MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheibor Structured version   Visualization version   GIF version

Theorem cnheibor 24852
Description: Heine-Borel theorem for complex numbers. A subset of is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2 𝐽 = (TopOpen‘ℂfld)
cnheibor.3 𝑇 = (𝐽t 𝑋)
Assertion
Ref Expression
cnheibor (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑇   𝐽,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem cnheibor
Dummy variables 𝑧 𝑢 𝑓 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . 5 𝐽 = (TopOpen‘ℂfld)
21cnfldhaus 24670 . . . 4 𝐽 ∈ Haus
3 simpl 482 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ⊆ ℂ)
4 cnheibor.3 . . . . 5 𝑇 = (𝐽t 𝑋)
5 simpr 484 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑇 ∈ Comp)
64, 5eqeltrrid 2833 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝐽t 𝑋) ∈ Comp)
71cnfldtopon 24668 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
87toponunii 22801 . . . . 5 ℂ = 𝐽
98hauscmp 23292 . . . 4 ((𝐽 ∈ Haus ∧ 𝑋 ⊆ ℂ ∧ (𝐽t 𝑋) ∈ Comp) → 𝑋 ∈ (Clsd‘𝐽))
102, 3, 6, 9mp3an2i 1468 . . 3 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ∈ (Clsd‘𝐽))
111cnfldtop 24669 . . . . . . . . . . 11 𝐽 ∈ Top
128restuni 23047 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = (𝐽t 𝑋))
1311, 3, 12sylancr 587 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 = (𝐽t 𝑋))
144unieqi 4870 . . . . . . . . . 10 𝑇 = (𝐽t 𝑋)
1513, 14eqtr4di 2782 . . . . . . . . 9 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 = 𝑇)
1615eleq2d 2814 . . . . . . . 8 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝑥𝑋𝑥 𝑇))
1716biimpar 477 . . . . . . 7 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥 𝑇) → 𝑥𝑋)
18 cnex 11090 . . . . . . . . . . . 12 ℂ ∈ V
19 ssexg 5262 . . . . . . . . . . . 12 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
203, 18, 19sylancl 586 . . . . . . . . . . 11 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → 𝑋 ∈ V)
2120adantr 480 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑋 ∈ V)
22 cnxmet 24658 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
23 0cnd 11108 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 0 ∈ ℂ)
243sselda 3935 . . . . . . . . . . . . . 14 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ ℂ)
2524abscld 15346 . . . . . . . . . . . . 13 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs‘𝑥) ∈ ℝ)
26 peano2re 11289 . . . . . . . . . . . . 13 ((abs‘𝑥) ∈ ℝ → ((abs‘𝑥) + 1) ∈ ℝ)
2725, 26syl 17 . . . . . . . . . . . 12 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ)
2827rexrd 11165 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ*)
291cnfldtopn 24667 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
3029blopn 24386 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ ((abs‘𝑥) + 1) ∈ ℝ*) → (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽)
3122, 23, 28, 30mp3an2i 1468 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽)
32 elrestr 17332 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 ∈ V ∧ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∈ 𝐽) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ (𝐽t 𝑋))
3311, 21, 31, 32mp3an2i 1468 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ (𝐽t 𝑋))
3433, 4eleqtrrdi 2839 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ 𝑇)
35 0cn 11107 . . . . . . . . . . . . . 14 0 ∈ ℂ
36 eqid 2729 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3736cnmetdval 24656 . . . . . . . . . . . . . 14 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (0(abs ∘ − )𝑥) = (abs‘(0 − 𝑥)))
3835, 37mpan 690 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (0(abs ∘ − )𝑥) = (abs‘(0 − 𝑥)))
39 df-neg 11350 . . . . . . . . . . . . . . 15 -𝑥 = (0 − 𝑥)
4039fveq2i 6825 . . . . . . . . . . . . . 14 (abs‘-𝑥) = (abs‘(0 − 𝑥))
41 absneg 15184 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ → (abs‘-𝑥) = (abs‘𝑥))
4240, 41eqtr3id 2778 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ → (abs‘(0 − 𝑥)) = (abs‘𝑥))
4338, 42eqtrd 2764 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (0(abs ∘ − )𝑥) = (abs‘𝑥))
4424, 43syl 17 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(abs ∘ − )𝑥) = (abs‘𝑥))
4525ltp1d 12055 . . . . . . . . . . 11 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (abs‘𝑥) < ((abs‘𝑥) + 1))
4644, 45eqbrtrd 5114 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))
47 elbl 24274 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ ((abs‘𝑥) + 1) ∈ ℝ*) → (𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))))
4822, 23, 28, 47mp3an2i 1468 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → (𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < ((abs‘𝑥) + 1))))
4924, 46, 48mpbir2and 713 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)))
50 simpr 484 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥𝑋)
5149, 50elind 4151 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋))
5224absge0d 15354 . . . . . . . . . 10 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → 0 ≤ (abs‘𝑥))
5325, 52ge0p1rpd 12967 . . . . . . . . 9 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ((abs‘𝑥) + 1) ∈ ℝ+)
54 eqid 2729 . . . . . . . . 9 ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)
55 oveq2 7357 . . . . . . . . . . 11 (𝑟 = ((abs‘𝑥) + 1) → (0(ball‘(abs ∘ − ))𝑟) = (0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)))
5655ineq1d 4170 . . . . . . . . . 10 (𝑟 = ((abs‘𝑥) + 1) → ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋))
5756rspceeqv 3600 . . . . . . . . 9 ((((abs‘𝑥) + 1) ∈ ℝ+ ∧ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
5853, 54, 57sylancl 586 . . . . . . . 8 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))
59 eleq2 2817 . . . . . . . . . 10 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (𝑥𝑢𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋)))
60 eqeq1 2733 . . . . . . . . . . 11 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6160rexbidv 3153 . . . . . . . . . 10 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → (∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6259, 61anbi12d 632 . . . . . . . . 9 (𝑢 = ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) → ((𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)) ↔ (𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∧ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))))
6362rspcev 3577 . . . . . . . 8 ((((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∈ 𝑇 ∧ (𝑥 ∈ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) ∧ ∃𝑟 ∈ ℝ+ ((0(ball‘(abs ∘ − ))((abs‘𝑥) + 1)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6434, 51, 58, 63syl12anc 836 . . . . . . 7 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥𝑋) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6517, 64syldan 591 . . . . . 6 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑥 𝑇) → ∃𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
6665ralrimiva 3121 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∀𝑥 𝑇𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋)))
67 eqid 2729 . . . . . 6 𝑇 = 𝑇
68 oveq2 7357 . . . . . . . 8 (𝑟 = (𝑓𝑢) → (0(ball‘(abs ∘ − ))𝑟) = (0(ball‘(abs ∘ − ))(𝑓𝑢)))
6968ineq1d 4170 . . . . . . 7 (𝑟 = (𝑓𝑢) → ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
7069eqeq2d 2740 . . . . . 6 (𝑟 = (𝑓𝑢) → (𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋) ↔ 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)))
7167, 70cmpcovf 23276 . . . . 5 ((𝑇 ∈ Comp ∧ ∀𝑥 𝑇𝑢𝑇 (𝑥𝑢 ∧ ∃𝑟 ∈ ℝ+ 𝑢 = ((0(ball‘(abs ∘ − ))𝑟) ∩ 𝑋))) → ∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))))
725, 66, 71syl2anc 584 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))))
7315ad4antr 732 . . . . . . . . . . . . . 14 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑋 = 𝑇)
74 simpllr 775 . . . . . . . . . . . . . 14 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑇 = 𝑠)
7573, 74eqtrd 2764 . . . . . . . . . . . . 13 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → 𝑋 = 𝑠)
7675eleq2d 2814 . . . . . . . . . . . 12 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋𝑥 𝑠))
77 eluni2 4862 . . . . . . . . . . . 12 (𝑥 𝑠 ↔ ∃𝑧𝑠 𝑥𝑧)
7876, 77bitrdi 287 . . . . . . . . . . 11 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋 ↔ ∃𝑧𝑠 𝑥𝑧))
79 elssuni 4888 . . . . . . . . . . . . . . . . . 18 (𝑧𝑠𝑧 𝑠)
8079ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 𝑠)
8175adantr 480 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑋 = 𝑠)
8280, 81sseqtrrd 3973 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧𝑋)
83 simp-6l 786 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑋 ⊆ ℂ)
8482, 83sstrd 3946 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 ⊆ ℂ)
85 simprr 772 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥𝑧)
8684, 85sseldd 3936 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ ℂ)
8786abscld 15346 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) ∈ ℝ)
88 simplrl 776 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑟 ∈ ℝ)
89 simprl 770 . . . . . . . . . . . . . . . . 17 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑓:𝑠⟶ℝ+)
9089ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑓:𝑠⟶ℝ+)
91 simprl 770 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧𝑠)
9290, 91ffvelcdmd 7019 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ+)
9392rpred 12937 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ)
9486, 43syl 17 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (0(abs ∘ − )𝑥) = (abs‘𝑥))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧𝑢 = 𝑧)
96 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
9796oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑧 → (0(ball‘(abs ∘ − ))(𝑓𝑢)) = (0(ball‘(abs ∘ − ))(𝑓𝑧)))
9897ineq1d 4170 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
9995, 98eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → (𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋) ↔ 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋)))
100 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
101100ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))
10299, 101, 91rspcdva 3578 . . . . . . . . . . . . . . . . . . 19 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑧 = ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
10385, 102eleqtrd 2830 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ ((0(ball‘(abs ∘ − ))(𝑓𝑧)) ∩ 𝑋))
104103elin1d 4155 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)))
105 0cnd 11108 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → 0 ∈ ℂ)
10692rpxrd 12938 . . . . . . . . . . . . . . . . . 18 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ∈ ℝ*)
107 elbl 24274 . . . . . . . . . . . . . . . . . 18 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (𝑓𝑧) ∈ ℝ*) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧))))
10822, 105, 106, 107mp3an2i 1468 . . . . . . . . . . . . . . . . 17 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(𝑓𝑧)) ↔ (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧))))
109104, 108mpbid 232 . . . . . . . . . . . . . . . 16 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑥 ∈ ℂ ∧ (0(abs ∘ − )𝑥) < (𝑓𝑧)))
110109simprd 495 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (0(abs ∘ − )𝑥) < (𝑓𝑧))
11194, 110eqbrtrrd 5116 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) < (𝑓𝑧))
11296breq1d 5102 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → ((𝑓𝑢) ≤ 𝑟 ↔ (𝑓𝑧) ≤ 𝑟))
113 simplrr 777 . . . . . . . . . . . . . . 15 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
114112, 113, 91rspcdva 3578 . . . . . . . . . . . . . 14 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (𝑓𝑧) ≤ 𝑟)
11587, 93, 88, 111, 114ltletrd 11276 . . . . . . . . . . . . 13 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) < 𝑟)
11687, 88, 115ltled 11264 . . . . . . . . . . . 12 (((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) ∧ (𝑧𝑠𝑥𝑧)) → (abs‘𝑥) ≤ 𝑟)
117116rexlimdvaa 3131 . . . . . . . . . . 11 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (∃𝑧𝑠 𝑥𝑧 → (abs‘𝑥) ≤ 𝑟))
11878, 117sylbid 240 . . . . . . . . . 10 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → (𝑥𝑋 → (abs‘𝑥) ≤ 𝑟))
119118ralrimiv 3120 . . . . . . . . 9 ((((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) ∧ (𝑟 ∈ ℝ ∧ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)) → ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
120 simpllr 775 . . . . . . . . . . 11 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑠 ∈ (𝒫 𝑇 ∩ Fin))
121120elin2d 4156 . . . . . . . . . 10 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → 𝑠 ∈ Fin)
122 ffvelcdm 7015 . . . . . . . . . . . . 13 ((𝑓:𝑠⟶ℝ+𝑢𝑠) → (𝑓𝑢) ∈ ℝ+)
123122rpred 12937 . . . . . . . . . . . 12 ((𝑓:𝑠⟶ℝ+𝑢𝑠) → (𝑓𝑢) ∈ ℝ)
124123ralrimiva 3121 . . . . . . . . . . 11 (𝑓:𝑠⟶ℝ+ → ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ)
125124ad2antrl 728 . . . . . . . . . 10 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ)
126 fimaxre3 12071 . . . . . . . . . 10 ((𝑠 ∈ Fin ∧ ∀𝑢𝑠 (𝑓𝑢) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
127121, 125, 126syl2anc 584 . . . . . . . . 9 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑢𝑠 (𝑓𝑢) ≤ 𝑟)
128119, 127reximddv 3145 . . . . . . . 8 (((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) ∧ (𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
129128ex 412 . . . . . . 7 ((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) → ((𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
130129exlimdv 1933 . . . . . 6 ((((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) ∧ 𝑇 = 𝑠) → (∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋)) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
131130expimpd 453 . . . . 5 (((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) ∧ 𝑠 ∈ (𝒫 𝑇 ∩ Fin)) → (( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
132131rexlimdva 3130 . . . 4 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (∃𝑠 ∈ (𝒫 𝑇 ∩ Fin)( 𝑇 = 𝑠 ∧ ∃𝑓(𝑓:𝑠⟶ℝ+ ∧ ∀𝑢𝑠 𝑢 = ((0(ball‘(abs ∘ − ))(𝑓𝑢)) ∩ 𝑋))) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
13372, 132mpd 15 . . 3 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)
13410, 133jca 511 . 2 ((𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp) → (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟))
135 eqid 2729 . . . . . 6 (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) = (𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧)))
136 eqid 2729 . . . . . 6 ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) “ ((-𝑟[,]𝑟) × (-𝑟[,]𝑟))) = ((𝑦 ∈ ℝ, 𝑧 ∈ ℝ ↦ (𝑦 + (i · 𝑧))) “ ((-𝑟[,]𝑟) × (-𝑟[,]𝑟)))
1371, 4, 135, 136cnheiborlem 24851 . . . . 5 ((𝑋 ∈ (Clsd‘𝐽) ∧ (𝑟 ∈ ℝ ∧ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)) → 𝑇 ∈ Comp)
138137rexlimdvaa 3131 . . . 4 (𝑋 ∈ (Clsd‘𝐽) → (∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟𝑇 ∈ Comp))
139138imp 406 . . 3 ((𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟) → 𝑇 ∈ Comp)
140139adantl 481 . 2 ((𝑋 ⊆ ℂ ∧ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)) → 𝑇 ∈ Comp)
141134, 140impbida 800 1 (𝑋 ⊆ ℂ → (𝑇 ∈ Comp ↔ (𝑋 ∈ (Clsd‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋 (abs‘𝑥) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858   class class class wbr 5092   × cxp 5617  cima 5622  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  Fincfn 8872  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348  +crp 12893  [,]cicc 13251  abscabs 15141  t crest 17324  TopOpenctopn 17325  ∞Metcxmet 21246  ballcbl 21248  fldccnfld 21261  Topctop 22778  Clsdccld 22901  Hauscha 23193  Compccmp 23271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-cls 22906  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769
This theorem is referenced by:  cnllycmp  24853  cncmet  25220  ftalem3  26983
  Copyright terms: Public domain W3C validator