MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-6l Structured version   Visualization version   GIF version

Theorem simp-6l 786
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-6l (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑)

Proof of Theorem simp-6l
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21ad6antr 735 1 (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ghmcmn  19873  ustuqtop2  24272  ustuqtop4  24274  cnheibor  25006  miriso  28696  f1otrg  28897  txomap  33780  pstmxmet  33843  omssubadd  34265  signstfvneq0  34549  iunconnlem2  44906  suplesup  45254  limcleqr  45565  0ellimcdiv  45570  limclner  45572  fourierdlem51  46078  smflimlem2  46693
  Copyright terms: Public domain W3C validator