Step | Hyp | Ref
| Expression |
1 | | cnheibor.2 |
. . . . 5
β’ π½ =
(TopOpenββfld) |
2 | 1 | cnfldhaus 24292 |
. . . 4
β’ π½ β Haus |
3 | | simpl 483 |
. . . 4
β’ ((π β β β§ π β Comp) β π β
β) |
4 | | cnheibor.3 |
. . . . 5
β’ π = (π½ βΎt π) |
5 | | simpr 485 |
. . . . 5
β’ ((π β β β§ π β Comp) β π β Comp) |
6 | 4, 5 | eqeltrrid 2838 |
. . . 4
β’ ((π β β β§ π β Comp) β (π½ βΎt π) β Comp) |
7 | 1 | cnfldtopon 24290 |
. . . . . 6
β’ π½ β
(TopOnββ) |
8 | 7 | toponunii 22409 |
. . . . 5
β’ β =
βͺ π½ |
9 | 8 | hauscmp 22902 |
. . . 4
β’ ((π½ β Haus β§ π β β β§ (π½ βΎt π) β Comp) β π β (Clsdβπ½)) |
10 | 2, 3, 6, 9 | mp3an2i 1466 |
. . 3
β’ ((π β β β§ π β Comp) β π β (Clsdβπ½)) |
11 | 1 | cnfldtop 24291 |
. . . . . . . . . . 11
β’ π½ β Top |
12 | 8 | restuni 22657 |
. . . . . . . . . . 11
β’ ((π½ β Top β§ π β β) β π = βͺ
(π½ βΎt
π)) |
13 | 11, 3, 12 | sylancr 587 |
. . . . . . . . . 10
β’ ((π β β β§ π β Comp) β π = βͺ
(π½ βΎt
π)) |
14 | 4 | unieqi 4920 |
. . . . . . . . . 10
β’ βͺ π =
βͺ (π½ βΎt π) |
15 | 13, 14 | eqtr4di 2790 |
. . . . . . . . 9
β’ ((π β β β§ π β Comp) β π = βͺ
π) |
16 | 15 | eleq2d 2819 |
. . . . . . . 8
β’ ((π β β β§ π β Comp) β (π₯ β π β π₯ β βͺ π)) |
17 | 16 | biimpar 478 |
. . . . . . 7
β’ (((π β β β§ π β Comp) β§ π₯ β βͺ π)
β π₯ β π) |
18 | | cnex 11187 |
. . . . . . . . . . . 12
β’ β
β V |
19 | | ssexg 5322 |
. . . . . . . . . . . 12
β’ ((π β β β§ β
β V) β π β
V) |
20 | 3, 18, 19 | sylancl 586 |
. . . . . . . . . . 11
β’ ((π β β β§ π β Comp) β π β V) |
21 | 20 | adantr 481 |
. . . . . . . . . 10
β’ (((π β β β§ π β Comp) β§ π₯ β π) β π β V) |
22 | | cnxmet 24280 |
. . . . . . . . . . 11
β’ (abs
β β ) β (βMetββ) |
23 | | 0cnd 11203 |
. . . . . . . . . . 11
β’ (((π β β β§ π β Comp) β§ π₯ β π) β 0 β β) |
24 | 3 | sselda 3981 |
. . . . . . . . . . . . . 14
β’ (((π β β β§ π β Comp) β§ π₯ β π) β π₯ β β) |
25 | 24 | abscld 15379 |
. . . . . . . . . . . . 13
β’ (((π β β β§ π β Comp) β§ π₯ β π) β (absβπ₯) β β) |
26 | | peano2re 11383 |
. . . . . . . . . . . . 13
β’
((absβπ₯)
β β β ((absβπ₯) + 1) β β) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . 12
β’ (((π β β β§ π β Comp) β§ π₯ β π) β ((absβπ₯) + 1) β β) |
28 | 27 | rexrd 11260 |
. . . . . . . . . . 11
β’ (((π β β β§ π β Comp) β§ π₯ β π) β ((absβπ₯) + 1) β
β*) |
29 | 1 | cnfldtopn 24289 |
. . . . . . . . . . . 12
β’ π½ = (MetOpenβ(abs β
β )) |
30 | 29 | blopn 24000 |
. . . . . . . . . . 11
β’ (((abs
β β ) β (βMetββ) β§ 0 β β
β§ ((absβπ₯) + 1)
β β*) β (0(ballβ(abs β β
))((absβπ₯) + 1))
β π½) |
31 | 22, 23, 28, 30 | mp3an2i 1466 |
. . . . . . . . . 10
β’ (((π β β β§ π β Comp) β§ π₯ β π) β (0(ballβ(abs β β
))((absβπ₯) + 1))
β π½) |
32 | | elrestr 17370 |
. . . . . . . . . 10
β’ ((π½ β Top β§ π β V β§
(0(ballβ(abs β β ))((absβπ₯) + 1)) β π½) β ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π) β (π½ βΎt π)) |
33 | 11, 21, 31, 32 | mp3an2i 1466 |
. . . . . . . . 9
β’ (((π β β β§ π β Comp) β§ π₯ β π) β ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π) β (π½ βΎt π)) |
34 | 33, 4 | eleqtrrdi 2844 |
. . . . . . . 8
β’ (((π β β β§ π β Comp) β§ π₯ β π) β ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π) β π) |
35 | | 0cn 11202 |
. . . . . . . . . . . . . 14
β’ 0 β
β |
36 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’ (abs
β β ) = (abs β β ) |
37 | 36 | cnmetdval 24278 |
. . . . . . . . . . . . . 14
β’ ((0
β β β§ π₯
β β) β (0(abs β β )π₯) = (absβ(0 β π₯))) |
38 | 35, 37 | mpan 688 |
. . . . . . . . . . . . 13
β’ (π₯ β β β (0(abs
β β )π₯) =
(absβ(0 β π₯))) |
39 | | df-neg 11443 |
. . . . . . . . . . . . . . 15
β’ -π₯ = (0 β π₯) |
40 | 39 | fveq2i 6891 |
. . . . . . . . . . . . . 14
β’
(absβ-π₯) =
(absβ(0 β π₯)) |
41 | | absneg 15220 |
. . . . . . . . . . . . . 14
β’ (π₯ β β β
(absβ-π₯) =
(absβπ₯)) |
42 | 40, 41 | eqtr3id 2786 |
. . . . . . . . . . . . 13
β’ (π₯ β β β
(absβ(0 β π₯)) =
(absβπ₯)) |
43 | 38, 42 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ (π₯ β β β (0(abs
β β )π₯) =
(absβπ₯)) |
44 | 24, 43 | syl 17 |
. . . . . . . . . . 11
β’ (((π β β β§ π β Comp) β§ π₯ β π) β (0(abs β β )π₯) = (absβπ₯)) |
45 | 25 | ltp1d 12140 |
. . . . . . . . . . 11
β’ (((π β β β§ π β Comp) β§ π₯ β π) β (absβπ₯) < ((absβπ₯) + 1)) |
46 | 44, 45 | eqbrtrd 5169 |
. . . . . . . . . 10
β’ (((π β β β§ π β Comp) β§ π₯ β π) β (0(abs β β )π₯) < ((absβπ₯) + 1)) |
47 | | elbl 23885 |
. . . . . . . . . . 11
β’ (((abs
β β ) β (βMetββ) β§ 0 β β
β§ ((absβπ₯) + 1)
β β*) β (π₯ β (0(ballβ(abs β β
))((absβπ₯) + 1))
β (π₯ β β
β§ (0(abs β β )π₯) < ((absβπ₯) + 1)))) |
48 | 22, 23, 28, 47 | mp3an2i 1466 |
. . . . . . . . . 10
β’ (((π β β β§ π β Comp) β§ π₯ β π) β (π₯ β (0(ballβ(abs β β
))((absβπ₯) + 1))
β (π₯ β β
β§ (0(abs β β )π₯) < ((absβπ₯) + 1)))) |
49 | 24, 46, 48 | mpbir2and 711 |
. . . . . . . . 9
β’ (((π β β β§ π β Comp) β§ π₯ β π) β π₯ β (0(ballβ(abs β β
))((absβπ₯) +
1))) |
50 | | simpr 485 |
. . . . . . . . 9
β’ (((π β β β§ π β Comp) β§ π₯ β π) β π₯ β π) |
51 | 49, 50 | elind 4193 |
. . . . . . . 8
β’ (((π β β β§ π β Comp) β§ π₯ β π) β π₯ β ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π)) |
52 | 24 | absge0d 15387 |
. . . . . . . . . 10
β’ (((π β β β§ π β Comp) β§ π₯ β π) β 0 β€ (absβπ₯)) |
53 | 25, 52 | ge0p1rpd 13042 |
. . . . . . . . 9
β’ (((π β β β§ π β Comp) β§ π₯ β π) β ((absβπ₯) + 1) β
β+) |
54 | | eqid 2732 |
. . . . . . . . 9
β’
((0(ballβ(abs β β ))((absβπ₯) + 1)) β© π) = ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π) |
55 | | oveq2 7413 |
. . . . . . . . . . 11
β’ (π = ((absβπ₯) + 1) β (0(ballβ(abs
β β ))π) =
(0(ballβ(abs β β ))((absβπ₯) + 1))) |
56 | 55 | ineq1d 4210 |
. . . . . . . . . 10
β’ (π = ((absβπ₯) + 1) β
((0(ballβ(abs β β ))π) β© π) = ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π)) |
57 | 56 | rspceeqv 3632 |
. . . . . . . . 9
β’
((((absβπ₯) +
1) β β+ β§ ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π) =
((0(ballβ(abs β β ))((absβπ₯) + 1)) β© π)) β βπ β β+
((0(ballβ(abs β β ))((absβπ₯) + 1)) β© π) = ((0(ballβ(abs β β
))π) β© π)) |
58 | 53, 54, 57 | sylancl 586 |
. . . . . . . 8
β’ (((π β β β§ π β Comp) β§ π₯ β π) β βπ β β+
((0(ballβ(abs β β ))((absβπ₯) + 1)) β© π) = ((0(ballβ(abs β β
))π) β© π)) |
59 | | eleq2 2822 |
. . . . . . . . . 10
β’ (π’ = ((0(ballβ(abs β
β ))((absβπ₯) +
1)) β© π) β (π₯ β π’ β π₯ β ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π))) |
60 | | eqeq1 2736 |
. . . . . . . . . . 11
β’ (π’ = ((0(ballβ(abs β
β ))((absβπ₯) +
1)) β© π) β (π’ = ((0(ballβ(abs β
β ))π) β© π) β ((0(ballβ(abs
β β ))((absβπ₯) + 1)) β© π) = ((0(ballβ(abs β β
))π) β© π))) |
61 | 60 | rexbidv 3178 |
. . . . . . . . . 10
β’ (π’ = ((0(ballβ(abs β
β ))((absβπ₯) +
1)) β© π) β
(βπ β
β+ π’ =
((0(ballβ(abs β β ))π) β© π) β βπ β β+
((0(ballβ(abs β β ))((absβπ₯) + 1)) β© π) = ((0(ballβ(abs β β
))π) β© π))) |
62 | 59, 61 | anbi12d 631 |
. . . . . . . . 9
β’ (π’ = ((0(ballβ(abs β
β ))((absβπ₯) +
1)) β© π) β ((π₯ β π’ β§ βπ β β+ π’ = ((0(ballβ(abs β
β ))π) β© π)) β (π₯ β ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π) β§ βπ β β+
((0(ballβ(abs β β ))((absβπ₯) + 1)) β© π) = ((0(ballβ(abs β β
))π) β© π)))) |
63 | 62 | rspcev 3612 |
. . . . . . . 8
β’
((((0(ballβ(abs β β ))((absβπ₯) + 1)) β© π) β π β§ (π₯ β ((0(ballβ(abs β β
))((absβπ₯) + 1))
β© π) β§ βπ β β+
((0(ballβ(abs β β ))((absβπ₯) + 1)) β© π) = ((0(ballβ(abs β β
))π) β© π))) β βπ’ β π (π₯ β π’ β§ βπ β β+ π’ = ((0(ballβ(abs β
β ))π) β© π))) |
64 | 34, 51, 58, 63 | syl12anc 835 |
. . . . . . 7
β’ (((π β β β§ π β Comp) β§ π₯ β π) β βπ’ β π (π₯ β π’ β§ βπ β β+ π’ = ((0(ballβ(abs β
β ))π) β© π))) |
65 | 17, 64 | syldan 591 |
. . . . . 6
β’ (((π β β β§ π β Comp) β§ π₯ β βͺ π)
β βπ’ β
π (π₯ β π’ β§ βπ β β+ π’ = ((0(ballβ(abs β
β ))π) β© π))) |
66 | 65 | ralrimiva 3146 |
. . . . 5
β’ ((π β β β§ π β Comp) β
βπ₯ β βͺ πβπ’ β π (π₯ β π’ β§ βπ β β+ π’ = ((0(ballβ(abs β
β ))π) β© π))) |
67 | | eqid 2732 |
. . . . . 6
β’ βͺ π =
βͺ π |
68 | | oveq2 7413 |
. . . . . . . 8
β’ (π = (πβπ’) β (0(ballβ(abs β β
))π) = (0(ballβ(abs
β β ))(πβπ’))) |
69 | 68 | ineq1d 4210 |
. . . . . . 7
β’ (π = (πβπ’) β ((0(ballβ(abs β β
))π) β© π) = ((0(ballβ(abs β
β ))(πβπ’)) β© π)) |
70 | 69 | eqeq2d 2743 |
. . . . . 6
β’ (π = (πβπ’) β (π’ = ((0(ballβ(abs β β
))π) β© π) β π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) |
71 | 67, 70 | cmpcovf 22886 |
. . . . 5
β’ ((π β Comp β§ βπ₯ β βͺ πβπ’ β π (π₯ β π’ β§ βπ β β+ π’ = ((0(ballβ(abs β
β ))π) β© π))) β βπ β (π« π β© Fin)(βͺ π =
βͺ π β§ βπ(π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π)))) |
72 | 5, 66, 71 | syl2anc 584 |
. . . 4
β’ ((π β β β§ π β Comp) β
βπ β (π«
π β© Fin)(βͺ π =
βͺ π β§ βπ(π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π)))) |
73 | 15 | ad4antr 730 |
. . . . . . . . . . . . . 14
β’
((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β π = βͺ π) |
74 | | simpllr 774 |
. . . . . . . . . . . . . 14
β’
((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β βͺ π = βͺ
π ) |
75 | 73, 74 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’
((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β π = βͺ π ) |
76 | 75 | eleq2d 2819 |
. . . . . . . . . . . 12
β’
((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β (π₯ β π β π₯ β βͺ π )) |
77 | | eluni2 4911 |
. . . . . . . . . . . 12
β’ (π₯ β βͺ π
β βπ§ β
π π₯ β π§) |
78 | 76, 77 | bitrdi 286 |
. . . . . . . . . . 11
β’
((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β (π₯ β π β βπ§ β π π₯ β π§)) |
79 | | elssuni 4940 |
. . . . . . . . . . . . . . . . . 18
β’ (π§ β π β π§ β βͺ π ) |
80 | 79 | ad2antrl 726 |
. . . . . . . . . . . . . . . . 17
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π§ β βͺ π ) |
81 | 75 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π = βͺ π ) |
82 | 80, 81 | sseqtrrd 4022 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π§ β π) |
83 | | simp-6l 785 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π β β) |
84 | 82, 83 | sstrd 3991 |
. . . . . . . . . . . . . . 15
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π§ β β) |
85 | | simprr 771 |
. . . . . . . . . . . . . . 15
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π₯ β π§) |
86 | 84, 85 | sseldd 3982 |
. . . . . . . . . . . . . 14
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π₯ β β) |
87 | 86 | abscld 15379 |
. . . . . . . . . . . . 13
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (absβπ₯) β β) |
88 | | simplrl 775 |
. . . . . . . . . . . . 13
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π β β) |
89 | | simprl 769 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β π:π βΆβ+) |
90 | 89 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π:π βΆβ+) |
91 | | simprl 769 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π§ β π ) |
92 | 90, 91 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . 15
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (πβπ§) β
β+) |
93 | 92 | rpred 13012 |
. . . . . . . . . . . . . 14
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (πβπ§) β β) |
94 | 86, 43 | syl 17 |
. . . . . . . . . . . . . . 15
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (0(abs β β )π₯) = (absβπ₯)) |
95 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π’ = π§ β π’ = π§) |
96 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π’ = π§ β (πβπ’) = (πβπ§)) |
97 | 96 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π’ = π§ β (0(ballβ(abs β β
))(πβπ’)) = (0(ballβ(abs β
β ))(πβπ§))) |
98 | 97 | ineq1d 4210 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π’ = π§ β ((0(ballβ(abs β β
))(πβπ’)) β© π) = ((0(ballβ(abs β β
))(πβπ§)) β© π)) |
99 | 95, 98 | eqeq12d 2748 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π’ = π§ β (π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π) β π§ = ((0(ballβ(abs β β
))(πβπ§)) β© π))) |
100 | | simprr 771 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π)) |
101 | 100 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π)) |
102 | 99, 101, 91 | rspcdva 3613 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π§ = ((0(ballβ(abs β β
))(πβπ§)) β© π)) |
103 | 85, 102 | eleqtrd 2835 |
. . . . . . . . . . . . . . . . . 18
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π₯ β ((0(ballβ(abs β β
))(πβπ§)) β© π)) |
104 | 103 | elin1d 4197 |
. . . . . . . . . . . . . . . . 17
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β π₯ β (0(ballβ(abs β β
))(πβπ§))) |
105 | | 0cnd 11203 |
. . . . . . . . . . . . . . . . . 18
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β 0 β β) |
106 | 92 | rpxrd 13013 |
. . . . . . . . . . . . . . . . . 18
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (πβπ§) β
β*) |
107 | | elbl 23885 |
. . . . . . . . . . . . . . . . . 18
β’ (((abs
β β ) β (βMetββ) β§ 0 β β
β§ (πβπ§) β β*)
β (π₯ β
(0(ballβ(abs β β ))(πβπ§)) β (π₯ β β β§ (0(abs β β
)π₯) < (πβπ§)))) |
108 | 22, 105, 106, 107 | mp3an2i 1466 |
. . . . . . . . . . . . . . . . 17
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (π₯ β (0(ballβ(abs β β
))(πβπ§)) β (π₯ β β β§ (0(abs β β
)π₯) < (πβπ§)))) |
109 | 104, 108 | mpbid 231 |
. . . . . . . . . . . . . . . 16
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (π₯ β β β§ (0(abs β β
)π₯) < (πβπ§))) |
110 | 109 | simprd 496 |
. . . . . . . . . . . . . . 15
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (0(abs β β )π₯) < (πβπ§)) |
111 | 94, 110 | eqbrtrrd 5171 |
. . . . . . . . . . . . . 14
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (absβπ₯) < (πβπ§)) |
112 | 96 | breq1d 5157 |
. . . . . . . . . . . . . . 15
β’ (π’ = π§ β ((πβπ’) β€ π β (πβπ§) β€ π)) |
113 | | simplrr 776 |
. . . . . . . . . . . . . . 15
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β βπ’ β π (πβπ’) β€ π) |
114 | 112, 113,
91 | rspcdva 3613 |
. . . . . . . . . . . . . 14
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (πβπ§) β€ π) |
115 | 87, 93, 88, 111, 114 | ltletrd 11370 |
. . . . . . . . . . . . 13
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (absβπ₯) < π) |
116 | 87, 88, 115 | ltled 11358 |
. . . . . . . . . . . 12
β’
(((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β§ (π§ β π β§ π₯ β π§)) β (absβπ₯) β€ π) |
117 | 116 | rexlimdvaa 3156 |
. . . . . . . . . . 11
β’
((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β (βπ§ β π π₯ β π§ β (absβπ₯) β€ π)) |
118 | 78, 117 | sylbid 239 |
. . . . . . . . . 10
β’
((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β (π₯ β π β (absβπ₯) β€ π)) |
119 | 118 | ralrimiv 3145 |
. . . . . . . . 9
β’
((((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β§ (π β β β§ βπ’ β π (πβπ’) β€ π)) β βπ₯ β π (absβπ₯) β€ π) |
120 | | simpllr 774 |
. . . . . . . . . . 11
β’
(((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β π β (π« π β© Fin)) |
121 | 120 | elin2d 4198 |
. . . . . . . . . 10
β’
(((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β π β Fin) |
122 | | ffvelcdm 7080 |
. . . . . . . . . . . . 13
β’ ((π:π βΆβ+ β§ π’ β π ) β (πβπ’) β
β+) |
123 | 122 | rpred 13012 |
. . . . . . . . . . . 12
β’ ((π:π βΆβ+ β§ π’ β π ) β (πβπ’) β β) |
124 | 123 | ralrimiva 3146 |
. . . . . . . . . . 11
β’ (π:π βΆβ+ β
βπ’ β π (πβπ’) β β) |
125 | 124 | ad2antrl 726 |
. . . . . . . . . 10
β’
(((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β βπ’ β π (πβπ’) β β) |
126 | | fimaxre3 12156 |
. . . . . . . . . 10
β’ ((π β Fin β§ βπ’ β π (πβπ’) β β) β βπ β β βπ’ β π (πβπ’) β€ π) |
127 | 121, 125,
126 | syl2anc 584 |
. . . . . . . . 9
β’
(((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β βπ β β βπ’ β π (πβπ’) β€ π) |
128 | 119, 127 | reximddv 3171 |
. . . . . . . 8
β’
(((((π β
β β§ π β
Comp) β§ π β
(π« π β© Fin))
β§ βͺ π = βͺ π ) β§ (π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β βπ β β βπ₯ β π (absβπ₯) β€ π) |
129 | 128 | ex 413 |
. . . . . . 7
β’ ((((π β β β§ π β Comp) β§ π β (π« π β© Fin)) β§ βͺ π =
βͺ π ) β ((π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π)) β βπ β β βπ₯ β π (absβπ₯) β€ π)) |
130 | 129 | exlimdv 1936 |
. . . . . 6
β’ ((((π β β β§ π β Comp) β§ π β (π« π β© Fin)) β§ βͺ π =
βͺ π ) β (βπ(π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π)) β βπ β β βπ₯ β π (absβπ₯) β€ π)) |
131 | 130 | expimpd 454 |
. . . . 5
β’ (((π β β β§ π β Comp) β§ π β (π« π β© Fin)) β ((βͺ π =
βͺ π β§ βπ(π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β βπ β β βπ₯ β π (absβπ₯) β€ π)) |
132 | 131 | rexlimdva 3155 |
. . . 4
β’ ((π β β β§ π β Comp) β
(βπ β (π«
π β© Fin)(βͺ π =
βͺ π β§ βπ(π:π βΆβ+ β§
βπ’ β π π’ = ((0(ballβ(abs β β
))(πβπ’)) β© π))) β βπ β β βπ₯ β π (absβπ₯) β€ π)) |
133 | 72, 132 | mpd 15 |
. . 3
β’ ((π β β β§ π β Comp) β
βπ β β
βπ₯ β π (absβπ₯) β€ π) |
134 | 10, 133 | jca 512 |
. 2
β’ ((π β β β§ π β Comp) β (π β (Clsdβπ½) β§ βπ β β βπ₯ β π (absβπ₯) β€ π)) |
135 | | eqid 2732 |
. . . . . 6
β’ (π¦ β β, π§ β β β¦ (π¦ + (i Β· π§))) = (π¦ β β, π§ β β β¦ (π¦ + (i Β· π§))) |
136 | | eqid 2732 |
. . . . . 6
β’ ((π¦ β β, π§ β β β¦ (π¦ + (i Β· π§))) β ((-π[,]π) Γ (-π[,]π))) = ((π¦ β β, π§ β β β¦ (π¦ + (i Β· π§))) β ((-π[,]π) Γ (-π[,]π))) |
137 | 1, 4, 135, 136 | cnheiborlem 24461 |
. . . . 5
β’ ((π β (Clsdβπ½) β§ (π β β β§ βπ₯ β π (absβπ₯) β€ π)) β π β Comp) |
138 | 137 | rexlimdvaa 3156 |
. . . 4
β’ (π β (Clsdβπ½) β (βπ β β βπ₯ β π (absβπ₯) β€ π β π β Comp)) |
139 | 138 | imp 407 |
. . 3
β’ ((π β (Clsdβπ½) β§ βπ β β βπ₯ β π (absβπ₯) β€ π) β π β Comp) |
140 | 139 | adantl 482 |
. 2
β’ ((π β β β§ (π β (Clsdβπ½) β§ βπ β β βπ₯ β π (absβπ₯) β€ π)) β π β Comp) |
141 | 134, 140 | impbida 799 |
1
β’ (π β β β (π β Comp β (π β (Clsdβπ½) β§ βπ β β βπ₯ β π (absβπ₯) β€ π))) |