Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcleqr Structured version   Visualization version   GIF version

Theorem limcleqr 41790
Description: If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcleqr.k 𝐾 = (TopOpen‘ℂfld)
limcleqr.a (𝜑𝐴 ⊆ ℝ)
limcleqr.j 𝐽 = (topGen‘ran (,))
limcleqr.f (𝜑𝐹:𝐴⟶ℂ)
limcleqr.b (𝜑𝐵 ∈ ℝ)
limcleqr.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limcleqr.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limcleqr.leqr (𝜑𝐿 = 𝑅)
Assertion
Ref Expression
limcleqr (𝜑𝐿 ∈ (𝐹 lim 𝐵))

Proof of Theorem limcleqr
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 24388 . . 3 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
2 limcleqr.l . . 3 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
31, 2sseldi 3969 . 2 (𝜑𝐿 ∈ ℂ)
4 simp-4r 780 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑎 ∈ ℝ+)
5 simplr 765 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑏 ∈ ℝ+)
64, 5ifcld 4515 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
7 nfv 1908 . . . . . . . . . . 11 𝑧(𝜑𝑥 ∈ ℝ+)
8 nfv 1908 . . . . . . . . . . 11 𝑧 𝑎 ∈ ℝ+
97, 8nfan 1893 . . . . . . . . . 10 𝑧((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+)
10 nfra1 3224 . . . . . . . . . 10 𝑧𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
119, 10nfan 1893 . . . . . . . . 9 𝑧(((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
12 nfv 1908 . . . . . . . . 9 𝑧 𝑏 ∈ ℝ+
1311, 12nfan 1893 . . . . . . . 8 𝑧((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+)
14 nfra1 3224 . . . . . . . 8 𝑧𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
1513, 14nfan 1893 . . . . . . 7 𝑧(((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
16 simp-6l 783 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝜑)
17163ad2antl1 1179 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝜑)
18 simpl2 1186 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐴)
19 simpr 485 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 < 𝐵)
20 mnfxr 10687 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ ∈ ℝ*)
22 limcleqr.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2322rexrd 10680 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
24233ad2ant1 1127 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝐵 ∈ ℝ*)
25 limcleqr.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
2625sselda 3971 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
27263adant3 1126 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ ℝ)
2827mnfltd 12509 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ < 𝑧)
29 simp3 1132 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 < 𝐵)
3021, 24, 27, 28, 29eliood 41638 . . . . . . . . . . . 12 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
3117, 18, 19, 30syl3anc 1365 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
32 fvres 6686 . . . . . . . . . . . . . 14 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑧) = (𝐹𝑧))
3332oveq1d 7163 . . . . . . . . . . . . 13 (𝑧 ∈ (-∞(,)𝐵) → (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿) = ((𝐹𝑧) − 𝐿))
3433eqcomd 2832 . . . . . . . . . . . 12 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹𝑧) − 𝐿) = (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿))
3534fveq2d 6671 . . . . . . . . . . 11 (𝑧 ∈ (-∞(,)𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
3631, 35syl 17 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
37 simp-4r 780 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
38373ad2antl1 1179 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
3918, 31elind 4175 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵)))
4038, 39jca 512 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))))
41 simpl3l 1222 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐵)
424adantr 481 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
43423ad2antl1 1179 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
445adantr 481 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
45443ad2antl1 1179 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
46 simpl3r 1223 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
47 simpl1 1185 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝜑)
48 simprr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑧𝐴)
4926recnd 10658 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
5022recnd 10658 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
5150adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝐵 ∈ ℂ)
5249, 51subcld 10986 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝑧𝐵) ∈ ℂ)
5352abscld 14786 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → (abs‘(𝑧𝐵)) ∈ ℝ)
5447, 48, 53syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) ∈ ℝ)
55 rpre 12387 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
5655adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
57 rpre 12387 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
5857adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
5956, 58ifcld 4515 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593adant1 1124 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
6160adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
62563adant1 1124 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
6362adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑎 ∈ ℝ)
64 simprl 767 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
65583adant1 1124 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
66 min1 12572 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6762, 65, 66syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6867adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6954, 61, 63, 64, 68ltletrd 10789 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑎)
7017, 43, 45, 46, 18, 69syl32anc 1372 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < 𝑎)
7141, 70jca 512 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎))
72 rspa 3211 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
7340, 71, 72sylc 65 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
7436, 73eqbrtrd 5085 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
75 simp-6l 783 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
76753ad2antl1 1179 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
7776, 22syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 ∈ ℝ)
78 simpl2 1186 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧𝐴)
7976, 78, 26syl2anc 584 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧 ∈ ℝ)
80 id 22 . . . . . . . . . . . . . 14 (𝑧𝐵𝑧𝐵)
8180necomd 3076 . . . . . . . . . . . . 13 (𝑧𝐵𝐵𝑧)
8281ad2antrr 722 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
83823ad2antl3 1181 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
84 simpr 485 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → ¬ 𝑧 < 𝐵)
8577, 79, 83, 84lttri5d 41431 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 < 𝑧)
86 simp-6l 783 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝜑)
87863ad2antl1 1179 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝜑)
88 simpl2 1186 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐴)
89 simpr 485 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝐵 < 𝑧)
90233ad2ant1 1127 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 ∈ ℝ*)
91 pnfxr 10684 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
9291a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → +∞ ∈ ℝ*)
93263adant3 1126 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ ℝ)
94 simp3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 < 𝑧)
9593ltpnfd 12506 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 < +∞)
9690, 92, 93, 94, 95eliood 41638 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
9787, 88, 89, 96syl3anc 1365 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
98 fvres 6686 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐵(,)+∞) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑧) = (𝐹𝑧))
9998eqcomd 2832 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵(,)+∞) → (𝐹𝑧) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑧))
10099fvoveq1d 7170 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)+∞) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
10197, 100syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
102 simpl1r 1219 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
10388, 97elind 4175 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞)))
104102, 103jca 512 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))))
105 simpl3l 1222 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐵)
1064adantr 481 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1071063ad2antl1 1179 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1085adantr 481 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
1091083ad2antl1 1179 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
110 simpl3r 1223 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
11165adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑏 ∈ ℝ)
112 min2 12573 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11362, 65, 112syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
114113adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11554, 61, 111, 64, 114ltletrd 10789 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑏)
11687, 107, 109, 110, 88, 115syl32anc 1372 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < 𝑏)
117105, 116jca 512 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏))
118 rspa 3211 . . . . . . . . . . . 12 ((∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
119104, 117, 118sylc 65 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
120101, 119eqbrtrd 5085 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12185, 120syldan 591 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12274, 121pm2.61dan 809 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
1231223exp 1113 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
12415, 123ralrimi 3221 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
125 brimralrspcev 5124 . . . . . 6 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
1266, 124, 125syl2anc 584 . . . . 5 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
127 limcleqr.r . . . . . . . . . 10 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
128 limcleqr.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
129 fresin 6544 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
130128, 129syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
131 inss2 4210 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
132 ioosscn 41634 . . . . . . . . . . . . 13 (𝐵(,)+∞) ⊆ ℂ
133131, 132sstri 3980 . . . . . . . . . . . 12 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
134133a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
135130, 134, 50ellimc3 24392 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))))
136127, 135mpbid 233 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
137136simprd 496 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
138137r19.21bi 3213 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
139 limcleqr.leqr . . . . . . . . . . . . 13 (𝜑𝐿 = 𝑅)
140139oveq2d 7164 . . . . . . . . . . . 12 (𝜑 → (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿) = (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅))
141140fveq2d 6671 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)))
142141breq1d 5073 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥 ↔ (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
143142imbi2d 342 . . . . . . . . 9 (𝜑 → (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
144143rexralbidv 3306 . . . . . . . 8 (𝜑 → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
145144adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
146138, 145mpbird 258 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
147146ad2antrr 722 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
148126, 147r19.29a 3294 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
149 fresin 6544 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
150128, 149syl 17 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
151 inss2 4210 . . . . . . . . . 10 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
152 ioossre 12788 . . . . . . . . . 10 (-∞(,)𝐵) ⊆ ℝ
153151, 152sstri 3980 . . . . . . . . 9 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
154 ax-resscn 10583 . . . . . . . . . 10 ℝ ⊆ ℂ
155154a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
156153, 155sstrid 3982 . . . . . . . 8 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
157150, 156, 50ellimc3 24392 . . . . . . 7 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))))
1582, 157mpbid 233 . . . . . 6 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)))
159158simprd 496 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
160159r19.21bi 3213 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
161148, 160r19.29a 3294 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
162161ralrimiva 3187 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
16325, 154syl6ss 3983 . . 3 (𝜑𝐴 ⊆ ℂ)
164128, 163, 50ellimc3 24392 . 2 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
1653, 162, 164mpbir2and 709 1 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  cin 3939  wss 3940  ifcif 4470   class class class wbr 5063  ran crn 5555  cres 5556  wf 6348  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859  +crp 12379  (,)cioo 12728  abscabs 14583  TopOpenctopn 16685  topGenctg 16701  fldccnfld 20461   lim climc 24375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fi 8864  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-fz 12883  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-starv 16570  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-rest 16686  df-topn 16687  df-topgen 16707  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cnp 21752  df-xms 22845  df-ms 22846  df-limc 24379
This theorem is referenced by:  limclr  41801
  Copyright terms: Public domain W3C validator