MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-6l Structured version   Visualization version   GIF version

Theorem simp-6l 786
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-6l (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑)

Proof of Theorem simp-6l
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21ad6antr 735 1 (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  ghmcmn  19699  ustuqtop2  23747  ustuqtop4  23749  cnheibor  24471  miriso  27952  f1otrg  28153  txomap  32845  pstmxmet  32908  omssubadd  33330  signstfvneq0  33614  iunconnlem2  43744  suplesup  44097  limcleqr  44408  0ellimcdiv  44413  limclner  44415  fourierdlem51  44921  smflimlem2  45536
  Copyright terms: Public domain W3C validator