Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minregex Structured version   Visualization version   GIF version

Theorem minregex 43517
Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of which is greater to or equal to 𝐴. This proof uses AC. (Contributed by RP, 23-Nov-2023.)
Assertion
Ref Expression
minregex (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem minregex
StepHypRef Expression
1 eldif 3913 . . . . . . 7 (𝐴 ∈ (ran card ∖ ω) ↔ (𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω))
2 omelon 9542 . . . . . . . . . 10 ω ∈ On
3 cardon 9840 . . . . . . . . . . 11 (card‘𝐴) ∈ On
4 eleq1 2816 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
53, 4mpbii 233 . . . . . . . . . 10 ((card‘𝐴) = 𝐴𝐴 ∈ On)
6 ontri1 6341 . . . . . . . . . 10 ((ω ∈ On ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
72, 5, 6sylancr 587 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
87pm5.32i 574 . . . . . . . 8 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) ↔ ((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω))
9 iscard4 43516 . . . . . . . . 9 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
109anbi1i 624 . . . . . . . 8 (((card‘𝐴) = 𝐴 ∧ ¬ 𝐴 ∈ ω) ↔ (𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω))
118, 10bitr2i 276 . . . . . . 7 ((𝐴 ∈ ran card ∧ ¬ 𝐴 ∈ ω) ↔ ((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴))
12 ancom 460 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
131, 11, 123bitri 297 . . . . . 6 (𝐴 ∈ (ran card ∖ ω) ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
1413biimpi 216 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
15 cardalephex 9984 . . . . . . . 8 (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥)))
1615biimpa 476 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
17 eqimss 3994 . . . . . . . . 9 (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥))
1817a1i 11 . . . . . . . 8 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)))
1918reximdv 3144 . . . . . . 7 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)))
2016, 19mpd 15 . . . . . 6 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
21 onintrab2 7733 . . . . . 6 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) ↔ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
2220, 21sylib 218 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
23 simpr 484 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
24 onsuc 7746 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
2523, 24syl 17 . . . . . 6 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
26 eloni 6317 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
2723, 26syl 17 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
28 0elsuc 7768 . . . . . . . 8 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
2927, 28syl 17 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
30 cardaleph 9983 . . . . . . . . 9 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3130adantr 480 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
32 sssucid 6389 . . . . . . . . 9 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
33 alephord3 9972 . . . . . . . . . 10 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
3423, 24, 33syl2anc2 585 . . . . . . . . 9 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ⊆ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
3532, 34mpbii 233 . . . . . . . 8 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3631, 35eqsstrd 3970 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
37 alephreg 10476 . . . . . . . 8 (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
3837a1i 11 . . . . . . 7 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
3929, 36, 383jca 1128 . . . . . 6 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
4025, 39jca 511 . . . . 5 (((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On) → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
4114, 22, 40syl2anc2 585 . . . 4 (𝐴 ∈ (ran card ∖ ω) → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
4214, 16syl 17 . . . . . . . 8 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))
4317a1i 11 . . . . . . . . 9 (𝐴 ∈ (ran card ∖ ω) → (𝐴 = (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘𝑥)))
4443reximdv 3144 . . . . . . . 8 (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥)))
4542, 44mpd 15 . . . . . . 7 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
4645, 21sylib 218 . . . . . 6 (𝐴 ∈ (ran card ∖ ω) → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
4746, 24syl 17 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
48 sbcan 3792 . . . . . 6 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
49 sbcel1v 3808 . . . . . . . 8 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
5049a1i 11 . . . . . . 7 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On))
51 sbc3an 3807 . . . . . . . 8 ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦[suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))
52 sbcel2gv 3809 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦 ↔ ∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
53 sbcssg 4471 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
54 csbconstg 3870 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴 = 𝐴)
55 csbfv2g 6869 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦))
56 csbvarg 4385 . . . . . . . . . . . . 13 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦 = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
5756fveq2d 6826 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
5855, 57eqtrd 2764 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
5954, 58sseq12d 3969 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦𝐴suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6053, 59bitrd 279 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
61 sbceqg 4363 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
62 csbfv2g 6869 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = (cf‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)))
6358fveq2d 6826 . . . . . . . . . . . 12 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (cf‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦)) = (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6462, 63eqtrd 2764 . . . . . . . . . . 11 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6564, 58eqeq12d 2745 . . . . . . . . . 10 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(cf‘(ℵ‘𝑦)) = suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦(ℵ‘𝑦) ↔ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6661, 65bitrd 279 . . . . . . . . 9 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦) ↔ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
6752, 60, 663anbi123d 1438 . . . . . . . 8 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]∅ ∈ 𝑦[suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝐴 ⊆ (ℵ‘𝑦) ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
6851, 67bitrid 283 . . . . . . 7 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
6950, 68anbi12d 632 . . . . . 6 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → (([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦]𝑦 ∈ On ∧ [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7048, 69bitrid 283 . . . . 5 (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7147, 70syl 17 . . . 4 (𝐴 ∈ (ran card ∖ ω) → ([suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ (suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ (∅ ∈ suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∧ 𝐴 ⊆ (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (cf‘(ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) = (ℵ‘suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))))
7241, 71mpbird 257 . . 3 (𝐴 ∈ (ran card ∖ ω) → [suc {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} / 𝑦](𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
7372spesbcd 3835 . 2 (𝐴 ∈ (ran card ∖ ω) → ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
74 onintrab2 7733 . . 3 (∃𝑦 ∈ On (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On)
75 df-rex 3054 . . 3 (∃𝑦 ∈ On (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ ∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
76 risset 3204 . . 3 ( {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ∈ On ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
7774, 75, 763bitr3i 301 . 2 (∃𝑦(𝑦 ∈ On ∧ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))) ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
7873, 77sylib 218 1 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3053  {crab 3394  [wsbc 3742  csb 3851  cdif 3900  wss 3903  c0 4284   cint 4896  ran crn 5620  Ord word 6306  Oncon0 6307  suc csuc 6309  cfv 6482  ωcom 7799  cardccrd 9831  cale 9832  cfccf 9833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-har 9449  df-card 9835  df-aleph 9836  df-cf 9837  df-acn 9838  df-ac 10010
This theorem is referenced by:  minregex2  43518
  Copyright terms: Public domain W3C validator