MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheibor Structured version   Visualization version   GIF version

Theorem cnheibor 24318
Description: Heine-Borel theorem for complex numbers. A subset of is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
Assertion
Ref Expression
cnheibor (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑇   𝐽,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem cnheibor
Dummy variables 𝑧 𝑢 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldhaus 24148 . . . 4 𝐽 ∈ Haus
3 simpl 483 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ⊆ ℂ)
4 cnheibor.3 . . . . 5 𝑇 = (𝐽t 𝑋)
5 simpr 485 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑇 ∈ Comp)
64, 5eqeltrrid 2843 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝐽t 𝑋) ∈ Comp)
71cnfldtopon 24146 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
87toponunii 22265 . . . . 5 ℂ = 𝐽
98hauscmp 22758 . . . 4 ((𝐽 ∈ Haus ∧ 𝑋 ⊆ ℂ ∧ (𝐽t 𝑋) ∈ Comp) → 𝑋 ∈ (Clsd‘𝐽))
102, 3, 6, 9mp3an2i 1466 . . 3 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ∈ (Clsd‘𝐽))
111cnfldtop 24147 . . . . . . . . . . 11 𝐽 ∈ Top
128restuni 22513 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = (𝐽t 𝑋))
1311, 3, 12sylancr 587 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 = (𝐽t 𝑋))
144unieqi 4878 . . . . . . . . . 10 𝑇 = (𝐽t 𝑋)
1513, 14eqtr4di 2794 . . . . . . . . 9 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 = 𝑇)
1615eleq2d 2823 . . . . . . . 8 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝑥𝑋𝑥 𝑇))
1716biimpar 478 . . . . . . 7 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥 𝑇) → 𝑥𝑋)
18 cnex 11132 . . . . . . . . . . . 12 ℂ ∈ V
19 ssexg 5280 . . . . . . . . . . . 12 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
203, 18, 19sylancl 586 . . . . . . . . . . 11 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ∈ V)
2120adantr 481 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑋 ∈ V)
22 cnxmet 24136 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
23 0cnd 11148 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 0 ∈ ℂ)
243sselda 3944 . . . . . . . . . . . . . 14 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ ℂ)
2524abscld 15321 . . . . . . . . . . . . 13 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs‘𝑥) ∈ ℝ)
26 peano2re 11328 . . . . . . . . . . . . 13 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . . . 12 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ)
2827rexrd 11205 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ*)
291cnfldtopn 24145 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
3029blopn 23856 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ ((abs‘𝑥) + 1) ∈ ℝ*) → (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽)
3122, 23, 28, 30mp3an2i 1466 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽)
32 elrestr 17310 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 ∈ V ∧ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ (𝐽t 𝑋))
3311, 21, 31, 32mp3an2i 1466 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ (𝐽t 𝑋))
3433, 4eleqtrrdi 2849 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ 𝑇)
35 0cn 11147 . . . . . . . . . . . . . 14 0 ∈ ℂ
36 eqid 2736 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3736cnmetdval 24134 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0(abs ∘ − )𝑥) = (abs‘(0 − 𝑥)))
3835, 37mpan 688 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (0(abs ∘ − )𝑥) = (abs‘(0 − 𝑥)))
39 df-neg 11388 . . . . . . . . . . . . . . 15 -𝑥 = (0 − 𝑥)
4039fveq2i 6845 . . . . . . . . . . . . . 14 (abs‘-𝑥) = (abs‘(0 − 𝑥))
41 absneg 15162 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (abs‘-𝑥) = (abs‘𝑥))
4240, 41eqtr3id 2790 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (abs‘(0 − 𝑥)) = (abs‘𝑥))
4338, 42eqtrd 2776 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (0(abs ∘ − )𝑥) = (abs‘𝑥))
4424, 43syl 17 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(abs ∘ − )𝑥) = (abs‘𝑥))
4525ltp1d 12085 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs‘𝑥) < ((abs‘𝑥) + 1))
4644, 45eqbrtrd 5127 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))
47 elbl 23741 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ ((abs‘𝑥) + 1) ∈ ℝ*) → (𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))))
4822, 23, 28, 47mp3an2i 1466 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))))
4924, 46, 48mpbir2and 711 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)))
50 simpr 485 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥𝑋)
5149, 50elind 4154 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋))
5224absge0d 15329 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 0 ≤ (abs‘𝑥))
5325, 52ge0p1rpd 12987 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ+)
54 eqid 2736 . . . . . . . . 9 ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)
55 oveq2 7365 . . . . . . . . . . 11 (𝑟 = ((abs‘𝑥) + 1) → (0(ball‘(abs ∘ − ))𝑟) = (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)))
5655ineq1d 4171 . . . . . . . . . 10 (𝑟 = ((abs‘𝑥) + 1) → ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋))
5756rspceeqv 3595 . . . . . . . . 9 ((((abs‘𝑥) + 1) ∈ ℝ+ ∧ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
5853, 54, 57sylancl 586 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
59 eleq2 2826 . . . . . . . . . 10 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (𝑥𝑢𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)))
60 eqeq1 2740 . . . . . . . . . . 11 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6160rexbidv 3175 . . . . . . . . . 10 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6259, 61anbi12d 631 . . . . . . . . 9 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → ((𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)) ↔ (𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∧ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))))
6362rspcev 3581 . . . . . . . 8 ((((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ 𝑇 ∧ (𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∧ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6434, 51, 58, 63syl12anc 835 . . . . . . 7 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6517, 64syldan 591 . . . . . 6 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥 𝑇) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6665ralrimiva 3143 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∀𝑥 𝑇𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
67 eqid 2736 . . . . . 6 𝑇 = 𝑇
68 oveq2 7365 . . . . . . . 8 (𝑟 = (𝑓𝑢) → (0(ball‘(abs ∘ − ))𝑟) = (0(ball‘(abs ∘ − ))(𝑓𝑢)))
6968ineq1d 4171 . . . . . . 7 (𝑟 = (𝑓𝑢) → ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
7069eqeq2d 2747 . . . . . 6 (𝑟 = (𝑓𝑢) → (𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)))
7167, 70cmpcovf 22742 . . . . 5 ((𝑇 ∈ Comp ∧ ∀𝑥 𝑇𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))) → ∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))))
725, 66, 71syl2anc 584 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))))
7315ad4antr 730 . . . . . . . . . . . . . 14 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑋 = 𝑇)
74 simpllr 774 . . . . . . . . . . . . . 14 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑇 = 𝑠)
7573, 74eqtrd 2776 . . . . . . . . . . . . 13 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑋 = 𝑠)
7675eleq2d 2823 . . . . . . . . . . . 12 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋𝑥 𝑠))
77 eluni2 4869 . . . . . . . . . . . 12 (𝑥 𝑠 ↔ ∃𝑧𝑠 𝑥𝑧)
7876, 77bitrdi 286 . . . . . . . . . . 11 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋 ↔ ∃𝑧𝑠 𝑥𝑧))
79 elssuni 4898 . . . . . . . . . . . . . . . . . 18 (𝑧𝑠𝑧 𝑠)
8079ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 𝑠)
8175adantr 481 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑋 = 𝑠)
8280, 81sseqtrrd 3985 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧𝑋)
83 simp-6l 785 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑋 ⊆ ℂ)
8482, 83sstrd 3954 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 ⊆ ℂ)
85 simprr 771 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥𝑧)
8684, 85sseldd 3945 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ ℂ)
8786abscld 15321 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) ∈ ℝ)
88 simplrl 775 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑟 ∈ ℝ)
89 simprl 769 . . . . . . . . . . . . . . . . 17 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑓:𝑠⟶ℝ+)
9089ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑓:𝑠⟶ℝ+)
91 simprl 769 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧𝑠)
9290, 91ffvelcdmd 7036 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ+)
9392rpred 12957 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ)
9486, 43syl 17 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (0(abs ∘ − )𝑥) = (abs‘𝑥))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧𝑢 = 𝑧)
96 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
9796oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (0(ball‘(abs ∘ − ))(𝑓𝑢)) = (0(ball‘(abs ∘ − ))(𝑓𝑧)))
9897ineq1d 4171 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
9995, 98eqeq12d 2752 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → (𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) ↔ 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋)))
100 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
101100ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
10299, 101, 91rspcdva 3582 . . . . . . . . . . . . . . . . . . 19 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
10385, 102eleqtrd 2840 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
104103elin1d 4158 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)))
105 0cnd 11148 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 0 ∈ ℂ)
10692rpxrd 12958 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ*)
107 elbl 23741 . . . . . . . . . . . . . . . . . 18 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (𝑓𝑧) ∈ ℝ*) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧))))
10822, 105, 106, 107mp3an2i 1466 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧))))
109104, 108mpbid 231 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧)))
110109simprd 496 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (0(abs ∘ − )𝑥) < (𝑓𝑧))
11194, 110eqbrtrrd 5129 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) < (𝑓𝑧))
11296breq1d 5115 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → ((𝑓𝑢) ≤ 𝑟 ↔ (𝑓𝑧) ≤ 𝑟))
113 simplrr 776 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
114112, 113, 91rspcdva 3582 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ≤ 𝑟)
11587, 93, 88, 111, 114ltletrd 11315 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) < 𝑟)
11687, 88, 115ltled 11303 . . . . . . . . . . . 12 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) ≤ 𝑟)
117116rexlimdvaa 3153 . . . . . . . . . . 11 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (∃𝑧𝑠 𝑥𝑧 → (abs‘𝑥) ≤ 𝑟))
11878, 117sylbid 239 . . . . . . . . . 10 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋 → (abs‘𝑥) ≤ 𝑟))
119118ralrimiv 3142 . . . . . . . . 9 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
120 simpllr 774 . . . . . . . . . . 11 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑠 ∈ (𝒫 𝑇 ∩ Fin))
121120elin2d 4159 . . . . . . . . . 10 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑠 ∈ Fin)
122 ffvelcdm 7032 . . . . . . . . . . . . 13 ((𝑓:𝑠⟶ℝ+𝑢𝑠) → (𝑓𝑢) ∈ ℝ+)
123122rpred 12957 . . . . . . . . . . . 12 ((𝑓:𝑠⟶ℝ+𝑢𝑠) → (𝑓𝑢) ∈ ℝ)
124123ralrimiva 3143 . . . . . . . . . . 11 (𝑓:𝑠⟶ℝ+ → ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ)
125124ad2antrl 726 . . . . . . . . . 10 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ)
126 fimaxre3 12101 . . . . . . . . . 10 ((𝑠 ∈ Fin ∧ ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
127121, 125, 126syl2anc 584 . . . . . . . . 9 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
128119, 127reximddv 3168 . . . . . . . 8 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
129128ex 413 . . . . . . 7 ((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) → ((𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
130129exlimdv 1936 . . . . . 6 ((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) → (∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
131130expimpd 454 . . . . 5 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) → (( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
132131rexlimdva 3152 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
13372, 132mpd 15 . . 3 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
13410, 133jca 512 . 2 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
135 eqid 2736 . . . . . 6 (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧)))
136 eqid 2736 . . . . . 6 ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) “ ((-𝑟[,]𝑟) × (-𝑟[,]𝑟))) = ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) “ ((-𝑟[,]𝑟) × (-𝑟[,]𝑟)))
1371, 4, 135, 136cnheiborlem 24317 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑟 ∈ ℝ ∧ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)) → 𝑇 ∈ Comp)
138137rexlimdvaa 3153 . . . 4 (𝑋 ∈ (Clsd‘𝐽) → (∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟𝑇 ∈ Comp))
139138imp 407 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟) → 𝑇 ∈ Comp)
140139adantl 482 . 2 ((𝑋 ⊆ ℂ ∧ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)) → 𝑇 ∈ Comp)
141134, 140impbida 799 1 (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560   cuni 4865   class class class wbr 5105   × cxp 5631  cima 5636  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386  +crp 12915  [,]cicc 13267  abscabs 15119  t crest 17302  TopOpenctopn 17303  ∞Metcxmet 20781  ballcbl 20783  fldccnfld 20796  Topctop 22242  Clsdccld 22367  Hauscha 22659  Compccmp 22737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-cls 22372  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241
This theorem is referenced by:  cnllycmp  24319  cncmet  24686  ftalem3  26424
  Copyright terms: Public domain W3C validator