Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcleqr Structured version   Visualization version   GIF version

Theorem limcleqr 43185
Description: If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcleqr.k 𝐾 = (TopOpen‘ℂfld)
limcleqr.a (𝜑𝐴 ⊆ ℝ)
limcleqr.j 𝐽 = (topGen‘ran (,))
limcleqr.f (𝜑𝐹:𝐴⟶ℂ)
limcleqr.b (𝜑𝐵 ∈ ℝ)
limcleqr.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limcleqr.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limcleqr.leqr (𝜑𝐿 = 𝑅)
Assertion
Ref Expression
limcleqr (𝜑𝐿 ∈ (𝐹 lim 𝐵))

Proof of Theorem limcleqr
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25039 . . 3 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
2 limcleqr.l . . 3 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
31, 2sselid 3919 . 2 (𝜑𝐿 ∈ ℂ)
4 simp-4r 781 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑎 ∈ ℝ+)
5 simplr 766 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑏 ∈ ℝ+)
64, 5ifcld 4505 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
7 nfv 1917 . . . . . . . . . . 11 𝑧(𝜑𝑥 ∈ ℝ+)
8 nfv 1917 . . . . . . . . . . 11 𝑧 𝑎 ∈ ℝ+
97, 8nfan 1902 . . . . . . . . . 10 𝑧((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+)
10 nfra1 3144 . . . . . . . . . 10 𝑧𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
119, 10nfan 1902 . . . . . . . . 9 𝑧(((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
12 nfv 1917 . . . . . . . . 9 𝑧 𝑏 ∈ ℝ+
1311, 12nfan 1902 . . . . . . . 8 𝑧((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+)
14 nfra1 3144 . . . . . . . 8 𝑧𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
1513, 14nfan 1902 . . . . . . 7 𝑧(((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
16 simp-6l 784 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝜑)
17163ad2antl1 1184 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝜑)
18 simpl2 1191 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐴)
19 simpr 485 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 < 𝐵)
20 mnfxr 11032 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ ∈ ℝ*)
22 limcleqr.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2322rexrd 11025 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
24233ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝐵 ∈ ℝ*)
25 limcleqr.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
2625sselda 3921 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
27263adant3 1131 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ ℝ)
2827mnfltd 12860 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ < 𝑧)
29 simp3 1137 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 < 𝐵)
3021, 24, 27, 28, 29eliood 43036 . . . . . . . . . . . 12 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
3117, 18, 19, 30syl3anc 1370 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
32 fvres 6793 . . . . . . . . . . . . . 14 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑧) = (𝐹𝑧))
3332oveq1d 7290 . . . . . . . . . . . . 13 (𝑧 ∈ (-∞(,)𝐵) → (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿) = ((𝐹𝑧) − 𝐿))
3433eqcomd 2744 . . . . . . . . . . . 12 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹𝑧) − 𝐿) = (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿))
3534fveq2d 6778 . . . . . . . . . . 11 (𝑧 ∈ (-∞(,)𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
3631, 35syl 17 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
37 simp-4r 781 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
38373ad2antl1 1184 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
3918, 31elind 4128 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵)))
4038, 39jca 512 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))))
41 simpl3l 1227 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐵)
424adantr 481 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
43423ad2antl1 1184 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
445adantr 481 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
45443ad2antl1 1184 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
46 simpl3r 1228 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
47 simpl1 1190 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝜑)
48 simprr 770 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑧𝐴)
4926recnd 11003 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
5022recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
5150adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝐵 ∈ ℂ)
5249, 51subcld 11332 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝑧𝐵) ∈ ℂ)
5352abscld 15148 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → (abs‘(𝑧𝐵)) ∈ ℝ)
5447, 48, 53syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) ∈ ℝ)
55 rpre 12738 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
5655adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
57 rpre 12738 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
5857adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
5956, 58ifcld 4505 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593adant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
6160adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
62563adant1 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
6362adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑎 ∈ ℝ)
64 simprl 768 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
65583adant1 1129 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
66 min1 12923 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6762, 65, 66syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6867adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6954, 61, 63, 64, 68ltletrd 11135 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑎)
7017, 43, 45, 46, 18, 69syl32anc 1377 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < 𝑎)
7141, 70jca 512 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎))
72 rspa 3132 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
7340, 71, 72sylc 65 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
7436, 73eqbrtrd 5096 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
75 simp-6l 784 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
76753ad2antl1 1184 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
7776, 22syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 ∈ ℝ)
78 simpl2 1191 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧𝐴)
7976, 78, 26syl2anc 584 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧 ∈ ℝ)
80 id 22 . . . . . . . . . . . . . 14 (𝑧𝐵𝑧𝐵)
8180necomd 2999 . . . . . . . . . . . . 13 (𝑧𝐵𝐵𝑧)
8281ad2antrr 723 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
83823ad2antl3 1186 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
84 simpr 485 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → ¬ 𝑧 < 𝐵)
8577, 79, 83, 84lttri5d 42838 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 < 𝑧)
86 simp-6l 784 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝜑)
87863ad2antl1 1184 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝜑)
88 simpl2 1191 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐴)
89 simpr 485 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝐵 < 𝑧)
90233ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 ∈ ℝ*)
91 pnfxr 11029 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
9291a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → +∞ ∈ ℝ*)
93263adant3 1131 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ ℝ)
94 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 < 𝑧)
9593ltpnfd 12857 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 < +∞)
9690, 92, 93, 94, 95eliood 43036 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
9787, 88, 89, 96syl3anc 1370 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
98 fvres 6793 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐵(,)+∞) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑧) = (𝐹𝑧))
9998eqcomd 2744 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵(,)+∞) → (𝐹𝑧) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑧))
10099fvoveq1d 7297 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)+∞) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
10197, 100syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
102 simpl1r 1224 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
10388, 97elind 4128 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞)))
104102, 103jca 512 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))))
105 simpl3l 1227 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐵)
1064adantr 481 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1071063ad2antl1 1184 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1085adantr 481 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
1091083ad2antl1 1184 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
110 simpl3r 1228 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
11165adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑏 ∈ ℝ)
112 min2 12924 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11362, 65, 112syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
114113adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11554, 61, 111, 64, 114ltletrd 11135 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑏)
11687, 107, 109, 110, 88, 115syl32anc 1377 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < 𝑏)
117105, 116jca 512 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏))
118 rspa 3132 . . . . . . . . . . . 12 ((∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
119104, 117, 118sylc 65 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
120101, 119eqbrtrd 5096 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12185, 120syldan 591 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12274, 121pm2.61dan 810 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
1231223exp 1118 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
12415, 123ralrimi 3141 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
125 brimralrspcev 5135 . . . . . 6 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
1266, 124, 125syl2anc 584 . . . . 5 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
127 limcleqr.r . . . . . . . . . 10 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
128 limcleqr.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
129 fresin 6643 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
130128, 129syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
131 inss2 4163 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
132 ioosscn 13141 . . . . . . . . . . . . 13 (𝐵(,)+∞) ⊆ ℂ
133131, 132sstri 3930 . . . . . . . . . . . 12 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
134133a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
135130, 134, 50ellimc3 25043 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))))
136127, 135mpbid 231 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
137136simprd 496 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
138137r19.21bi 3134 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
139 limcleqr.leqr . . . . . . . . . . . . 13 (𝜑𝐿 = 𝑅)
140139oveq2d 7291 . . . . . . . . . . . 12 (𝜑 → (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿) = (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅))
141140fveq2d 6778 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)))
142141breq1d 5084 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥 ↔ (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
143142imbi2d 341 . . . . . . . . 9 (𝜑 → (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
144143rexralbidv 3230 . . . . . . . 8 (𝜑 → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
145144adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
146138, 145mpbird 256 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
147146ad2antrr 723 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
148126, 147r19.29a 3218 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
149 fresin 6643 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
150128, 149syl 17 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
151 inss2 4163 . . . . . . . . . 10 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
152 ioossre 13140 . . . . . . . . . 10 (-∞(,)𝐵) ⊆ ℝ
153151, 152sstri 3930 . . . . . . . . 9 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
154 ax-resscn 10928 . . . . . . . . . 10 ℝ ⊆ ℂ
155154a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
156153, 155sstrid 3932 . . . . . . . 8 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
157150, 156, 50ellimc3 25043 . . . . . . 7 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))))
1582, 157mpbid 231 . . . . . 6 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)))
159158simprd 496 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
160159r19.21bi 3134 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
161148, 160r19.29a 3218 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
162161ralrimiva 3103 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
16325, 154sstrdi 3933 . . 3 (𝜑𝐴 ⊆ ℂ)
164128, 163, 50ellimc3 25043 . 2 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
1653, 162, 164mpbir2and 710 1 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  ifcif 4459   class class class wbr 5074  ran crn 5590  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  cmin 11205  +crp 12730  (,)cioo 13079  abscabs 14945  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030
This theorem is referenced by:  limclr  43196
  Copyright terms: Public domain W3C validator