Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcleqr Structured version   Visualization version   GIF version

Theorem limcleqr 40784
Description: If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcleqr.k 𝐾 = (TopOpen‘ℂfld)
limcleqr.a (𝜑𝐴 ⊆ ℝ)
limcleqr.j 𝐽 = (topGen‘ran (,))
limcleqr.f (𝜑𝐹:𝐴⟶ℂ)
limcleqr.b (𝜑𝐵 ∈ ℝ)
limcleqr.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limcleqr.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limcleqr.leqr (𝜑𝐿 = 𝑅)
Assertion
Ref Expression
limcleqr (𝜑𝐿 ∈ (𝐹 lim 𝐵))

Proof of Theorem limcleqr
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 24076 . . 3 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
2 limcleqr.l . . 3 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
31, 2sseldi 3819 . 2 (𝜑𝐿 ∈ ℂ)
4 simp-4r 774 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑎 ∈ ℝ+)
5 simplr 759 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑏 ∈ ℝ+)
64, 5ifcld 4352 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
7 nfv 1957 . . . . . . . . . . 11 𝑧(𝜑𝑥 ∈ ℝ+)
8 nfv 1957 . . . . . . . . . . 11 𝑧 𝑎 ∈ ℝ+
97, 8nfan 1946 . . . . . . . . . 10 𝑧((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+)
10 nfra1 3123 . . . . . . . . . 10 𝑧𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
119, 10nfan 1946 . . . . . . . . 9 𝑧(((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
12 nfv 1957 . . . . . . . . 9 𝑧 𝑏 ∈ ℝ+
1311, 12nfan 1946 . . . . . . . 8 𝑧((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+)
14 nfra1 3123 . . . . . . . 8 𝑧𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
1513, 14nfan 1946 . . . . . . 7 𝑧(((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
16 simp-6l 777 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝜑)
17163ad2antl1 1193 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝜑)
18 simpl2 1201 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐴)
19 simpr 479 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 < 𝐵)
20 mnfxr 10434 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ ∈ ℝ*)
22 limcleqr.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2322rexrd 10426 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
24233ad2ant1 1124 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝐵 ∈ ℝ*)
25 limcleqr.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
2625sselda 3821 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
27263adant3 1123 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ ℝ)
2827mnfltd 12269 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ < 𝑧)
29 simp3 1129 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 < 𝐵)
3021, 24, 27, 28, 29eliood 40632 . . . . . . . . . . . 12 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
3117, 18, 19, 30syl3anc 1439 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
32 fvres 6465 . . . . . . . . . . . . . 14 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑧) = (𝐹𝑧))
3332oveq1d 6937 . . . . . . . . . . . . 13 (𝑧 ∈ (-∞(,)𝐵) → (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿) = ((𝐹𝑧) − 𝐿))
3433eqcomd 2784 . . . . . . . . . . . 12 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹𝑧) − 𝐿) = (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿))
3534fveq2d 6450 . . . . . . . . . . 11 (𝑧 ∈ (-∞(,)𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
3631, 35syl 17 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
37 simp-4r 774 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
38373ad2antl1 1193 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
3918, 31elind 4021 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵)))
4038, 39jca 507 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))))
41 simpl3l 1258 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐵)
424adantr 474 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
43423ad2antl1 1193 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
445adantr 474 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
45443ad2antl1 1193 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
46 simpl3r 1260 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
47 simpl1 1199 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝜑)
48 simprr 763 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑧𝐴)
4926recnd 10405 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
5022recnd 10405 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
5150adantr 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝐵 ∈ ℂ)
5249, 51subcld 10734 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝑧𝐵) ∈ ℂ)
5352abscld 14583 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → (abs‘(𝑧𝐵)) ∈ ℝ)
5447, 48, 53syl2anc 579 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) ∈ ℝ)
55 rpre 12145 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
5655adantr 474 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
57 rpre 12145 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
5857adantl 475 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
5956, 58ifcld 4352 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593adant1 1121 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
6160adantr 474 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
62563adant1 1121 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
6362adantr 474 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑎 ∈ ℝ)
64 simprl 761 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
65583adant1 1121 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
66 min1 12332 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6762, 65, 66syl2anc 579 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6867adantr 474 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6954, 61, 63, 64, 68ltletrd 10536 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑎)
7017, 43, 45, 46, 18, 69syl32anc 1446 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < 𝑎)
7141, 70jca 507 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎))
72 rspa 3112 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
7340, 71, 72sylc 65 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
7436, 73eqbrtrd 4908 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
75 simp-6l 777 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
76753ad2antl1 1193 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
7776, 22syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 ∈ ℝ)
78 simpl2 1201 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧𝐴)
7976, 78, 26syl2anc 579 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧 ∈ ℝ)
80 id 22 . . . . . . . . . . . . . 14 (𝑧𝐵𝑧𝐵)
8180necomd 3024 . . . . . . . . . . . . 13 (𝑧𝐵𝐵𝑧)
8281ad2antrr 716 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
83823ad2antl3 1195 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
84 simpr 479 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → ¬ 𝑧 < 𝐵)
8577, 79, 83, 84lttri5d 40422 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 < 𝑧)
86 simp-6l 777 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝜑)
87863ad2antl1 1193 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝜑)
88 simpl2 1201 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐴)
89 simpr 479 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝐵 < 𝑧)
90233ad2ant1 1124 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 ∈ ℝ*)
91 pnfxr 10430 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
9291a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → +∞ ∈ ℝ*)
93263adant3 1123 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ ℝ)
94 simp3 1129 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 < 𝑧)
9593ltpnfd 12266 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 < +∞)
9690, 92, 93, 94, 95eliood 40632 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
9787, 88, 89, 96syl3anc 1439 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
98 fvres 6465 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐵(,)+∞) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑧) = (𝐹𝑧))
9998eqcomd 2784 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵(,)+∞) → (𝐹𝑧) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑧))
10099fvoveq1d 6944 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)+∞) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
10197, 100syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
102 simpl1r 1252 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
10388, 97elind 4021 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞)))
104102, 103jca 507 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))))
105 simpl3l 1258 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐵)
1064adantr 474 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1071063ad2antl1 1193 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1085adantr 474 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
1091083ad2antl1 1193 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
110 simpl3r 1260 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
11165adantr 474 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑏 ∈ ℝ)
112 min2 12333 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11362, 65, 112syl2anc 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
114113adantr 474 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11554, 61, 111, 64, 114ltletrd 10536 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑏)
11687, 107, 109, 110, 88, 115syl32anc 1446 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < 𝑏)
117105, 116jca 507 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏))
118 rspa 3112 . . . . . . . . . . . 12 ((∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
119104, 117, 118sylc 65 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
120101, 119eqbrtrd 4908 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12185, 120syldan 585 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12274, 121pm2.61dan 803 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
1231223exp 1109 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
12415, 123ralrimi 3139 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
125 brimralrspcev 4947 . . . . . 6 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
1266, 124, 125syl2anc 579 . . . . 5 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
127 limcleqr.r . . . . . . . . . 10 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
128 limcleqr.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
129 fresin 6323 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
130128, 129syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
131 inss2 4054 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
132 ioosscn 40628 . . . . . . . . . . . . 13 (𝐵(,)+∞) ⊆ ℂ
133131, 132sstri 3830 . . . . . . . . . . . 12 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
134133a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
135130, 134, 50ellimc3 24080 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))))
136127, 135mpbid 224 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
137136simprd 491 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
138137r19.21bi 3114 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
139 limcleqr.leqr . . . . . . . . . . . . 13 (𝜑𝐿 = 𝑅)
140139oveq2d 6938 . . . . . . . . . . . 12 (𝜑 → (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿) = (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅))
141140fveq2d 6450 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)))
142141breq1d 4896 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥 ↔ (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
143142imbi2d 332 . . . . . . . . 9 (𝜑 → (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
144143rexralbidv 3243 . . . . . . . 8 (𝜑 → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
145144adantr 474 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
146138, 145mpbird 249 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
147146ad2antrr 716 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
148126, 147r19.29a 3264 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
149 fresin 6323 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
150128, 149syl 17 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
151 inss2 4054 . . . . . . . . . 10 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
152 ioossre 12547 . . . . . . . . . 10 (-∞(,)𝐵) ⊆ ℝ
153151, 152sstri 3830 . . . . . . . . 9 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
154 ax-resscn 10329 . . . . . . . . . 10 ℝ ⊆ ℂ
155154a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
156153, 155syl5ss 3832 . . . . . . . 8 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
157150, 156, 50ellimc3 24080 . . . . . . 7 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))))
1582, 157mpbid 224 . . . . . 6 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)))
159158simprd 491 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
160159r19.21bi 3114 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
161148, 160r19.29a 3264 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
162161ralrimiva 3148 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
16325, 154syl6ss 3833 . . 3 (𝜑𝐴 ⊆ ℂ)
164128, 163, 50ellimc3 24080 . 2 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
1653, 162, 164mpbir2and 703 1 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  cin 3791  wss 3792  ifcif 4307   class class class wbr 4886  ran crn 5356  cres 5357  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  +∞cpnf 10408  -∞cmnf 10409  *cxr 10410   < clt 10411  cle 10412  cmin 10606  +crp 12137  (,)cioo 12487  abscabs 14381  TopOpenctopn 16468  topGenctg 16484  fldccnfld 20142   lim climc 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fi 8605  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-fz 12644  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-rest 16469  df-topn 16470  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cnp 21440  df-xms 22533  df-ms 22534  df-limc 24067
This theorem is referenced by:  limclr  40795
  Copyright terms: Public domain W3C validator