Proof of Theorem minregex
| Step | Hyp | Ref
| Expression |
| 1 | | eldif 3943 |
. . . . . . 7
⊢ (𝐴 ∈ (ran card ∖
ω) ↔ (𝐴 ∈
ran card ∧ ¬ 𝐴
∈ ω)) |
| 2 | | omelon 9669 |
. . . . . . . . . 10
⊢ ω
∈ On |
| 3 | | cardon 9967 |
. . . . . . . . . . 11
⊢
(card‘𝐴)
∈ On |
| 4 | | eleq1 2821 |
. . . . . . . . . . 11
⊢
((card‘𝐴) =
𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On)) |
| 5 | 3, 4 | mpbii 233 |
. . . . . . . . . 10
⊢
((card‘𝐴) =
𝐴 → 𝐴 ∈ On) |
| 6 | | ontri1 6399 |
. . . . . . . . . 10
⊢ ((ω
∈ On ∧ 𝐴 ∈
On) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω)) |
| 7 | 2, 5, 6 | sylancr 587 |
. . . . . . . . 9
⊢
((card‘𝐴) =
𝐴 → (ω ⊆
𝐴 ↔ ¬ 𝐴 ∈
ω)) |
| 8 | 7 | pm5.32i 574 |
. . . . . . . 8
⊢
(((card‘𝐴) =
𝐴 ∧ ω ⊆
𝐴) ↔
((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω)) |
| 9 | | iscard4 43491 |
. . . . . . . . 9
⊢
((card‘𝐴) =
𝐴 ↔ 𝐴 ∈ ran card) |
| 10 | 9 | anbi1i 624 |
. . . . . . . 8
⊢
(((card‘𝐴) =
𝐴 ∧ ¬ 𝐴 ∈ ω) ↔ (𝐴 ∈ ran card ∧ ¬
𝐴 ∈
ω)) |
| 11 | 8, 10 | bitr2i 276 |
. . . . . . 7
⊢ ((𝐴 ∈ ran card ∧ ¬
𝐴 ∈ ω) ↔
((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴)) |
| 12 | | ancom 460 |
. . . . . . 7
⊢
(((card‘𝐴) =
𝐴 ∧ ω ⊆
𝐴) ↔ (ω ⊆
𝐴 ∧ (card‘𝐴) = 𝐴)) |
| 13 | 1, 11, 12 | 3bitri 297 |
. . . . . 6
⊢ (𝐴 ∈ (ran card ∖
ω) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
| 14 | 13 | biimpi 216 |
. . . . 5
⊢ (𝐴 ∈ (ran card ∖
ω) → (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴)) |
| 15 | | cardalephex 10113 |
. . . . . . . 8
⊢ (ω
⊆ 𝐴 →
((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) |
| 16 | 15 | biimpa 476 |
. . . . . . 7
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)) |
| 17 | | eqimss 4024 |
. . . . . . . . 9
⊢ (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)) |
| 18 | 17 | a1i 11 |
. . . . . . . 8
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥))) |
| 19 | 18 | reximdv 3157 |
. . . . . . 7
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))) |
| 20 | 16, 19 | mpd 15 |
. . . . . 6
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)) |
| 21 | | onintrab2 7800 |
. . . . . 6
⊢
(∃𝑥 ∈ On
𝐴 ⊆
(ℵ‘𝑥) ↔
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) |
| 22 | 20, 21 | sylib 218 |
. . . . 5
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) |
| 23 | | simpr 484 |
. . . . . . 7
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) |
| 24 | | onsuc 7814 |
. . . . . . 7
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On → suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) |
| 25 | 23, 24 | syl 17 |
. . . . . 6
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) |
| 26 | | eloni 6375 |
. . . . . . . . 9
⊢ (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On → Ord ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) |
| 27 | 23, 26 | syl 17 |
. . . . . . . 8
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → Ord ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) |
| 28 | | 0elsuc 7838 |
. . . . . . . 8
⊢ (Ord
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ∅ ∈ suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) |
| 29 | 27, 28 | syl 17 |
. . . . . . 7
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → ∅ ∈ suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) |
| 30 | | cardaleph 10112 |
. . . . . . . . 9
⊢ ((ω
⊆ 𝐴 ∧
(card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
| 31 | 30 | adantr 480 |
. . . . . . . 8
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → 𝐴 =
(ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) |
| 32 | | sssucid 6445 |
. . . . . . . . 9
⊢ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ⊆
suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} |
| 33 | | alephord3 10101 |
. . . . . . . . . 10
⊢ ((∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On ∧ suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ⊆
suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ⊆
(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
| 34 | 23, 24, 33 | syl2anc2 585 |
. . . . . . . . 9
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → (∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc ∩
{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ⊆
(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
| 35 | 32, 34 | mpbii 233 |
. . . . . . . 8
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → (ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
| 36 | 31, 35 | eqsstrd 4000 |
. . . . . . 7
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → 𝐴 ⊆
(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) |
| 37 | | alephreg 10605 |
. . . . . . . 8
⊢
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) |
| 38 | 37 | a1i 11 |
. . . . . . 7
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → (cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
| 39 | 29, 36, 38 | 3jca 1128 |
. . . . . 6
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → (∅ ∈ suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ∧
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
| 40 | 25, 39 | jca 511 |
. . . . 5
⊢
(((ω ⊆ 𝐴
∧ (card‘𝐴) =
𝐴) ∧ ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) → (suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∧
𝐴 ⊆
(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) =
(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))) |
| 41 | 14, 22, 40 | syl2anc2 585 |
. . . 4
⊢ (𝐴 ∈ (ran card ∖
ω) → (suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∧
𝐴 ⊆
(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) =
(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))) |
| 42 | 14, 16 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ (ran card ∖
ω) → ∃𝑥
∈ On 𝐴 =
(ℵ‘𝑥)) |
| 43 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ (ran card ∖
ω) → (𝐴 =
(ℵ‘𝑥) →
𝐴 ⊆
(ℵ‘𝑥))) |
| 44 | 43 | reximdv 3157 |
. . . . . . . 8
⊢ (𝐴 ∈ (ran card ∖
ω) → (∃𝑥
∈ On 𝐴 =
(ℵ‘𝑥) →
∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))) |
| 45 | 42, 44 | mpd 15 |
. . . . . . 7
⊢ (𝐴 ∈ (ran card ∖
ω) → ∃𝑥
∈ On 𝐴 ⊆
(ℵ‘𝑥)) |
| 46 | 45, 21 | sylib 218 |
. . . . . 6
⊢ (𝐴 ∈ (ran card ∖
ω) → ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) |
| 47 | 46, 24 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ (ran card ∖
ω) → suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) |
| 48 | | sbcan 3822 |
. . . . . 6
⊢
([suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))) |
| 49 | | sbcel1v 3838 |
. . . . . . . 8
⊢
([suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On) |
| 50 | 49 | a1i 11 |
. . . . . . 7
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On)) |
| 51 | | sbc3an 3837 |
. . . . . . . 8
⊢
([suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦 ∧ [suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) |
| 52 | | sbcel2gv 3839 |
. . . . . . . . 9
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
| 53 | | sbcssg 4502 |
. . . . . . . . . 10
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌𝐴 ⊆ ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(ℵ‘𝑦))) |
| 54 | | csbconstg 3900 |
. . . . . . . . . . 11
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌𝐴 = 𝐴) |
| 55 | | csbfv2g 6936 |
. . . . . . . . . . . 12
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(ℵ‘𝑦) =
(ℵ‘⦋suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦⦌𝑦)) |
| 56 | | csbvarg 4416 |
. . . . . . . . . . . . 13
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌𝑦 = suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) |
| 57 | 56 | fveq2d 6891 |
. . . . . . . . . . . 12
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On →
(ℵ‘⦋suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦⦌𝑦) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
| 58 | 55, 57 | eqtrd 2769 |
. . . . . . . . . . 11
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(ℵ‘𝑦) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})) |
| 59 | 54, 58 | sseq12d 3999 |
. . . . . . . . . 10
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌𝐴 ⊆ ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
| 60 | 53, 59 | bitrd 279 |
. . . . . . . . 9
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
| 61 | | sbceqg 4394 |
. . . . . . . . . 10
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ ⦋suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦⦌(cf‘(ℵ‘𝑦)) = ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(ℵ‘𝑦))) |
| 62 | | csbfv2g 6936 |
. . . . . . . . . . . 12
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(cf‘(ℵ‘𝑦)) =
(cf‘⦋suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦⦌(ℵ‘𝑦))) |
| 63 | 58 | fveq2d 6891 |
. . . . . . . . . . . 12
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On →
(cf‘⦋suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦⦌(ℵ‘𝑦)) =
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
| 64 | 62, 63 | eqtrd 2769 |
. . . . . . . . . . 11
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(cf‘(ℵ‘𝑦)) =
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))) |
| 65 | 64, 58 | eqeq12d 2750 |
. . . . . . . . . 10
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(cf‘(ℵ‘𝑦)) = ⦋suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦⦌(ℵ‘𝑦) ↔
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
| 66 | 61, 65 | bitrd 279 |
. . . . . . . . 9
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))) |
| 67 | 52, 60, 66 | 3anbi123d 1437 |
. . . . . . . 8
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦 ∧ [suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ∧
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})))) |
| 68 | 51, 67 | bitrid 283 |
. . . . . . 7
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ∧
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)})))) |
| 69 | 50, 68 | anbi12d 632 |
. . . . . 6
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On ∧ (∅ ∈ suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ∧
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))))) |
| 70 | 48, 69 | bitrid 283 |
. . . . 5
⊢ (suc
∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On ∧ (∅ ∈ suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ∧
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))))) |
| 71 | 47, 70 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (ran card ∖
ω) → ([suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)} ∈
On ∧ (∅ ∈ suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}) ∧
(cf‘(ℵ‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc ∩ {𝑥
∈ On ∣ 𝐴 ⊆
(ℵ‘𝑥)}))))) |
| 72 | 41, 71 | mpbird 257 |
. . 3
⊢ (𝐴 ∈ (ran card ∖
ω) → [suc ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))) |
| 73 | 72 | spesbcd 3865 |
. 2
⊢ (𝐴 ∈ (ran card ∖
ω) → ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))) |
| 74 | | onintrab2 7800 |
. . 3
⊢
(∃𝑦 ∈ On
(∅ ∈ 𝑦 ∧
𝐴 ⊆
(ℵ‘𝑦) ∧
(cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ∩ {𝑦 ∈ On ∣ (∅
∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧
(cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On) |
| 75 | | df-rex 3060 |
. . 3
⊢
(∃𝑦 ∈ On
(∅ ∈ 𝑦 ∧
𝐴 ⊆
(ℵ‘𝑦) ∧
(cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))) |
| 76 | | risset 3220 |
. . 3
⊢ (∩ {𝑦
∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On ↔
∃𝑥 ∈ On 𝑥 = ∩
{𝑦 ∈ On ∣
(∅ ∈ 𝑦 ∧
𝐴 ⊆
(ℵ‘𝑦) ∧
(cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| 77 | 74, 75, 76 | 3bitr3i 301 |
. 2
⊢
(∃𝑦(𝑦 ∈ On ∧ (∅ ∈
𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅
∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧
(cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| 78 | 73, 77 | sylib 218 |
1
⊢ (𝐴 ∈ (ran card ∖
ω) → ∃𝑥
∈ On 𝑥 = ∩ {𝑦
∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |