MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheibor Structured version   Visualization version   GIF version

Theorem cnheibor 24462
Description: Heine-Borel theorem for complex numbers. A subset of β„‚ is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpenβ€˜β„‚fld)
cnheibor.3 𝑇 = (𝐽 β†Ύt 𝑋)
Assertion
Ref Expression
cnheibor (𝑋 βŠ† β„‚ β†’ (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsdβ€˜π½) ∧ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ)))
Distinct variable groups:   π‘₯,π‘Ÿ,𝑇   𝐽,π‘Ÿ,π‘₯   𝑋,π‘Ÿ,π‘₯

Proof of Theorem cnheibor
Dummy variables 𝑧 𝑒 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpenβ€˜β„‚fld)
21cnfldhaus 24292 . . . 4 𝐽 ∈ Haus
3 simpl 483 . . . 4 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ 𝑋 βŠ† β„‚)
4 cnheibor.3 . . . . 5 𝑇 = (𝐽 β†Ύt 𝑋)
5 simpr 485 . . . . 5 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ 𝑇 ∈ Comp)
64, 5eqeltrrid 2838 . . . 4 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ (𝐽 β†Ύt 𝑋) ∈ Comp)
71cnfldtopon 24290 . . . . . 6 𝐽 ∈ (TopOnβ€˜β„‚)
87toponunii 22409 . . . . 5 β„‚ = βˆͺ 𝐽
98hauscmp 22902 . . . 4 ((𝐽 ∈ Haus ∧ 𝑋 βŠ† β„‚ ∧ (𝐽 β†Ύt 𝑋) ∈ Comp) β†’ 𝑋 ∈ (Clsdβ€˜π½))
102, 3, 6, 9mp3an2i 1466 . . 3 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ 𝑋 ∈ (Clsdβ€˜π½))
111cnfldtop 24291 . . . . . . . . . . 11 𝐽 ∈ Top
128restuni 22657 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 βŠ† β„‚) β†’ 𝑋 = βˆͺ (𝐽 β†Ύt 𝑋))
1311, 3, 12sylancr 587 . . . . . . . . . 10 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ 𝑋 = βˆͺ (𝐽 β†Ύt 𝑋))
144unieqi 4920 . . . . . . . . . 10 βˆͺ 𝑇 = βˆͺ (𝐽 β†Ύt 𝑋)
1513, 14eqtr4di 2790 . . . . . . . . 9 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ 𝑋 = βˆͺ 𝑇)
1615eleq2d 2819 . . . . . . . 8 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ (π‘₯ ∈ 𝑋 ↔ π‘₯ ∈ βˆͺ 𝑇))
1716biimpar 478 . . . . . . 7 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ βˆͺ 𝑇) β†’ π‘₯ ∈ 𝑋)
18 cnex 11187 . . . . . . . . . . . 12 β„‚ ∈ V
19 ssexg 5322 . . . . . . . . . . . 12 ((𝑋 βŠ† β„‚ ∧ β„‚ ∈ V) β†’ 𝑋 ∈ V)
203, 18, 19sylancl 586 . . . . . . . . . . 11 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ 𝑋 ∈ V)
2120adantr 481 . . . . . . . . . 10 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ 𝑋 ∈ V)
22 cnxmet 24280 . . . . . . . . . . 11 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
23 0cnd 11203 . . . . . . . . . . 11 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ 0 ∈ β„‚)
243sselda 3981 . . . . . . . . . . . . . 14 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ β„‚)
2524abscld 15379 . . . . . . . . . . . . 13 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ (absβ€˜π‘₯) ∈ ℝ)
26 peano2re 11383 . . . . . . . . . . . . 13 ((absβ€˜π‘₯) ∈ ℝ β†’ ((absβ€˜π‘₯) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . . . 12 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ ((absβ€˜π‘₯) + 1) ∈ ℝ)
2827rexrd 11260 . . . . . . . . . . 11 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ ((absβ€˜π‘₯) + 1) ∈ ℝ*)
291cnfldtopn 24289 . . . . . . . . . . . 12 𝐽 = (MetOpenβ€˜(abs ∘ βˆ’ ))
3029blopn 24000 . . . . . . . . . . 11 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ ((absβ€˜π‘₯) + 1) ∈ ℝ*) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∈ 𝐽)
3122, 23, 28, 30mp3an2i 1466 . . . . . . . . . 10 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∈ 𝐽)
32 elrestr 17370 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 ∈ V ∧ (0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∈ 𝐽) β†’ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) ∈ (𝐽 β†Ύt 𝑋))
3311, 21, 31, 32mp3an2i 1466 . . . . . . . . 9 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) ∈ (𝐽 β†Ύt 𝑋))
3433, 4eleqtrrdi 2844 . . . . . . . 8 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) ∈ 𝑇)
35 0cn 11202 . . . . . . . . . . . . . 14 0 ∈ β„‚
36 eqid 2732 . . . . . . . . . . . . . . 15 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
3736cnmetdval 24278 . . . . . . . . . . . . . 14 ((0 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ (0(abs ∘ βˆ’ )π‘₯) = (absβ€˜(0 βˆ’ π‘₯)))
3835, 37mpan 688 . . . . . . . . . . . . 13 (π‘₯ ∈ β„‚ β†’ (0(abs ∘ βˆ’ )π‘₯) = (absβ€˜(0 βˆ’ π‘₯)))
39 df-neg 11443 . . . . . . . . . . . . . . 15 -π‘₯ = (0 βˆ’ π‘₯)
4039fveq2i 6891 . . . . . . . . . . . . . 14 (absβ€˜-π‘₯) = (absβ€˜(0 βˆ’ π‘₯))
41 absneg 15220 . . . . . . . . . . . . . 14 (π‘₯ ∈ β„‚ β†’ (absβ€˜-π‘₯) = (absβ€˜π‘₯))
4240, 41eqtr3id 2786 . . . . . . . . . . . . 13 (π‘₯ ∈ β„‚ β†’ (absβ€˜(0 βˆ’ π‘₯)) = (absβ€˜π‘₯))
4338, 42eqtrd 2772 . . . . . . . . . . . 12 (π‘₯ ∈ β„‚ β†’ (0(abs ∘ βˆ’ )π‘₯) = (absβ€˜π‘₯))
4424, 43syl 17 . . . . . . . . . . 11 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ (0(abs ∘ βˆ’ )π‘₯) = (absβ€˜π‘₯))
4525ltp1d 12140 . . . . . . . . . . 11 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ (absβ€˜π‘₯) < ((absβ€˜π‘₯) + 1))
4644, 45eqbrtrd 5169 . . . . . . . . . 10 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ (0(abs ∘ βˆ’ )π‘₯) < ((absβ€˜π‘₯) + 1))
47 elbl 23885 . . . . . . . . . . 11 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ ((absβ€˜π‘₯) + 1) ∈ ℝ*) β†’ (π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ↔ (π‘₯ ∈ β„‚ ∧ (0(abs ∘ βˆ’ )π‘₯) < ((absβ€˜π‘₯) + 1))))
4822, 23, 28, 47mp3an2i 1466 . . . . . . . . . 10 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ↔ (π‘₯ ∈ β„‚ ∧ (0(abs ∘ βˆ’ )π‘₯) < ((absβ€˜π‘₯) + 1))))
4924, 46, 48mpbir2and 711 . . . . . . . . 9 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)))
50 simpr 485 . . . . . . . . 9 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ 𝑋)
5149, 50elind 4193 . . . . . . . 8 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋))
5224absge0d 15387 . . . . . . . . . 10 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ 0 ≀ (absβ€˜π‘₯))
5325, 52ge0p1rpd 13042 . . . . . . . . 9 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ ((absβ€˜π‘₯) + 1) ∈ ℝ+)
54 eqid 2732 . . . . . . . . 9 ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋)
55 oveq2 7413 . . . . . . . . . . 11 (π‘Ÿ = ((absβ€˜π‘₯) + 1) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = (0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)))
5655ineq1d 4210 . . . . . . . . . 10 (π‘Ÿ = ((absβ€˜π‘₯) + 1) β†’ ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋))
5756rspceeqv 3632 . . . . . . . . 9 ((((absβ€˜π‘₯) + 1) ∈ ℝ+ ∧ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋))
5853, 54, 57sylancl 586 . . . . . . . 8 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ βˆƒπ‘Ÿ ∈ ℝ+ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋))
59 eleq2 2822 . . . . . . . . . 10 (𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) β†’ (π‘₯ ∈ 𝑒 ↔ π‘₯ ∈ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋)))
60 eqeq1 2736 . . . . . . . . . . 11 (𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) β†’ (𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) ↔ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋)))
6160rexbidv 3178 . . . . . . . . . 10 (𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) β†’ (βˆƒπ‘Ÿ ∈ ℝ+ 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) ↔ βˆƒπ‘Ÿ ∈ ℝ+ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋)))
6259, 61anbi12d 631 . . . . . . . . 9 (𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) β†’ ((π‘₯ ∈ 𝑒 ∧ βˆƒπ‘Ÿ ∈ ℝ+ 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋)) ↔ (π‘₯ ∈ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) ∧ βˆƒπ‘Ÿ ∈ ℝ+ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋))))
6362rspcev 3612 . . . . . . . 8 ((((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) ∈ 𝑇 ∧ (π‘₯ ∈ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) ∧ βˆƒπ‘Ÿ ∈ ℝ+ ((0(ballβ€˜(abs ∘ βˆ’ ))((absβ€˜π‘₯) + 1)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋))) β†’ βˆƒπ‘’ ∈ 𝑇 (π‘₯ ∈ 𝑒 ∧ βˆƒπ‘Ÿ ∈ ℝ+ 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋)))
6434, 51, 58, 63syl12anc 835 . . . . . . 7 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ 𝑋) β†’ βˆƒπ‘’ ∈ 𝑇 (π‘₯ ∈ 𝑒 ∧ βˆƒπ‘Ÿ ∈ ℝ+ 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋)))
6517, 64syldan 591 . . . . . 6 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ π‘₯ ∈ βˆͺ 𝑇) β†’ βˆƒπ‘’ ∈ 𝑇 (π‘₯ ∈ 𝑒 ∧ βˆƒπ‘Ÿ ∈ ℝ+ 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋)))
6665ralrimiva 3146 . . . . 5 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ βˆ€π‘₯ ∈ βˆͺ π‘‡βˆƒπ‘’ ∈ 𝑇 (π‘₯ ∈ 𝑒 ∧ βˆƒπ‘Ÿ ∈ ℝ+ 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋)))
67 eqid 2732 . . . . . 6 βˆͺ 𝑇 = βˆͺ 𝑇
68 oveq2 7413 . . . . . . . 8 (π‘Ÿ = (π‘“β€˜π‘’) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) = (0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)))
6968ineq1d 4210 . . . . . . 7 (π‘Ÿ = (π‘“β€˜π‘’) β†’ ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))
7069eqeq2d 2743 . . . . . 6 (π‘Ÿ = (π‘“β€˜π‘’) β†’ (𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋) ↔ 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋)))
7167, 70cmpcovf 22886 . . . . 5 ((𝑇 ∈ Comp ∧ βˆ€π‘₯ ∈ βˆͺ π‘‡βˆƒπ‘’ ∈ 𝑇 (π‘₯ ∈ 𝑒 ∧ βˆƒπ‘Ÿ ∈ ℝ+ 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∩ 𝑋))) β†’ βˆƒπ‘  ∈ (𝒫 𝑇 ∩ Fin)(βˆͺ 𝑇 = βˆͺ 𝑠 ∧ βˆƒπ‘“(𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))))
725, 66, 71syl2anc 584 . . . 4 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ βˆƒπ‘  ∈ (𝒫 𝑇 ∩ Fin)(βˆͺ 𝑇 = βˆͺ 𝑠 ∧ βˆƒπ‘“(𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))))
7315ad4antr 730 . . . . . . . . . . . . . 14 ((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) β†’ 𝑋 = βˆͺ 𝑇)
74 simpllr 774 . . . . . . . . . . . . . 14 ((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) β†’ βˆͺ 𝑇 = βˆͺ 𝑠)
7573, 74eqtrd 2772 . . . . . . . . . . . . 13 ((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) β†’ 𝑋 = βˆͺ 𝑠)
7675eleq2d 2819 . . . . . . . . . . . 12 ((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) β†’ (π‘₯ ∈ 𝑋 ↔ π‘₯ ∈ βˆͺ 𝑠))
77 eluni2 4911 . . . . . . . . . . . 12 (π‘₯ ∈ βˆͺ 𝑠 ↔ βˆƒπ‘§ ∈ 𝑠 π‘₯ ∈ 𝑧)
7876, 77bitrdi 286 . . . . . . . . . . 11 ((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) β†’ (π‘₯ ∈ 𝑋 ↔ βˆƒπ‘§ ∈ 𝑠 π‘₯ ∈ 𝑧))
79 elssuni 4940 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ 𝑠 β†’ 𝑧 βŠ† βˆͺ 𝑠)
8079ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑧 βŠ† βˆͺ 𝑠)
8175adantr 481 . . . . . . . . . . . . . . . . 17 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑋 = βˆͺ 𝑠)
8280, 81sseqtrrd 4022 . . . . . . . . . . . . . . . 16 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑧 βŠ† 𝑋)
83 simp-6l 785 . . . . . . . . . . . . . . . 16 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑋 βŠ† β„‚)
8482, 83sstrd 3991 . . . . . . . . . . . . . . 15 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑧 βŠ† β„‚)
85 simprr 771 . . . . . . . . . . . . . . 15 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ π‘₯ ∈ 𝑧)
8684, 85sseldd 3982 . . . . . . . . . . . . . 14 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ π‘₯ ∈ β„‚)
8786abscld 15379 . . . . . . . . . . . . 13 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (absβ€˜π‘₯) ∈ ℝ)
88 simplrl 775 . . . . . . . . . . . . 13 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ π‘Ÿ ∈ ℝ)
89 simprl 769 . . . . . . . . . . . . . . . . 17 (((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ 𝑓:π‘ βŸΆβ„+)
9089ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑓:π‘ βŸΆβ„+)
91 simprl 769 . . . . . . . . . . . . . . . 16 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑧 ∈ 𝑠)
9290, 91ffvelcdmd 7084 . . . . . . . . . . . . . . 15 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (π‘“β€˜π‘§) ∈ ℝ+)
9392rpred 13012 . . . . . . . . . . . . . 14 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (π‘“β€˜π‘§) ∈ ℝ)
9486, 43syl 17 . . . . . . . . . . . . . . 15 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (0(abs ∘ βˆ’ )π‘₯) = (absβ€˜π‘₯))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑧 β†’ 𝑒 = 𝑧)
96 fveq2 6888 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑧 β†’ (π‘“β€˜π‘’) = (π‘“β€˜π‘§))
9796oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑧 β†’ (0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) = (0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘§)))
9897ineq1d 4210 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑧 β†’ ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋) = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘§)) ∩ 𝑋))
9995, 98eqeq12d 2748 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑧 β†’ (𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋) ↔ 𝑧 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘§)) ∩ 𝑋)))
100 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))
101100ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))
10299, 101, 91rspcdva 3613 . . . . . . . . . . . . . . . . . . 19 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 𝑧 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘§)) ∩ 𝑋))
10385, 102eleqtrd 2835 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ π‘₯ ∈ ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘§)) ∩ 𝑋))
104103elin1d 4197 . . . . . . . . . . . . . . . . 17 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘§)))
105 0cnd 11203 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ 0 ∈ β„‚)
10692rpxrd 13013 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (π‘“β€˜π‘§) ∈ ℝ*)
107 elbl 23885 . . . . . . . . . . . . . . . . . 18 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ (π‘“β€˜π‘§) ∈ ℝ*) β†’ (π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘§)) ↔ (π‘₯ ∈ β„‚ ∧ (0(abs ∘ βˆ’ )π‘₯) < (π‘“β€˜π‘§))))
10822, 105, 106, 107mp3an2i 1466 . . . . . . . . . . . . . . . . 17 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (π‘₯ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘§)) ↔ (π‘₯ ∈ β„‚ ∧ (0(abs ∘ βˆ’ )π‘₯) < (π‘“β€˜π‘§))))
109104, 108mpbid 231 . . . . . . . . . . . . . . . 16 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (π‘₯ ∈ β„‚ ∧ (0(abs ∘ βˆ’ )π‘₯) < (π‘“β€˜π‘§)))
110109simprd 496 . . . . . . . . . . . . . . 15 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (0(abs ∘ βˆ’ )π‘₯) < (π‘“β€˜π‘§))
11194, 110eqbrtrrd 5171 . . . . . . . . . . . . . 14 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (absβ€˜π‘₯) < (π‘“β€˜π‘§))
11296breq1d 5157 . . . . . . . . . . . . . . 15 (𝑒 = 𝑧 β†’ ((π‘“β€˜π‘’) ≀ π‘Ÿ ↔ (π‘“β€˜π‘§) ≀ π‘Ÿ))
113 simplrr 776 . . . . . . . . . . . . . . 15 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)
114112, 113, 91rspcdva 3613 . . . . . . . . . . . . . 14 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (π‘“β€˜π‘§) ≀ π‘Ÿ)
11587, 93, 88, 111, 114ltletrd 11370 . . . . . . . . . . . . 13 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (absβ€˜π‘₯) < π‘Ÿ)
11687, 88, 115ltled 11358 . . . . . . . . . . . 12 (((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) ∧ (𝑧 ∈ 𝑠 ∧ π‘₯ ∈ 𝑧)) β†’ (absβ€˜π‘₯) ≀ π‘Ÿ)
117116rexlimdvaa 3156 . . . . . . . . . . 11 ((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) β†’ (βˆƒπ‘§ ∈ 𝑠 π‘₯ ∈ 𝑧 β†’ (absβ€˜π‘₯) ≀ π‘Ÿ))
11878, 117sylbid 239 . . . . . . . . . 10 ((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) β†’ (π‘₯ ∈ 𝑋 β†’ (absβ€˜π‘₯) ≀ π‘Ÿ))
119118ralrimiv 3145 . . . . . . . . 9 ((((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)) β†’ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ)
120 simpllr 774 . . . . . . . . . . 11 (((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ 𝑠 ∈ (𝒫 𝑇 ∩ Fin))
121120elin2d 4198 . . . . . . . . . 10 (((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ 𝑠 ∈ Fin)
122 ffvelcdm 7080 . . . . . . . . . . . . 13 ((𝑓:π‘ βŸΆβ„+ ∧ 𝑒 ∈ 𝑠) β†’ (π‘“β€˜π‘’) ∈ ℝ+)
123122rpred 13012 . . . . . . . . . . . 12 ((𝑓:π‘ βŸΆβ„+ ∧ 𝑒 ∈ 𝑠) β†’ (π‘“β€˜π‘’) ∈ ℝ)
124123ralrimiva 3146 . . . . . . . . . . 11 (𝑓:π‘ βŸΆβ„+ β†’ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ∈ ℝ)
125124ad2antrl 726 . . . . . . . . . 10 (((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ∈ ℝ)
126 fimaxre3 12156 . . . . . . . . . 10 ((𝑠 ∈ Fin ∧ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ∈ ℝ) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)
127121, 125, 126syl2anc 584 . . . . . . . . 9 (((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘’ ∈ 𝑠 (π‘“β€˜π‘’) ≀ π‘Ÿ)
128119, 127reximddv 3171 . . . . . . . 8 (((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) ∧ (𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ)
129128ex 413 . . . . . . 7 ((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) β†’ ((𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ))
130129exlimdv 1936 . . . . . 6 ((((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ βˆͺ 𝑇 = βˆͺ 𝑠) β†’ (βˆƒπ‘“(𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋)) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ))
131130expimpd 454 . . . . 5 (((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) β†’ ((βˆͺ 𝑇 = βˆͺ 𝑠 ∧ βˆƒπ‘“(𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ))
132131rexlimdva 3155 . . . 4 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ (βˆƒπ‘  ∈ (𝒫 𝑇 ∩ Fin)(βˆͺ 𝑇 = βˆͺ 𝑠 ∧ βˆƒπ‘“(𝑓:π‘ βŸΆβ„+ ∧ βˆ€π‘’ ∈ 𝑠 𝑒 = ((0(ballβ€˜(abs ∘ βˆ’ ))(π‘“β€˜π‘’)) ∩ 𝑋))) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ))
13372, 132mpd 15 . . 3 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ)
13410, 133jca 512 . 2 ((𝑋 βŠ† β„‚ ∧ 𝑇 ∈ Comp) β†’ (𝑋 ∈ (Clsdβ€˜π½) ∧ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ))
135 eqid 2732 . . . . . 6 (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i Β· 𝑧))) = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i Β· 𝑧)))
136 eqid 2732 . . . . . 6 ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i Β· 𝑧))) β€œ ((-π‘Ÿ[,]π‘Ÿ) Γ— (-π‘Ÿ[,]π‘Ÿ))) = ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i Β· 𝑧))) β€œ ((-π‘Ÿ[,]π‘Ÿ) Γ— (-π‘Ÿ[,]π‘Ÿ)))
1371, 4, 135, 136cnheiborlem 24461 . . . . 5 ((𝑋 ∈ (Clsdβ€˜π½) ∧ (π‘Ÿ ∈ ℝ ∧ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ)) β†’ 𝑇 ∈ Comp)
138137rexlimdvaa 3156 . . . 4 (𝑋 ∈ (Clsdβ€˜π½) β†’ (βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ β†’ 𝑇 ∈ Comp))
139138imp 407 . . 3 ((𝑋 ∈ (Clsdβ€˜π½) ∧ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ) β†’ 𝑇 ∈ Comp)
140139adantl 482 . 2 ((𝑋 βŠ† β„‚ ∧ (𝑋 ∈ (Clsdβ€˜π½) ∧ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ)) β†’ 𝑇 ∈ Comp)
141134, 140impbida 799 1 (𝑋 βŠ† β„‚ β†’ (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsdβ€˜π½) ∧ βˆƒπ‘Ÿ ∈ ℝ βˆ€π‘₯ ∈ 𝑋 (absβ€˜π‘₯) ≀ π‘Ÿ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907   class class class wbr 5147   Γ— cxp 5673   β€œ cima 5678   ∘ ccom 5679  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Fincfn 8935  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107  ici 11108   + caddc 11109   Β· cmul 11111  β„*cxr 11243   < clt 11244   ≀ cle 11245   βˆ’ cmin 11440  -cneg 11441  β„+crp 12970  [,]cicc 13323  abscabs 15177   β†Ύt crest 17362  TopOpenctopn 17363  βˆžMetcxmet 20921  ballcbl 20923  β„‚fldccnfld 20936  Topctop 22386  Clsdccld 22511  Hauscha 22803  Compccmp 22881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-cls 22516  df-cn 22722  df-cnp 22723  df-haus 22810  df-cmp 22882  df-tx 23057  df-hmeo 23250  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385
This theorem is referenced by:  cnllycmp  24463  cncmet  24830  ftalem3  26568
  Copyright terms: Public domain W3C validator