Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcleqr Structured version   Visualization version   GIF version

Theorem limcleqr 45565
Description: If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcleqr.k 𝐾 = (TopOpen‘ℂfld)
limcleqr.a (𝜑𝐴 ⊆ ℝ)
limcleqr.j 𝐽 = (topGen‘ran (,))
limcleqr.f (𝜑𝐹:𝐴⟶ℂ)
limcleqr.b (𝜑𝐵 ∈ ℝ)
limcleqr.l (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
limcleqr.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
limcleqr.leqr (𝜑𝐿 = 𝑅)
Assertion
Ref Expression
limcleqr (𝜑𝐿 ∈ (𝐹 lim 𝐵))

Proof of Theorem limcleqr
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25930 . . 3 ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ⊆ ℂ
2 limcleqr.l . . 3 (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵))
31, 2sselid 4006 . 2 (𝜑𝐿 ∈ ℂ)
4 simp-4r 783 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑎 ∈ ℝ+)
5 simplr 768 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → 𝑏 ∈ ℝ+)
64, 5ifcld 4594 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+)
7 nfv 1913 . . . . . . . . . . 11 𝑧(𝜑𝑥 ∈ ℝ+)
8 nfv 1913 . . . . . . . . . . 11 𝑧 𝑎 ∈ ℝ+
97, 8nfan 1898 . . . . . . . . . 10 𝑧((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+)
10 nfra1 3290 . . . . . . . . . 10 𝑧𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
119, 10nfan 1898 . . . . . . . . 9 𝑧(((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
12 nfv 1913 . . . . . . . . 9 𝑧 𝑏 ∈ ℝ+
1311, 12nfan 1898 . . . . . . . 8 𝑧((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+)
14 nfra1 3290 . . . . . . . 8 𝑧𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
1513, 14nfan 1898 . . . . . . 7 𝑧(((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
16 simp-6l 786 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝜑)
17163ad2antl1 1185 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝜑)
18 simpl2 1192 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐴)
19 simpr 484 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 < 𝐵)
20 mnfxr 11347 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ ∈ ℝ*)
22 limcleqr.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2322rexrd 11340 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
24233ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝐵 ∈ ℝ*)
25 limcleqr.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
2625sselda 4008 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ)
27263adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ ℝ)
2827mnfltd 13187 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → -∞ < 𝑧)
29 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 < 𝐵)
3021, 24, 27, 28, 29eliood 45416 . . . . . . . . . . . 12 ((𝜑𝑧𝐴𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
3117, 18, 19, 30syl3anc 1371 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (-∞(,)𝐵))
32 fvres 6939 . . . . . . . . . . . . . 14 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹 ↾ (-∞(,)𝐵))‘𝑧) = (𝐹𝑧))
3332oveq1d 7463 . . . . . . . . . . . . 13 (𝑧 ∈ (-∞(,)𝐵) → (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿) = ((𝐹𝑧) − 𝐿))
3433eqcomd 2746 . . . . . . . . . . . 12 (𝑧 ∈ (-∞(,)𝐵) → ((𝐹𝑧) − 𝐿) = (((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿))
3534fveq2d 6924 . . . . . . . . . . 11 (𝑧 ∈ (-∞(,)𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
3631, 35syl 17 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)))
37 simp-4r 783 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
38373ad2antl1 1185 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
3918, 31elind 4223 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵)))
4038, 39jca 511 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))))
41 simpl3l 1228 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑧𝐵)
424adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
43423ad2antl1 1185 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑎 ∈ ℝ+)
445adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
45443ad2antl1 1185 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → 𝑏 ∈ ℝ+)
46 simpl3r 1229 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
47 simpl1 1191 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝜑)
48 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑧𝐴)
4926recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
5022recnd 11318 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
5150adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝐴) → 𝐵 ∈ ℂ)
5249, 51subcld 11647 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝑧𝐵) ∈ ℂ)
5352abscld 15485 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → (abs‘(𝑧𝐵)) ∈ ℝ)
5447, 48, 53syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) ∈ ℝ)
55 rpre 13065 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
57 rpre 13065 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℝ+𝑏 ∈ ℝ)
5857adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
5956, 58ifcld 4594 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
60593adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
6160adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ)
62563adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑎 ∈ ℝ)
6362adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑎 ∈ ℝ)
64 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
65583adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → 𝑏 ∈ ℝ)
66 min1 13251 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6762, 65, 66syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6867adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑎)
6954, 61, 63, 64, 68ltletrd 11450 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑎)
7017, 43, 45, 46, 18, 69syl32anc 1378 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(𝑧𝐵)) < 𝑎)
7141, 70jca 511 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎))
72 rspa 3254 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
7340, 71, 72sylc 65 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)
7436, 73eqbrtrd 5188 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
75 simp-6l 786 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
76753ad2antl1 1185 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝜑)
7776, 22syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 ∈ ℝ)
78 simpl2 1192 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧𝐴)
7976, 78, 26syl2anc 583 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝑧 ∈ ℝ)
80 id 22 . . . . . . . . . . . . . 14 (𝑧𝐵𝑧𝐵)
8180necomd 3002 . . . . . . . . . . . . 13 (𝑧𝐵𝐵𝑧)
8281ad2antrr 725 . . . . . . . . . . . 12 (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
83823ad2antl3 1187 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵𝑧)
84 simpr 484 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → ¬ 𝑧 < 𝐵)
8577, 79, 83, 84lttri5d 45214 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → 𝐵 < 𝑧)
86 simp-6l 786 . . . . . . . . . . . . . 14 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝜑)
87863ad2antl1 1185 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝜑)
88 simpl2 1192 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐴)
89 simpr 484 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝐵 < 𝑧)
90233ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 ∈ ℝ*)
91 pnfxr 11344 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
9291a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → +∞ ∈ ℝ*)
93263adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ ℝ)
94 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝐵 < 𝑧)
9593ltpnfd 13184 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 < +∞)
9690, 92, 93, 94, 95eliood 45416 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
9787, 88, 89, 96syl3anc 1371 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐵(,)+∞))
98 fvres 6939 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐵(,)+∞) → ((𝐹 ↾ (𝐵(,)+∞))‘𝑧) = (𝐹𝑧))
9998eqcomd 2746 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵(,)+∞) → (𝐹𝑧) = ((𝐹 ↾ (𝐵(,)+∞))‘𝑧))
10099fvoveq1d 7470 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵(,)+∞) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
10197, 100syl 17 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)))
102 simpl1r 1225 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
10388, 97elind 4223 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞)))
104102, 103jca 511 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))))
105 simpl3l 1228 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑧𝐵)
1064adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1071063ad2antl1 1185 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑎 ∈ ℝ+)
1085adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
1091083ad2antl1 1185 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → 𝑏 ∈ ℝ+)
110 simpl3r 1229 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))
11165adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → 𝑏 ∈ ℝ)
112 min2 13252 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11362, 65, 112syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
114113adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → if(𝑎𝑏, 𝑎, 𝑏) ≤ 𝑏)
11554, 61, 111, 64, 114ltletrd 11450 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ((abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏) ∧ 𝑧𝐴)) → (abs‘(𝑧𝐵)) < 𝑏)
11687, 107, 109, 110, 88, 115syl32anc 1378 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(𝑧𝐵)) < 𝑏)
117105, 116jca 511 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏))
118 rspa 3254 . . . . . . . . . . . 12 ((∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ∧ 𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))) → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
119104, 117, 118sylc 65 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)
120101, 119eqbrtrd 5188 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ 𝐵 < 𝑧) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12185, 120syldan 590 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) ∧ ¬ 𝑧 < 𝐵) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
12274, 121pm2.61dan 812 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑧𝐴 ∧ (𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏))) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)
1231223exp 1119 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → (𝑧𝐴 → ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)))
12415, 123ralrimi 3263 . . . . . 6 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
125 brimralrspcev 5227 . . . . . 6 ((if(𝑎𝑏, 𝑎, 𝑏) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < if(𝑎𝑏, 𝑎, 𝑏)) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
1266, 124, 125syl2anc 583 . . . . 5 ((((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) ∧ 𝑏 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
127 limcleqr.r . . . . . . . . . 10 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵))
128 limcleqr.f . . . . . . . . . . . 12 (𝜑𝐹:𝐴⟶ℂ)
129 fresin 6790 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
130128, 129syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐵(,)+∞)):(𝐴 ∩ (𝐵(,)+∞))⟶ℂ)
131 inss2 4259 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵(,)+∞)) ⊆ (𝐵(,)+∞)
132 ioosscn 13469 . . . . . . . . . . . . 13 (𝐵(,)+∞) ⊆ ℂ
133131, 132sstri 4018 . . . . . . . . . . . 12 (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ
134133a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (𝐵(,)+∞)) ⊆ ℂ)
135130, 134, 50ellimc3 25934 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) lim 𝐵) ↔ (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))))
136127, 135mpbid 232 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
137136simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
138137r19.21bi 3257 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
139 limcleqr.leqr . . . . . . . . . . . . 13 (𝜑𝐿 = 𝑅)
140139oveq2d 7464 . . . . . . . . . . . 12 (𝜑 → (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿) = (((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅))
141140fveq2d 6924 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) = (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)))
142141breq1d 5176 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥 ↔ (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥))
143142imbi2d 340 . . . . . . . . 9 (𝜑 → (((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
144143rexralbidv 3229 . . . . . . . 8 (𝜑 → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
145144adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥) ↔ ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝑅)) < 𝑥)))
146138, 145mpbird 257 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
147146ad2antrr 725 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑏 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (𝐵(,)+∞))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑏) → (abs‘(((𝐹 ↾ (𝐵(,)+∞))‘𝑧) − 𝐿)) < 𝑥))
148126, 147r19.29a 3168 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ ∀𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
149 fresin 6790 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
150128, 149syl 17 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝐵)):(𝐴 ∩ (-∞(,)𝐵))⟶ℂ)
151 inss2 4259 . . . . . . . . . 10 (𝐴 ∩ (-∞(,)𝐵)) ⊆ (-∞(,)𝐵)
152 ioossre 13468 . . . . . . . . . 10 (-∞(,)𝐵) ⊆ ℝ
153151, 152sstri 4018 . . . . . . . . 9 (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℝ
154 ax-resscn 11241 . . . . . . . . . 10 ℝ ⊆ ℂ
155154a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
156153, 155sstrid 4020 . . . . . . . 8 (𝜑 → (𝐴 ∩ (-∞(,)𝐵)) ⊆ ℂ)
157150, 156, 50ellimc3 25934 . . . . . . 7 (𝜑 → (𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))))
1582, 157mpbid 232 . . . . . 6 (𝜑 → (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥)))
159158simprd 495 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
160159r19.21bi 3257 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑧 ∈ (𝐴 ∩ (-∞(,)𝐵))((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑎) → (abs‘(((𝐹 ↾ (-∞(,)𝐵))‘𝑧) − 𝐿)) < 𝑥))
161148, 160r19.29a 3168 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
162161ralrimiva 3152 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))
16325, 154sstrdi 4021 . . 3 (𝜑𝐴 ⊆ ℂ)
164128, 163, 50ellimc3 25934 . 2 (𝜑 → (𝐿 ∈ (𝐹 lim 𝐵) ↔ (𝐿 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐿)) < 𝑥))))
1653, 162, 164mpbir2and 712 1 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  ifcif 4548   class class class wbr 5166  ran crn 5701  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520  +crp 13057  (,)cioo 13407  abscabs 15283  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cnp 23257  df-xms 24351  df-ms 24352  df-limc 25921
This theorem is referenced by:  limclr  45576
  Copyright terms: Public domain W3C validator