MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp-6l Structured version   Visualization version   GIF version

Theorem simp-6l 784
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.)
Assertion
Ref Expression
simp-6l (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑)

Proof of Theorem simp-6l
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
21ad6antr 733 1 (((((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  ghmcmn  19433  ustuqtop2  23394  ustuqtop4  23396  cnheibor  24118  miriso  27031  f1otrg  27232  txomap  31784  pstmxmet  31847  omssubadd  32267  signstfvneq0  32551  iunconnlem2  42555  suplesup  42878  limcleqr  43185  0ellimcdiv  43190  limclner  43192  fourierdlem51  43698  smflimlem2  44307
  Copyright terms: Public domain W3C validator