MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-6l Structured version   Visualization version   GIF version

Theorem simp-6l 786
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-6l (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑)

Proof of Theorem simp-6l
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21ad6antr 736 1 (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ghmcmn  19768  ustuqtop2  24137  ustuqtop4  24139  cnheibor  24861  miriso  28604  f1otrg  28805  txomap  33831  pstmxmet  33894  omssubadd  34298  signstfvneq0  34570  iunconnlem2  44931  suplesup  45342  limcleqr  45649  0ellimcdiv  45654  limclner  45656  fourierdlem51  46162  smflimlem2  46777  upfval  49169
  Copyright terms: Public domain W3C validator