‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
6358fveq2d 6905 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (cf‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)) = (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6462, 63eqtrd 2766 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6564, 58eqeq12d 2742 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) ↔ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6661, 65bitrd 278 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6752, 60, 663anbi123d 1433 . . . . . . . 8 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦[suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
6851, 67bitrid 282 . . . . . . 7 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
6950, 68anbi12d 630 . . . . . 6 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7048, 69bitrid 282 . . . . 5 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7147, 70syl 17 . . . 4 (𝐴 ∈ (ran card ∖ ω) → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7241, 71mpbird 256 . . 3 (𝐴 ∈ (ran card ∖ ω) → [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
7372spesbcd 3876 . 2 (𝐴 ∈ (ran card ∖ ω) → ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
74 onintrab2 7806 . . 3 (∃𝑦 ∈ On (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On)
75 df-rex 3061 . . 3 (∃𝑦 ∈ On (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
76 risset 3221 . . 3 ( {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
7774, 75, 763bitr3i 300 . 2 (∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
7873, 77sylib 217 1 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wex 1774  wcel 2099  wrex 3060  {crab 3419  [wsbc 3776  csb 3892  cdif 3944  wss 3947  c0 4325   cint 4954  ran crn 5683  Ord word 6375  Oncon0 6376  suc csuc 6378  cfv 6554  ωcom 7876  cardccrd 9978  cale 9979  cfccf 9980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-ac2 10506
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-oi 9553  df-har 9600  df-card 9982  df-aleph 9983  df-cf 9984  df-acn 9985  df-ac 10159
This theorem is referenced by:  minregex2  43202
  Copyright terms: Public domain W3C validator