Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcleqr Structured version   Visualization version   GIF version

Theorem limcleqr 45621
Description: If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcleqr.k 𝐾 = (TopOpen‘ℂfld)
limcleqr.a (𝜑𝐴 ⊆ ℝ)
limcleqr.j 𝐽 = (topGen‘ran (,))
limcleqr.f (𝜑𝐹:𝐴⟶ℂ)
limcleqr.b (𝜑𝐵 ∈ ℝ)
limcleqr.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limcleqr.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limcleqr.leqr (𝜑𝐿 = 𝑅)
Assertion
Ref Expression
limcleqr (𝜑𝐿 ∈ (𝐹 lim 𝐵))

Proof of Theorem limcleqr
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25826 . . 3 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
2 limcleqr.l . . 3 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
31, 2sselid 3956 . 2 (𝜑𝐿 ∈ ℂ)
4 simp-4r 783 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑎 ∈ ℝ+)
5 simplr 768 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑏 ∈ ℝ+)
64, 5ifcld 4547 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
7 nfv 1914 . . . . . . . . . . 11 𝑧(𝜑𝑥 ∈ ℝ+)
8 nfv 1914 . . . . . . . . . . 11 𝑧 𝑎 ∈ ℝ+
97, 8nfan 1899 . . . . . . . . . 10 𝑧((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+)
10 nfra1 3266 . . . . . . . . . 10 𝑧𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
119, 10nfan 1899 . . . . . . . . 9 𝑧(((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
12 nfv 1914 . . . . . . . . 9 𝑧 𝑏 ∈ ℝ+
1311, 12nfan 1899 . . . . . . . 8 𝑧((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+)
14 nfra1 3266 . . . . . . . 8 𝑧𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
1513, 14nfan 1899 . . . . . . 7 𝑧(((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
16 simp-6l 786 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝜑)
17163ad2antl1 1186 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝜑)
18 simpl2 1193 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐴)
19 simpr 484 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 < 𝐵)
20 mnfxr 11290 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ ∈ ℝ*)
22 limcleqr.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2322rexrd 11283 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
24233ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝐵 ∈ ℝ*)
25 limcleqr.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
2625sselda 3958 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
27263adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ ℝ)
2827mnfltd 13138 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ < 𝑧)
29 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 < 𝐵)
3021, 24, 27, 28, 29eliood 45475 . . . . . . . . . . . 12 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
3117, 18, 19, 30syl3anc 1373 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
32 fvres 6894 . . . . . . . . . . . . . 14 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑧) = (𝐹𝑧))
3332oveq1d 7418 . . . . . . . . . . . . 13 (𝑧 ∈ (-∞(,)𝐵) → (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿) = ((𝐹𝑧) − 𝐿))
3433eqcomd 2741 . . . . . . . . . . . 12 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹𝑧) − 𝐿) = (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿))
3534fveq2d 6879 . . . . . . . . . . 11 (𝑧 ∈ (-∞(,)𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
3631, 35syl 17 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
37 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
38373ad2antl1 1186 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
3918, 31elind 4175 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵)))
4038, 39jca 511 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))))
41 simpl3l 1229 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐵)
424adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
43423ad2antl1 1186 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
445adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
45443ad2antl1 1186 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
46 simpl3r 1230 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
47 simpl1 1192 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝜑)
48 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑧𝐴)
4926recnd 11261 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
5022recnd 11261 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
5150adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝐵 ∈ ℂ)
5249, 51subcld 11592 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝑧𝐵) ∈ ℂ)
5352abscld 15453 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → (abs‘(𝑧𝐵)) ∈ ℝ)
5447, 48, 53syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) ∈ ℝ)
55 rpre 13015 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
57 rpre 13015 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
5857adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
5956, 58ifcld 4547 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
62563adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
6362adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑎 ∈ ℝ)
64 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
65583adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
66 min1 13203 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6762, 65, 66syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6867adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6954, 61, 63, 64, 68ltletrd 11393 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑎)
7017, 43, 45, 46, 18, 69syl32anc 1380 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < 𝑎)
7141, 70jca 511 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎))
72 rspa 3231 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
7340, 71, 72sylc 65 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
7436, 73eqbrtrd 5141 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
75 simp-6l 786 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
76753ad2antl1 1186 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
7776, 22syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 ∈ ℝ)
78 simpl2 1193 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧𝐴)
7976, 78, 26syl2anc 584 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧 ∈ ℝ)
80 id 22 . . . . . . . . . . . . . 14 (𝑧𝐵𝑧𝐵)
8180necomd 2987 . . . . . . . . . . . . 13 (𝑧𝐵𝐵𝑧)
8281ad2antrr 726 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
83823ad2antl3 1188 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
84 simpr 484 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → ¬ 𝑧 < 𝐵)
8577, 79, 83, 84lttri5d 45276 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 < 𝑧)
86 simp-6l 786 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝜑)
87863ad2antl1 1186 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝜑)
88 simpl2 1193 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐴)
89 simpr 484 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝐵 < 𝑧)
90233ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 ∈ ℝ*)
91 pnfxr 11287 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
9291a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → +∞ ∈ ℝ*)
93263adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ ℝ)
94 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 < 𝑧)
9593ltpnfd 13135 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 < +∞)
9690, 92, 93, 94, 95eliood 45475 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
9787, 88, 89, 96syl3anc 1373 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
98 fvres 6894 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐵(,)+∞) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑧) = (𝐹𝑧))
9998eqcomd 2741 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵(,)+∞) → (𝐹𝑧) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑧))
10099fvoveq1d 7425 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)+∞) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
10197, 100syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
102 simpl1r 1226 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
10388, 97elind 4175 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞)))
104102, 103jca 511 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))))
105 simpl3l 1229 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐵)
1064adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1071063ad2antl1 1186 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1085adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
1091083ad2antl1 1186 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
110 simpl3r 1230 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
11165adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑏 ∈ ℝ)
112 min2 13204 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11362, 65, 112syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
114113adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11554, 61, 111, 64, 114ltletrd 11393 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑏)
11687, 107, 109, 110, 88, 115syl32anc 1380 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < 𝑏)
117105, 116jca 511 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏))
118 rspa 3231 . . . . . . . . . . . 12 ((∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
119104, 117, 118sylc 65 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
120101, 119eqbrtrd 5141 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12185, 120syldan 591 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12274, 121pm2.61dan 812 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
1231223exp 1119 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
12415, 123ralrimi 3240 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
125 brimralrspcev 5180 . . . . . 6 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
1266, 124, 125syl2anc 584 . . . . 5 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
127 limcleqr.r . . . . . . . . . 10 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
128 limcleqr.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
129 fresin 6746 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
130128, 129syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
131 inss2 4213 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
132 ioosscn 13423 . . . . . . . . . . . . 13 (𝐵(,)+∞) ⊆ ℂ
133131, 132sstri 3968 . . . . . . . . . . . 12 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
134133a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
135130, 134, 50ellimc3 25830 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))))
136127, 135mpbid 232 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
137136simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
138137r19.21bi 3234 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
139 limcleqr.leqr . . . . . . . . . . . . 13 (𝜑𝐿 = 𝑅)
140139oveq2d 7419 . . . . . . . . . . . 12 (𝜑 → (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿) = (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅))
141140fveq2d 6879 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)))
142141breq1d 5129 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥 ↔ (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
143142imbi2d 340 . . . . . . . . 9 (𝜑 → (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
144143rexralbidv 3207 . . . . . . . 8 (𝜑 → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
145144adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
146138, 145mpbird 257 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
147146ad2antrr 726 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
148126, 147r19.29a 3148 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
149 fresin 6746 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
150128, 149syl 17 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
151 inss2 4213 . . . . . . . . . 10 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
152 ioossre 13422 . . . . . . . . . 10 (-∞(,)𝐵) ⊆ ℝ
153151, 152sstri 3968 . . . . . . . . 9 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
154 ax-resscn 11184 . . . . . . . . . 10 ℝ ⊆ ℂ
155154a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
156153, 155sstrid 3970 . . . . . . . 8 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
157150, 156, 50ellimc3 25830 . . . . . . 7 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))))
1582, 157mpbid 232 . . . . . 6 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)))
159158simprd 495 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
160159r19.21bi 3234 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
161148, 160r19.29a 3148 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
162161ralrimiva 3132 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
16325, 154sstrdi 3971 . . 3 (𝜑𝐴 ⊆ ℂ)
164128, 163, 50ellimc3 25830 . 2 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
1653, 162, 164mpbir2and 713 1 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925  wss 3926  ifcif 4500   class class class wbr 5119  ran crn 5655  cres 5656  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  +∞cpnf 11264  -∞cmnf 11265  *cxr 11266   < clt 11267  cle 11268  cmin 11464  +crp 13006  (,)cioo 13360  abscabs 15251  TopOpenctopn 17433  topGenctg 17449  fldccnfld 21313   lim climc 25813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-fz 13523  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-mulr 17283  df-starv 17284  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-rest 17434  df-topn 17435  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cnp 23164  df-xms 24257  df-ms 24258  df-limc 25817
This theorem is referenced by:  limclr  45632
  Copyright terms: Public domain W3C validator